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difference between theory and experiment can be
ascribed to a breakdown of the effective-mass approxi-
mation. For the electric and magnetic fields that we
applied, (eEai/ha„) is smaller than 0.1 for the light
holes, but it becomes of order I for the heavy holes.
Therefore, the heavy holes cannot be treated in the
effective-mass approximation. It is probable that for
these high values of electric field, discrete levels no
longer exist for the heavy holes, which would explain the
fact that we do not observe any peaks in the absorption
spectra that can be attributed to heavy-hole —electron
transitions. It would certainly be meaningless to try to
include the heavy holes in a calculation of the type
developed in Sec. IV, which assumes the effective-mass
approximation to hold.

Our results can be summarized as follows. Three
interband magneto-optical transitions have been ob-
served in germanium at energies below the direct gap
in the presence of a large electric field perpendicular to
the magnetic field. One of these transitions is a forbidden
one, induced by the electric field, whereas others are
allowed transitions. The shift of the transition energies
due to the electric and magnetic fields as well as the

intensity behavior have been studied. From the experi-
mental data the energies of three light-hole levels in
crossed electric and magnetic fields have been deter-
mined in a range of E/H values for which perturbation
theories developed earlier are not valid (the requirement
eELsr/hto. «1 is not fulf'died). The theory, which goes
beyond, the perturbation treatment, was developed
within the framework of the effective-mass approxima-
tion by neglecting the electric-field-induced interaction
between the light holes and heavy holes. The theory is
in satisfactory agreement with the experimental data.
It accounts in particular for the observation that the
electric field removes the quantum e6ects from the
light-hole Luttinger ladders.
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Helicon propagation has been studied in the region of low magnetic Gelds, where band structure and non-
local Landau damping effects produce sizable corrections to the high-6eld dispersion relation. Good agree-
ment with both the phase and amplitude of 9-GHz helicons in n-PbTe at 4.2'K is obtained by a semiclassical
treatment of a degenerate, many-valley, ellipsoidal model. The calculation is carried out by expanding the
conductivity tensor in powers of 1/8 treaOting ca/ca„1/ca,r, and qsz/a&, as small quantities, where 80 is
the static magnetic 6eM, co, is the cyclotron frequency, v is the collision time, q is the wave number, and vz
is the Fermi velocity. Because of the anisotropic energy surfaces in PbTe, Landau damping occurs for
propagation along the Geld as well as at an angle. The corrections to the phase are quite sensitive to the
transverse effective mass; comparison with experiment yields a value of 0.020@&0 for the band-edge trans-
verse mass in PbTe. It is also found that both relaxation to the local equilibrium and anisotropic scattering
are important effects, although only the former is included in the theoretical calculations.

L INTRODUCTION

''N a suKciently large static magnetic field, it is
~ ~ possible for circularly polarized electromagnetic
waves to propagate with negligible damping in conduct-
ing solids. These waves, known as helicons, have been

t Based on a thesis submitted by J. N. %alpole to the Massa-
chusetts Institute of Technology in partial ful6llment of the
requirements for the degree of Doctor of Philosophy.

*National Science Foundation Graduate Fellow during a
portion of this work.

$ Operated with support from the U. S. Air Force.

studied in many metals and semiconductors. ' Provided
that displacement current and quantum sects can
be neglected, the helicon dispersion relation in high
magnetic fields is independent of band structure and
depends only on the carrier concentration, the strength
of the magnetic field, and the angle of the field with

' For reviews of theoretical and experimental work. on helicons
see articles by S. J. Buchsbaum, in I'lasma Bgects irI Solids
(Dunod Cie. , Paris, 1965), p. 3; R. Bowers, iblt. , p. 19. Alfven
waves propagate instead of helicons if the concentration of holes
and electrons are equal.
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respect to the direction of propagation. The aim of the
present work is to investigate the low-field behavior of
helicons where corrections to the phase and amplitude
depend strongly on band structure and nonlocal con-
ductivity effects. Microwave transmission experiments
have been carried out at 9 GHz on e-type lead telluride
at 4.2'K and in magnetic fields between 0.7 and 10 kG.
The model of a many-valley degenerate semiconductor
with ellipsoidal energy surfaces is treated in some detail
and yields good agreement with the experimental
results.

The helicon dispersion relation in high magnetic
fields (but not so large that displacement current or
quantum effects need be included) is'

where q is the wave number, ~ the wave frequency, e
the electronic charge, p, o the permeability of free space,
n the carrier concentration, Bo the static magnetic field,
and 6 the angle between q and 80. The helicon is often
called an ac manifestation of the Hall effect since (1.1)
may be derived from Maxwell's equations assuming
that the motion of the carriers is dominated by the
Lorentz force. In the high-field limit the current density
and electric field vectors are at all times perpendicular
and there is no dissipation or damping of the wave. The
expression for q given in (1.1) will be called the zeroth-
order expression and henceforth denoted by qo. More
precisely, (1.1) is obtained from the complete expression
when terms of order &0/~. , 1/ar, r, and qus/~, are
neglected in comparison with unity, where co, is the
cyclotron frequency, r is the collision time and ep
is the Fermi velocity. The neglect of displacement cur-
rent requires that Ns/Bs))~ez„where ez is the lattice
dielectric constant 2

In this paper we consider the low-field behavior of
helicons where ro/to„1/~,r, and qur/a&, are not so small
that they may be neglected, but yet sufIiciently small
that corrections to qo up to second order in these
quantities may be calculated by an expansion of the
conductivity tensor in powers of 1/Bs. The corrections
thus introduced depend strongly on band structure and
the degree to which the current —electric-field relation
within the sample is described by a local (wave-
vector-independent) conductivity or by a nonlocal
(wave-vector-dependent) conductivity.

