
PHYSICAL REVIEW VOLUME 158, NUMBER 3 15 JUNE 1967

Simple Derivation of the Hall Anisotropy Factors for Cubic and
Octahedral Constant-Energy Surfaces
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An elementary method is described for the derivation of the weak-field Hall anisotropy factor (r in
Ep=f/ne) for the cases of cubic and octahedral energy surfaces. The magnetoconductivity approach is
used (i.e., an electric field which is fixed in direction and magnitude, and a current which rotates when
the magnetic Geld is turned on). The method simply computes the longitudinal current due to the electric
Geld and the transverse current due to the magnetic force. The latter results entirely from carriers which
drift across an edge of the energy surface, thereby changing the direction of their velocity. Then the Hall
angle, Hall field, and finally the Hall coeKcient are easily determined, and the results agree with the results
of the much more complicated approach (the kinetic method of Shockley, McClure, and Chambers) pre-
viously used to derive the Hall anisotropy factor for these two cases.

INTRODUCTION

~ 'HIS article describes a simple method for deriving
the weak-6eld Hall anisotropy factors for a cubic

and for an octahedral constant-energy surface. By the
Hall anisotropy factor we mean the quantity r in the
expression for the weak-6eld Hall coeKcient,

Rp r/ne, ——

where e is the carrier density and e the carrier charge.
We w'ork. in the metallic approximation, i.e., we com-
pute r for the constant-energy surface at the Fermi
level, and do not consider contributions from carriers
on other energy surfaces.

The Hall anisotropy factor r equals —,
' for a cubic

surface' and 3 for an octahedral one. ' These results were
obtained using the method of Shockley, ' McClure, 4

and Chambers. ' This method is described by Beer, ' and
is quite mathematical and tedious. The derivation
assumes that the scattering time is constant on a given
energy surface. The fact that the complicated mathe-
matics ultimately leads to the simple numbers ~ and
~ suggests that there should be some more elementary
method of obtaining these results.

The traditional Jones-Zener' series solution oi the
Boltzmann equation in ascending powers of the mag-
netic 6eld breaks down when applied to a constant-
energy surface with sharp corners. The source of the
difhculty becomes clear when we consider the behavior
of carriers on, for example, a cubic surface. The mag-
netic field causes the carriers to move along the constant-
energy surface in momentum space. If they remain on
one face of the surface, their velocity is unaltered by the

magnetic 6eld; i.e., their Hall angle is zero. But for
those carriers which drift across an edge of the cube,
the Hall angle becomes 90; consequently, the weak-
6eld approximation breaks down.

DERIVATION FOR THE CUBlC SURFACE

Figure 1 shows the cubic surface in momentum space,
aligned so that its faces are parallel to the planes formed
by the coordinate axes. The states are occupied within
the volume bounded by the planes p„p„, p, =&p.
Within the square pyramid having an apex at the
origin and base p, = +p Lwith corners at (p, +p, ap) j,
the relation between energy and momentum is
h= p,'/2m. The same relation holds within the pyra-
midal region with base p, = —p, and the corresponding
relations for the pyramids with bases in the x-s and
x-y planes are of course h= p„'/2m and h= p,2/2m. The
magnitude of the carrier velocity on all faces is
v =p./m= p„/m= p,/m= p/m.

We now apply an electric 6eld E along the x axis
and a, magnetic imld H along the s axis (in the positive
sense in both cases). We use the magnetoconductivity
approach, i.e., we imagine a sample without transverse
boundaries. Then w'e may keep E 6xed in magnitude
and direction. The current, rather than E, will rotate
through the Hall angle, and will change its magnitude,
when the magnetic 6eld is turned on.

As suggested in Fig. 2, the occupied region of mo-
mentum space will then shift a certain distance along
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FIG. 1. The cubic
energy surface at the
Fermi energy in mo-
mentum space. Dashed
lines show the pyramidal
region, with apex at the
origin and base p, =+p,
discussed in the text. (p
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Fxo. 2. Displacement
of the cubic Fermi. sur-
face under the applied
forces. The central sec-
tions, at p, =o, of the
undisplaced (solid lines}
and displaced (dashed
lines) surfaces are shove,
as viewed from the posi-
tive s direction.
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Fxo. 4. The octa-
hedral energy surface
at the Fermi energy

py in momentum space.o, p, o)

the x axis, creating a current component i,. The dis-
tribution will also rotate under the action of H; some
of the displaced carriers will drift across the edge
parallel to the s axis, thereby producing a y component
of culI'Cnt zy.