In the nonlocal regime, two types of resonant (colli-
sionless) damping, accompanied. by strong effects on
the phase, may occur. These are Doppler-shifted
cyclotron resonance (DSCR) and Landau damping.
The former, which has been widely studied, ~7 will not

~ For the range of magnetic Gelds and carrier concentrations
used in the present experiments, displacement current may be
neglected even though sz is unusually large in PbTe. [W. Cochran,
Phys. Letters 13, 193 (1964).g

~ E. A. Stern, Phys. Rev. Letters 10, 91 (1963).

be discussed in detail here since it occurs when
qual/ar, 1, a condition not reached in the present
experiments.

Landau damping, however, may occur at higher fields
where qual/a, may be treated as a small quantity. It is a
resonant interaction with the wave by particles whose
average velocity over the cyclotron orbit has a com-
ponent along the direction of propagation equal to the
wave velocity. ' Landau damping, originally predicted
for helicon waves by Kaner and Skobov, "has been ob-
served for helicons propagating at an angle to the mag-
netic field in alkali metals by Grimes" and by Houck
and Bowers. "Although the treatment by Kaner and
Skobov predicts no damping for propagation along the
magnetic field, this result is correct only for special
symmetry of the Fermi surface. In particular, for
ellipsoidal energy surfaces with propagation parallel to
80 but not along a principal axis of the ellipsoid, the
damping is not zero.

Just such a situation is encountered in the present
experiments on lead telluride, which show Landau
damping for propagation along the field as well as at an
angle. Comparison will be made between theory and
experiment using both local and nonlocal conductivity
tensors in order to show the size of the nonlocal cor-
rections that are involved. The mechanism through
which energy is transferred from the wave to the
resonant particles is not discussed here, however; this
matter is treated in the following paper' in a more
general context for a closed Fermi surface of arbitrary
shape.

II. EXPERIMENTAL TECHNIQUES

The phase and amplitude of 9-GHz microwave signals
transmitted by helicon waves through samples of
e-PbTe were measured at 4.2'K as the magnitude and
orientation of the static magnetic field were varied. The
microwave system used was originally assembled by
May and has been described elsewhere. "Two signals
are transmitted from the source to the receiver. One is
modulated and passes through the sample; the other,
the "feed-around" signal, is unmodulated, larger than

4 M. T. Taylor, Phys. Rev. 137, A1145 (1965).
5A. W. Overhauser and S. Rodriguez, Phys. Rev. 141, 431

(1966).' J. C. McGroddy, J. L. Stanford, and E. A. Stern, Phys. Rev.
141, 437 (1966).

7 J.L. Stanford and E. A. Stern, Phys. Rev. 144 534 (1966).' For reasons discussed in the following paper (Ref. 9) we use
the term Landau damping to include the effect of all Geld com-
ponents in producing the resonant transfer of energy.

9 A. L. McWhorter and J. N. Walpole, following paper, Phys.
Rev. 158, 719 (1967).

'0 E. A. Kaner and V. G. Skobov, Zh. Eksperim. i Teor. Fiz.
45, 610 (1963) /English transl. : Soviet Phys. —JETP 18, 419
(1964)g.» C. C. Grimes, Bull. Am. Phys. Soc. 11, 570 (1966}."J.R. Houck and R. Bowers, Bull. Am. Phys. Soc. 11, 256
(1966).

»A. L. McWhorter and W. G. May, IBM J. Res. Develop.
8, 285 (1964); W. G. May, Ph.D. thesis, Massachusetts Institute
of Technology, 1964 (unpublished).
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FIG. 1. Typical recorder traces of the receiver output versus
magnetic field illustrating (a) interferometer mode, in which the
amplitude and phase of the transmitted signal is measured using a
"feed-around" signal, and {b) simple detection of the transmitted
power using no feed-around. The phase of the feed-around signal
differs by 180' in the two superimposed traces in {a); the dis-
continuities in the amplitude result from successively adding
12 dB attenuation in the sample arm.

the modulated signal transmitted through the sample,
and has a calibrated phase shifter and attenuator in its
path. The interference between the two signals can be
used to measure phase just as with the "leakage"
technique, ""while in addition a sensitivity of 10 ' %
can be achieved by synchronously detecting at the
modulation frequency. Furdyna" has also used a
"controlled leakage" system for helicon experiments,
but without the sensitivity of modulation and syn-
chronous detection. Interference patterns of the type
obtained by Furdyna" were used to determine the
amplitude and phase delay of the transmitted signal, as
illustrated in Fig. 1(a). Two superimposed recorder
traces of the receiver output versus magnetic 6eld are
shown, the two traces corresponding to a 180' difference
in the setting of the phase shifter in the feed.-around
arm. The helicon phase delay is obtained from the
position of the nulls, which occur at intervals of 180';
the amplitude is determined from the envelope of the
traces.

The lower trace, Fig. 1(b), shows the receiver output
without the feed, -around signal. The oscillations here are
the dimensional resonances due to multiple reflections
of the helicon from the sample faces. The effect of these
dimensional resonances is seen in Fig. 1(a) as a dis-

'4 G. A. Williams and G. K. Smith, IBM J. Res. Develop. 8,
276 (1964).

1' C. C. Grimes, Bull. Am. Phys. Soc. 9, 239 (1964).
~6 J. K. Furdyna, Phys. Rev. Letters 14, 635 (1965); Rev. Sci.

Instr. Bj, 462 (1966).
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FIG. 2. Mounting arrangement of sample between waveguide
Ranges. Indium gaskets are used to prevent leakage of the micro-
wave signal; magnesium is used for the mounting and supporting
plates because its thermal contraction approximately matches that
of PbTe.

"S. I. Novikova and N. K. Abrikosov, Fiz. Tverd. Tela 5,
1913 {1963) t English transl. : Soviet Phys. —Solid State 5, 1397
(1964)).

tortion of the interference pattern at high fields.
Without feed-around the output of the receiver is
proportional to the power in the transmitted signal.

In addition to the recorder traces, a point-by. -point
measurement of the phase and amplitude of the signal
was sometimes used, particularly for measuring the
change in phase and amplitude as the direction of the
magnetic field was rotated with respect to the direction
of propagation. By nulling the signal, the phase could
be determined with a precision of about &1 degree at
moderate signal levels. The angle between the field
and the direction of propagation was measured to 0.1'.

The mounting arrangement of the samples is shown
in Fig. 2. The sample, which is plated with gold and
copper around its edges as described later, is soldered
over a circular iris in a copper-plated magnesium plate.
Plating is used on both the sample and the magnesium
plate so that solder joints are easily made and reliably
microwave tight. This plate is then "sandwiched"
between two thicker magnesium plates with indium
gaskets inserted as shown in the figure. The indium
gaskets prevent microwave leakage from the joints.
Magnesium is used in the thin plate and the two thicker
ones as a precaution against thermal stress. The total
thermal contraction of this material from room tem-
perature to liquid-helium temperature closely matches
that of PbTe. '~ Finally the set of plates and gaskets
are bolted between two brass Ganges with circular
ridges which again prevent leakage of microwave signals.

The incident microwave signal travels toward the
sample through an essentially smooth and continuous
rectangular waveguide, which is shorted at the end by
the sample and the magnesium mounting plate. The
bends occurring on each side of the sample have a low
reQection coeKcient, and the sample and other irregu-
larities in the mounting arrangement are of small size
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FIG. 3. Phase delay of the helicon wave versus Bp 1~2 for sample
I-B with the magnetic 6eld along the propagation direction.
Points are experimental; curves labeled I. and Xl. are calculated
using local and nonlocal conductivity tensors, respectively. The
sample thickness is 0.047 cm and the carrier concentration is
8.1X10"cm 3.

compared to the wavelength of the radiation in the
guide. Because of the high conductivity of the PbTe,
the surface of the sample is essentially at a node of the
electric field, with the magnetic field being twice that of
the incident wave. Since the sample is small and located
in the center of the guide, the magnetic field is very
nearly uniform across the surface and linearly polarized
in the plane of the surface. By using the continuity of
H across the boundary, the excitation of the propagating
helicon mode can be determined. Similar considerations
apply at the other sample-waveguide interface, which
appears as an open circuit to the propagating wave.

Inside the sample, because of its high effective dielec-
tric constant, wavelengths will be extremely small

( 40') and it is a good approximation to treat the
sample as infinite in the directions perpendicular to
the propagation direction. That is, diffraction effects
may be neglected provided the wide dimensions of the
sample are large compared to the wavelength. Thus a
simple plane wave propagating perpendicular to the
surface is excited. The surfaces of the sample must be
R.at and parallel to at least a quarter of the wavelength
to prevent interference effects.

Before the final mounting of the samples, a somewhat
lengthy and careful preparation procedure was followed.
PbTe is extremely susceptible to cracking and cleaving.
It is also quite soft and therefore easily scratched and
damaged by working, grinding, and cutting. Hence it is
necessary to use techniques which avoid mechanical
and thermal shocks to the material.
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FrG. 4. Phase delay of the helicon wave versus B0 '~' for sample
I-A with the magnetic held along the propagation direction.
Points are experimental; curves labeled L, and EL, are calculated
using local and nonlocal conductivity tensors, respectively. The
zeroth-order curve neglects both band structure and nonlocal
corrections. The sample thickness is 0.082 cm, and the carrier
concentration is 1.7&(10"cm 3.

Starting material was an as-grown (8ridgeman
furnace), p-type ingot obtained from Battelle with

p 2 X10" cm ' and y 200,000 cm'/volt sec at
T=4.2'K. Wafers oriented in the (100) direction and
approximately 0.1 cm thick were cut from the ingot
using a spark erosion cutter which applies no mechanical
force. After the work damage was removed by grinding
and etching, "the samples were annealed by a procedure
similar to that used by Brebrick and Gubner. " The
purpose of the annealing procedure is to produce a
controlled deviation from stoichiometry and thus adjust
carrier type and concentration. In addition, the high
temperatures used (600 to 750'C) may relieve strains
to some extent. After annealing, the samples were
ground to the desired thickness and then etched to
achieve a polished surface. The sample faces remained
smooth and parallel if the final etching was kept to a
minimum.

Next a thin gold film was evaporated on the samples
except for circular areas about 0.2 cm in diameter
through which the signal was to be transmitted.
Copper was then electroplated on the gold, and finally
another film of gold was evaporated on the copper to
improve wetting of the indium solder to the sample
during the final soldering operation of the sample to the
magnesium card. The copper plating provides a thick

» M. K.. Norr, U. S. Naval Ordnance Laboratory Report No.
T. R. 63-156, 1963 (unpublished).

» R.. F. Brebrick and K. Gubner, J. Chem. Phys. 36, 1283
(1962).
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FIG. 5.Transmitted amplitude of the helicon wave versus Bo '~'
for sample I-B with the magnetic field along the propagation
direction. Solid curve through points is experimental. Dashed
curves labeled L and SL are calculated using local and nonlocal
conductivity tensors, respectively.
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FIG. 6. Transmitted amplitude of the helicon wave versus Bo '~'

for sample I-A with the magnetic Geld along the propagation
direction. Points are experimental. Solid curve labeled SL, is
calculated using a nonlocal conductivity tensor.

base which does not dissolve into the soMer, thus pre-
venting an alloy forming between the PbTe and the
indium, which otherwise would have cracked the sample
because of differences in thermal contraction.

III. EXPEMMENTAL RESULTS

The phase-shift plots for two samples of diferent
concentration are shown in Fig. 3 and Fig. 4. For both
samples the magnetic field is along the L001] axis which
is the direction of propagation. The theoretical curyes
labelled L for local and EL for nonlocal conductivity
were calculated as described in the next section. The
experimental points lie almost exactly on the EL curves.
In Fig. 4 the zeroth-order dispersion line given by
(1.1) is also shown for comparison.

Sample I-B in Fig. 3 has the higher concentration,
m=8. 1X10'~ cm ', and shows strong nonlocal behavior.
Sample I-A in Fig. 4 has a concentration of 1.7)(10"
cm ', and is only slightly aGected by the nonlocal correc-
tion. A similar behavior is noted in the amplitude data
shown in Fig. 5 and Fig. 6. In the 6rst of these 6gures
the nonlocal correction is appreciable. In the second
there is little difference in the theoretical curves for the
local and nonlocal regimes and only the latter is shown.

For propagation at an angle to the 6eld, the change in
phase and the change in amplitude of the transmitted
signal as a function of angle were measured as described
in the preceding section. The 6eld was held constant in
magnitude and rotated in the (100) plane. The results
for sample I-8 are compared to theoretical curves for
both the local and nonlocal regimes in Fig. 7. The graph
of phase shift also shows the zeroth-order contribution
which is due to the angular dependence of go in (1.1).
In Fig. 8 the results for sample I-3 are compared, to
theoretical calculations for the nonlocal theory only,
since again the local calculation yields essentially the
same curve. It should be noted that the only serious
discrepancy between the experimental results and the
theory occurs in the curves for change in amplitude with
the angle of the magnetic 6eld. As will be discussed
later, this disagreement is believed to be due to aniso-
tropic scattering, which was not included in the
calculation.

Results similar to those shown in Figs. 3—8 were
obtained for two intermediate concentrations, n=6.6
)&10"cm ' and m=4. 1&(10' cm '. A consistent trend
toward stronger nonlocal effects with higher concen-
trations was found; comparison with theory showed the
same general agreement in the phase and amplitude for
the 6eld along the propagation direction and the same
disagreement in the change in amplitude with the angle
of the Geld.

Ke shall return to Figs. 3—8 for further comment and
interpretation after presenting the theory in the next
section. The mass parameters and the concentrations
and collision times used in the theoretical calculations
will also be discussed later.

IV. THEORY

The dispersion relation for helicon waves in the
inGnite medium is obtained from the solution to
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Fxo. 7. Changes in the phase and
amplitude of the helicon wave versus
the square of the angle 8 between the
magnetic field and the propagation
direction for sample I-B. The magni-
tude of the Geld is held constant at
1.5 kG. The solid curves are drawn
through the experimental points; the
dashed curves labeled L, and XL are
calculated using local and nonlocal
conductivity tensors, respectively. The
zeroth-order curve neglects both band
structure and nonlocal corrections.
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Maxwell's equations with the constitutive relation

J=o(rpqBp) E (4.1)

where the conductivity tensor e is generally a function
of frequency, wave vector, and static magnetic field.
The semiclassical conductivity tensor obtained from
the solution of the Boltzmann equation"" will be used
here for the calculation of helicon propagation in the
nonlocal regime. When ro/&o. , 1/rp. r and qpr /rp, are all
small compared to unity, as is the case in the present
experiments, exact expressions for the conductivity
tensor are not needed. It is sufficiently accurate to
expand o in powers of 1/Bp and keep only the leading
terms. Before carrying out such a treatment, however,
we shall use the form of the conductivity tensor to
discuss nonlocal effects in a more general way.

A. 5'onlocal E8ects

The semiclassical conductivity tensor for the case of
spherical energy surfaces and in the absence of spatial

bunching of particles'P is

eX
0= i8/8X—

cos8
(43)

and where X=q,ns/rp. and )=Xsin8. The variable of
integration 8 is the polar angle in velocity space. The
J„areBessel functions of integer order e and rp is the
dc conductivity rsesr/rN. The coordinate system used
in (4.2) is such that the s axis is along the dc magnetic
field and the x axis is chosen so that j lies in the xs
plane and has the components q and q, . When density
Quctuations are present, e must be replaced by a more
general tensor, denoted by e' in the notation of Ref. 20.
The tensor e', which may be expressed" in terms of e,

OJ„(&)OIJ(&) sin8d8
e= ~op (4.2)

p 1 s(Nrp,—pp+q,—rtr cos8)r

where the vector operator 0 is given by

i 000

FIG. 8. Changes in the phase and
amplitude of the helicon wave versus
the square of the angle 8 between the
magnetic field and the propagation
direction for sample I-A. The magni-
tude of the field is held constant at
1.0 kG. The solid curves are drawn
through the experimental points; the
dashed curves labeled XL are calcu-
lated using a nonlocal conductivity
tensor. The zero-order curve neglects
both band structure and nonlocal
corrections.
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~ M. H. Cohen, M. J. Harrison, and W. A. Harrison, Phys. Rev. 117, 937 (1960).
@ S. Rodriguez, Phys. Rev. 112, 80 (1958).
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1.0
replaced by the corresponding primed quantities. The
cyclotron frequency, which depends on the orientation
of Sp, is given by M, =eBp'. The tensor m'" is defined in
the principal axes coordinate system of the ellipsoid by

3
0.5

m1/2 0 0
m1/2 0 m21/2 0

0 0
(4.6)

includes the effect of relaxation to the local equilibrium.
However, e'=e in the limit r —+ ~, so that the colli-
sionless damping e6ects in the nonlocal regime may be
predicted on the basis of (4.2) alone. Although pertur-
bation calculations in the local limit" indicate that for
finite v the eGect of collision anisotropy may be im-
portant, especially in the amplitude of the helicon
wave, only isotropic collisions will be considered here.
A more general treatment of collisions in the non-
local regime introduces considerable mathematical
complexity.

The use of (4.2) is not restricted to the case of
spherical energy surfaces. As is well known, for an
ellipsoidal Fermi surface of the form

Ep= gp'm 'p )

the transformations

I =m1/2. I
'

E=m1/~ E',
q=m'/'q',

v=m '/'v' r=m '/'r'
Q 0 = [

yg [»2m—»2 Ii '

J=m—'/' J',
reduce the Boltzmann equation to the same form as
for spherical energy surfaces. Therefore, the solutions
to the Boltzmann equation in terms of the primed
quantities are identical to the solutions for particles
with isotropic mass. The conductivity tensor for the
ellipsoidal case then may be obtained from the tensor
appropriate to the spherical case by performing the
inverse transformations. Hence, the ellipsoidal case can
be discussed using (4.2) if vp, q, 80, E, and J are

~' A. L. McWhorter and J. N. Walpole (to be published).

qV„(COB8 }/u&

F10. 9. Normalized ug plane in which two zero-order helicon
dispersion relations are plotted for varying magnetic field strength
with the frequency and angle 0 of propagation with respect to
the field held constant. Resonant damping occurs in the cross-
hatched regions. Curve A shows the critical case in which DSCR
and Landau damping set in at the same magnetic field. Curve 8
corresponds to sample l-8 with propagation along $0 and parallel
to the L001j axis; in this case I.andau damping occurs first as the
magnetic field is decreased. The quantity 8 is the maximum
average Fermi velocity along the magnetic field. In general a
diferent dispersion relation would have to be drawn for each
ellipsoid because of the normalization.

For PbTe, which has four (111) prolate ellipsoids
located at the Brillouin-zone boundaries, m1=m2=m&
and m3 =m) =Emg.

In (4.2) there is a pole in the integrand arising from
each term in the series. In the collisionless limit the
Hermitian part of e arising from the residues at the
poles represents a resonant absorption of energy by the
electrons. For transmission of magnetoplasma waves,
as opposed to acoustic experiments or surface impedance
measurements, the resonant absorption is likely to be
observed only for e=0 and e= 1.This is because absorp-
tion due to one or both of these terms occurs first as the
applied field is reduced from a large value, and the wave
becomes heavily damped or changes its character en-
tirely before the resonant condition is reached for the
other terms of the series. The anti-Hermitian part of
e determines the dispersion or phase of the wave and is
affected by the proximity of a singularity even when
the resonant condition is not reached.

The e= 1 resonance, known as Doppler-shifted
cyclotron resonance, ' requires that

I I&c=& gz &z
& (4.7)

for some electrons on the Fermi surface. This condition
may be rewritten in terms of the average velocity v, as

GOc=GO g 'Vav =M —Q'Vavq (4.8)

since v ' is simply ~,'a' and since the transformation
(4.5) leaves the scalar product invariant. The inter-
pretation of (4.8) is that resonant absorption of energy
occurs if some electrons, as they move through the
wave, see a rotating electric field at a Doppler-shifted
frequency equal to their cyclotron frequency. '

The m= 0 resonance is the one with which we are con-
cerned in the experiments on PbTe and is the Landau
damping mentioned earlier. This interaction occurs with
those Fermi-surface electrons for which

1 f I I~=q, ~, =q v« =q. v, (4.9)

is satisfied, that is, with those electrons whose average
velocity along the direction of propagation matches the
phase velocity of the wave.

In Fig. 9 the regions of the (co,q) plane in which
DSCR and Landau damping occur are shown. Two
zero-order dispersion relations are plotted for varying
magnetic field strength for helicons propagating at
constant frequency and angle 0 with respect to the
magnetic field. In terms of the normalized coordinates
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of Fig. 9, the dispersion relation tat.es the form

where r)4=gBp/M, is the cyclotron mass and 8 is the
maximum average Fermi velocity in the z direction.
(In a many-valley semiconductor the values of (p, and

will in general be different for each ellipsoid. ) For
((pPr)p. /Ng'gpss)

' cos8) above a critical value of -'„DSCR
occurs 6rst as the 6eld is decreased. Below this value,
Landau damping will occur first and may obscure the
onset of DSCR. At suKciently high 6elds a region of no
resonant damping can always be reached since the
initial slope of the dispersion relation is inhnite. Curve
3 is plotted for the critical case and curve 8 corresponds
to the case for the PbTe sample I-8 with propagation
along Bp and parallel to the [001]axis.

The fact that (4.9) can be satisfied tells one nothing
about the strength of the resonant damping, of course.
Indeed, for spherical energy surfaces with Io parallel
to q, Landau damping vanishes, and it has erroneously
been thought'p to vanish whenever o is parallel to q

for any closed Fermi surface. However, it can be shown'
for closed Fermi surfaces of general shape that the
strength of the damping depends upon the energy
gained from the electric GeM by a resonant particle over
one complete cyclotron orbit. In the present experi-
ments, which involve ellipsoidal energy surfaces with

q not along a principal axis, the energy transfer is non-
zero even for Sp parallel to q. Quinn" erst showed the
existence of damping in this geometry by a quantum
calculation of the conductivity tensor for ellipsoidal
energy surfaces. In this connection it shouM. be noted
that Landau damping, which in the semiclassical treat-
ment is associated with the n=0 resonant denominator
in (4.2), is quantum mechanically an intra-Landau-
level transition in the limit of small momentum transfer,
while DSCR (the I=1 resonance) corresponds to an
inter-Landau-level transition.

B. Nonlocal Calculations to Second Order in 1/Bp

The dispersion relation obtained from Maxwell's
equations with displacement current neglected is of
the form

tcoIJ, po» —
g cos H

'bMIJ pO'y ~

iM) pg..+q' cos8 sin8

zp)ppg~~+q cos8 sln8
IMP pP~q

Rap, p{T„—g sin H

(4.11)

in a coordinate system in which z~~Bp, q, =q cos8 and

q, =q sinH. Here the {J;, are the elements of the con-

ductivity tensor in{,"lld&zg relaxation to the local
equilibrium, i.e., the quantities denoted by 0.;, in

Ref. 20. In the local limit (4.11) has two roots, one of
which corresponds to the helicon mode and the other
to a highly attenuated cuto6 mode. " Although new

roots to (4.11) may exist in principle in the nonlocal

regime, the helicon wave remains as the only propagat-
ing mode if (o/(p„1/p),r, and pr/(p, are all small. "

Second-order corrections to the helicon root of (4.11)
may be obtained by expanding the components of e
to third order in 1/Bp with the parameters (p/(p„
1/&p, r, and q()) /(p, considered as small quantities. The
only component of c which can have a term independ-
ent of Bp is o„.The Onsager relations require g;;(Bp)
=o "(—Bp) and from the symmetry of the geometry
chosen, the conductivity tensor must be invariant to
reQection in the xz plane. It follows from these con-
siderations that the expansion of the conductivity com-

ponents in powers of 1/Bp to third order must have the

~ J. J. Quinn, Phys. Rev. 135, A181 (1964);
~ C. R. Legendy, Phys. Rev. 135, 1713 I',1964)."Transmission due to single-particle excitations (as opposed to

collective modes such as the helicon wave) may occur in the non-
local regime, but is negligible here since the sample thickness is
much larger than the particle mean free path.

following form:

0'vv =0 flu
(2) (2)

=g (&)+g (p)

—g =g o)+g (p)

0 ax= 0'xz (2)

(p)+g (p)

(4.12)

i o„(')+cos'8o„„(')n~(q)

Bp 4 cosH
(cos8o„.(') —sin8o, „('))'-

0)~ (p)
SQ SS

np(q) 1 n~(q)
'

Bo' 2 Bp 40.„&' r y&'

0'yy {Try 0'xg 0 ys
(2) (2) (3) (2) " 0)

4(o'~p ) 0'~y 20'gg -tr~p

In (4.12) the numerals in parentheses denote the order
in 1/Bp.

Using (4.12) in (4.11) and keeping only the terms
which give corrections to qp of 6rst and second orders in
1/Bp, we obtain a dispersion relation of the form

n~(q) np(q)
q qp 1+ +— (4.13)

~p ~p
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The first-order correction gi(q)/Bo contains the main
features of the band structure and nonlocal corrections.
The second-order term gn(q)/Bo' is important only in
obtaining a more exact evaluation of the imaginary part
of q, since the zeroth-order expression gives no damping
as previously mentioned.

The remaining problem in finding the dispersion
relation is the calculation of the terms of the expansion
in 1/Bo of the components of e. Four contributions to
each term must be calculated, one from each ellipsoid.
As the first step, the expansion of the isotropic mass
conductivity tensor was obtained in powers of 1/Bo.
The transformations (4.5) were then applied for each
ellipsoid and the results added together in a common
coordinate system. After the final expressions were sub-
stituted into (4.13), q was evaluated iteratively by
computer using qo as an initial approximation. '

Since the algebraic manipulations are lengthy though
straightforward, we shall omit the details, which may be
found elsewhere. "The results of the expansion of the
components of the isotropic-mass conductivity tensor

are given in Appendix A for reference. Although a
similar expansion has been given before, "the results in
Appendix A include relaxation to the local equilibrium.
This effect is important in the case of a many-valley
band structure since density Quctuations may occur on
a per-ellipsoid basis even though the total density
fluctuation is small (as we assume by neglecting dis-
placement current). In order to treat each ellipsoid in-
dependently in this manner, the intervalley collision rate
must be small compared to the frequency of the wave.
This condition should be well satisfied in PbTe at 4.2'K.
The additional terms that result from including relaxa-
tion to local equilibrium are numerically significant in
both phase and amplitude for the conditions encoun-
tered in the present experiments.

Since the main features of the theoretical curves
shown in Figs. 3—6 for q~~BO can be understood from the
first-order corrections only, it may be useful to give for
0=0 an explicit expression for (4.13) with second-order
terms omitted:

where

i q 2E+1y pate&, q p 3 ~'I'(E—1)'
V= so 1+ —

I I

—i] I( I (o),
2e, q 2co,qr) E+2 ) E &g, g ) (If+2) 8(E+2)

( 1)' t' 5 1 1 ((a+1/a) tan 'u —15'
«a)=l 1+—

I
«n 'o—

I

—+—+——
a2) (3a a3 a' 1+i&sr (1/a) tan 'a—

(4.15)

(4.16)

i&.,«(1+ ~)-r. i

E+2)
(4.17)

Here e&& is the Fermi velocity transverse to the axis
of revolution of the ellipsoid and co,&= eBO/m&. The last
term in (4.16) results from including relaxation to
local equilibrium. The theoretical curves in Figs. 3—6
were of course actually calculated using the full expres-
sion (4.13), including the second-order term g2(q)/Bo'.
Also included in the numerical calculation was the
magnetic field dependence of the excitation of the wave,
which results from a 1/g variation in the coupling to
the microwave signal in the waveguide. The theoretical
curves marked I. were also calculated from (4.13) by
evaluating the 0; "' at q=0.

V. COMPA. RISON OF THEORY
AND EXPERIMENT

It is well established that the energy bands in PbTe
are nonparabolic, '9 and probably the energy surfaces

"A Taylor expansion of g1 and g& about q=q0 is not adequate
because of the logarithmic singularities which occur in these
functions.

~' J. N. Walpole, Ph.D. thesis, Massachusetts Institute of Tech-
nology, 1966 (unpublished).' S. G. Kckstein, Phys. Rev. 131, 1087 (1963).

29 See, for example, K. F. Cu8, M. R. Kllett, C. D. Kuglin, and
L. R. Williams, in Proceedings of the Seventh International Con-
ference oe the Physics of Semiconductors, Paris, 1964 (Dunod Cie.,
Paris, 1964), p. 677.

are not strictly ellipsoidal as well. '0 However, if we
assume that the deviation from ellipsoidal shape is
small, nonparabolicity may easily be included in the
preceding treatment by allowing for a concentration
dependence of the mass parameters. For a nonparabolic
but ellipsoidal model the energy-momentum relation is"

E(1+E/Eg) =Q pP/2m, p, (5 1)

m~ moor 1+——ce'"5,

where the constant c is given by

c= (3n'h'/4/E) 213/mgoEg

(5.2)

(5.3)
3o J.0.Dimmock and G. B.Wright, in Proceedings of the Seventh

International Conference on the Physics of Semicondlctors, Puris,
1964 (Dunod Cie., Paris, 1964), p. 77.

» a. I.ax and J. G. Mavroides, in Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic Press Inc. , New York, 1960),
Vol. 11,p. 261.

where p; is the momentum component along the ith
axis of the ellipsoid and m;0 is the band-edge mass
parameter. It is assumed that the total energy E is
small compared to the energy gap E, between the
interacting bands. For an ellipsoid of revolution, (5.1)
leads to a fixed anisotropy ratio E and a transverse
mass m~ which varies as
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for the case of PbTe, which has four conduction-band
ellipsoids.

As mentioned in Sec. III, data was obtained from
samples of four different carrier concentrations. If it
is assumed that m~ varies with concentration according
to (5.2), N', &0 and the constant c can be determined by
adjusting these parameters to achieve a theoretical fit
to the data for all four concentrations. The anisotropy
ratio X is not a sensitive parameter in the theoretical
expressions for Gxed angle of propagation with respect
to the 6eld and it seems evident that anisotropic
scattering prevents the determination of this parameter
from the dependence on 8 of the phase and amplitude.
Hence no attempt was made to determine E; the value
10 was used throughout" "

The concentration is determined by the initial slope
at high 6elds of the phase-shift curves (Figs. 3 and 4),
and it is not possible to adjust e further in order to
achieve a 6t at lower 6elds. The anisotropy ratio E has
little effect on the curvature of the phase plots at low
6elds for values of E within 20% of 10, nor has the
value of cov over a range from 0.1 to 10.However, a few
percent change in m~ has a marked effect on the curva-
ture, so that the transverse mass may be determined
quite accurately from the low-6eld phase data. The
sensitivity to m& and the insensitivity to E arise from a
competition between local and nonlocal terms. The
tendency for the terms of the conductivity which are
present in the local theory to give an upward curvature
to the phase plot is offset by the additional terms which
are present in the nonlocal regime and which produce a
downward curvature. While reducing E reduces both
the local and nonlocal terms in a roughly compensating
fashion, the reduction of m& increases the effect of the
nonlocal terms and decreases the local one. This be-
havior may be seen from (4.15) since the local term to
6rst order is proportional to (co/co, ~), which varies as
m~, and the nonlocal one depends on qvy~/&o. ~ times a
strong function of qu~~, which varies as 1/m~. The
values of roe used in the calculations were obtained by
6tting the amplitude data for propagation along the
magnetic Geld. Hence, no parameters were determined
from the data for propagation at an angle to the Geld.

In summary, the anisotropy ratio E was taken as 10,
the concentrations e were obtained from the initial
slopes of the curves of phase shift vs 80 '~2, the param-
eters m~0 and c were adjusted to give a fit to the low-
Geld curvature of the phase-shift plots for four con-
centrations, and the values of cov were determined from
the amplitude data.

The values thus found for m&0 and c were mN =0.020mo
and c=2.65&&10" cm'. The latter is 25% smaller than
the theoretical result one would obtain using (5.3)
and ta&i~g E,=0.19 eV." The discrepancy is not
significant since we are using a very simple model for
the interacting bands. The present value of m~0 is

somewhat smaller than the previously estimated, ' one
of 0.024+0.003 mo, but again the discrepancy is not
very significant in view of the possible effects of non-
ellipsoidal energy surfaces and. anisotropic scattering.
Vsing the values of m~0 and c, we predict m~=0.022mo
for a concentration of 2X10"cm ', which may be com-
pared to the value 0.024 mo obtained by Nii32 at the
same concentration from cyclotron resonance data. The
values found for o&r were about 2 (for sample I A, -

err = 1.9; for sample I B, er -= 2.0).
The disagreement between theory and experiment for

the change in amplitude with the angle of the magnetic
6eld in Fig. 7 and 8 is believed to be due to anisotropic
scattering. Allgaier's" dc galvonomagnetic experiments
on PbTe at 4.2'K have given values of E'=m~r~/m, 7 g

ranging from 4 to 6, which implies an anisotropy
r~/r, of the order of 2 since E=m~/m~ is about 10. For
sample I-A, which has the lowest concentration, a
first-order perturbation calculation in the local limit"
yields for r &/r &

= 2 a correction to the angular dependence
of the amplitude which is of the right size to account for
the discrepancy in Fig. 8. Little effect of collision
anisotropy on the phase of the helicon wave is pre-
dicted. A con6rmation of the role of anisotropic colli-
sions will require experiments at higher fields where
second-order terms and nonlocal effects can be com-
pletely neglected or else extending the theory for
anisotropic scattering beyond the first-order perturba-
tion treatment.

VL DISCUSSION AND CONCLUSIONS

As seen in Figs. 3—8, the phase data is in good agree-
ment with the theory, as is the attenuation for propa-
gation along the field. However, the angular dependence
of the attenuation strongly suggests that anisotropic
collisions are present. When 8 is Gxed, collision anisot-
ropy is probably not of great importance since the main
effect can be taken into account by an effective colli-
sion time. Nevertheless, without a full treatment of the
collision effects the mass anisotropy cannot be de-
termined with any precision from the data. The trans-
verse mass, on the other hand, is a sensitive parameter
in the theoretical behavior of the phase shift in either
the local or nonlocal regimes. The low-field helicon
experiment provides a good measurement of t'his quan-
tity, within the assumption of ellipsoidal energy surfaces.
In fact, in the nonlocal regime the helicon problem is
more tractable theoretically than cyclotron resonance
since nonlocal effects may be taken into account as small
corrections. Except in the extreme anomalous limit of
Azbel-Kaner cyclotron resonance, the treatment of
cyclotron resonance under nonlocal conditions is quite
difBcult.

In the concentration range of these experiments the
nonlocal effects vary from nearly negligible ones at the

"R.Nii, J. Phys. Soe. Japan 19, 58 (1964). N R. S. AOgaier, Phys, Rev. 112, 828 (1958).
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lowest concentration (e= 1.7X10'~ cm ') to ex-
tremely important ones at the highest concentration
(e=8.1X10'r cm '). This behavior is easily understood
in terms of the parameter qv/co„which is proportional
to e'I', if we use qp for q. Hence for heavier concentra-
tions the dispersion relation lies further into the cross-
hatched region of Landau damping in I"ig. 9 for a given
value of co/~, .

It should be pointed out again tliat, relaxatloli to the
local equilibrium can be important in a many-valley
band structure because of fluctuations in the individual
ellipsoid populations. Such fluctuations can exist vrhen

the intervalley collision rate is long, even though the
total density Quctuation is zero as for transverse waves
in general, or quite small as in the helicon vrave vrith

negligible displacement current.
The experimental results for propagation along the

6eM confirm the semiclassical theory for the nonlocal
regime in some detail for a relatively simple yet highly
interesting model. Striking nonlocal sects are pro-

duced by Landau damping, which can occur even for
propagation along the field because of the anisotropic
energy surfaces in PbTe. Although the presence of
Landau damping does not necessarily have a strong
inQuence on the helicon wave, since the interaction can
be arbitrarily vreak depending on the shape of the
Fermi surface and the value of qvv/&u„ it would never-
theless appear that phase shift and attenuation of
helicons in materials vrith general energy surfaces would
not be interpretable in terms of DSCR interaction
only.
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APPENDIX A: EXPANSION OF THE CONDUCTIVITY TENSOR IN POWERS OF 1/8o

0'gg 0'gg 1+Ad r

0'p 0'p Cd~7'

o„„o„„&'&1+iv&r 3 q 3 (q, ' 1 t (u+ 1/u) tan —'u —1j
u(1+ 1/u')' tan-'u —(S/3+1/u') +-~—

0'o (Q4r) 4 qg 4(q, u' 1+icor (1/u) tan 'u—Op

0„0„&'& 3kar q 1 1—(1/u) tan 'u

oo oo 1+ivor) u' 1+mr (1/u) tan —'u

The components of the isotropic-mass conductivity tensor may be expanded in powers of 1/J3o when

~
(~—i/r)/a&,

~
(1 and qvp/a&, &1. In the absence of density fluctuations, we simply expand in (4.2) the Bessel

functions and the factors (n&o,—a&+q, vv cos8+i/r) ' for ng0 in a power series in 1/&v. before carrying out the
integration over 8. Kith density fluctuations, the requirement of relaxation to the local equilibrium gives additional
terms in the expansion of the components, However, these additional terms are related through an Einstein
relation" to those derived from (4.2). The calculations are straightforward but tedious; we give here only the
results. For rl in the xs plane and with the s axis parallel to So, we obtain to lowest order in 1/Bo

0 ~y 0 gy 0'~y0) (3)

Op Op 0'p

o„.0„.&" 1 /q. )
0'o 0'o oogr kqgf

(1+~r)' I/q. 't(u+I/u) tan-u —1j -3/q,
(o,r (co,r)' 2(q, 1+uur (1/u) tan 'u, —10(q,

30&r $(u+1/u) tan-'u —1j
2u' 1+iv)r (1/u) tan —'u—

where
0'p

0'xs (2)

0'p

q. 1+~r 1—(1/u) tan—'u

q, (co,r)' 1+ivor (1/u) tan 'u—

O'O= No r/rN

u= (q»r)/(1+~r). (A3)

The numerals in parentheses indicate the order in 1/Bo of the component. Note that for o,„wehave included the
next higher nonvanishing term 0,„"&,since this term is required in order to obtain (Aq/qo) to second order in I/Bo
for the helicon vrave.