The total current is e= (i '+i ')'" Its direction
with respect to the x axis is the HRB angle 8, where
tan8=i„/i, Hen. ce, as shown in Fig. 3, the Hall field

EII is E sin8. The HRB coeKcient at any H is therefore

E sintII

(2)

corresponds to zero current. The volume V of the
displacement 1II thc s dllcct1011 (Fig. 2) ls

V.= 2(2p)&op.
= 2(2p)'(eEr). (4)

The Grst factor 2 takes care of the contributions from
the volumes at p, =+p and —p. The portion of this
displaced distribution which drifts across the edge of
the surface, thus producing a current in the y direction,

For small 8, sin8= tan8 and z=z, . Then

EZ
Ro

Z,'H

Equation (3) is a conventional weak-field approxima-
tion, corresponding to a small average Hall angle, and
neglecting any contribution from magnetoresistance.
In the present cases, a small average value for 8 means
thRt thc QQstk8f of dlsplaccd CRI'I'lcls which hRvc drifted
across an edge of the constant-energy surface (thus
acquiring a large Hall angle) is small compared to those
displaced carriers which have not. But in what follows,
we do not compute the behavior of this smaller group
of carriers by using any weak-Geld approximation, and
hence we avoid the troubles which occur when attempts
are made to compute weak field terms in-the Jones-
Zener expansion.

Next, in the usual fashion, we compute the current
components froIn the displaced and rotated portions of
the distribution, since the undisplaccd distribution

px

Qp =eEv ——Hz

V„=2(2p)hp, hp„
= 2(2p) (eEr) (eu,Hr)
= 2(2p) (eEr) (epHr/es) .

The corresponding current components are

i;= (2/k )V;eii;, j=x,y.

i,= 16p'e'rE/k'm
Rnd

i„=8paean'EH/h'eP. (g)

Substituting Eqs. (2) and (8) into Kq. (3) for the weak-
Geld Hall coefficient gives

Ro= k'/32ep'.

E=E
X

EH = Esine FIG. 3. Orientation of the elec-
tric 6eld (E) and current {j)vec-
tors in the presence of the mag-
netic 6eld. The magnetic 6eld
vector, not shown, is normal to the
plane of the 6gure, pointing toward
the viewer. The components of E
parallel and perpendicular to i are
labeled E; and Z~ (the Hall 6eld).
The Hall angle is 8. FIG. 5. Displacement of the octahedral Fermi surface under the

applied forces. The central sections, at P, =O, of the undisplaced
(sohd lines) and displaced (dashed lines) surfaces are shown, as
vjewed from the positive s djregtion,



ss= {2/h') (2p)'; (10)

But the carrier density I is related to the volume of
occupied momentum space:

The current components are

'=(2/h')(4p')( E )()( /&)
=SPse'rE/3hsm, {14)

using this relation to eliminate p from Eq. (9) leads
6nally to

Ep 1/2——ee.

Thus 'f= 2 for a cubic energy surface.

THE OCTAHEDRAL SURFACE

An octahedral energy surface is sketched in Fig. 4,
and the eGect of the applied forces on the distribution
is shown in Fig. 5. The vertices of the octahedron are
located at (ap, 0, 0), (0, ap, 0), and. (0, 0, ap).
Because the rectangular geometry is absent in this
case, more care must be exercised, but the procedure
remains straightforward. Again we put E and B in the
x and 2' directions, respectively.

The faces of the octahedron are perpendicular to
(111) directions. Hence the velocity parallel to any
coordinate axis is 1/K3 of the total velocity I}IIIon any
face. The change in transverse velocity when a carrier
dl1'f ts acloss thc edges lylllg 111 tile s-s plane will bc 2/ t3I

times the total velocity. There is no change in trans-
verse velocity when carriers cross the edges lying in
the y-s plane, and carriers do not drift across the edges
lying in the x-y plane.

The velocity s»I is given by t}»I——p»I/III, where p»,
is the distance of a {111}face from the origin. This
coordinate is related to the cubic axis coordinates by
pill= (1/'}3)p~ Ol pp Ol' pg. To compute the lllagllC'tlc

force, we need the projection of ~~~~ onto the x-y plane.
This projection lies in a (110)direction, and is given by
(I}2/~3I}»I. The volumes V, and V„are conveniently
computed in terms of the area of the appropriate face
of the octahedron, projected onto the y-s plane, times
an element of length in the x direction, rather than in
terms of the area of the constant-energy surface, times
an element of length normal to it.

Proceeding as in the cubic case,

i„=(2/h ) (4P) (eEr) (ePHr/3Ns) (e) (2I}»I/V3)
= 16Psesr'EH/9hsrlss. (15)

Again substituting the current components into Kq. (3)
for the weak-6eld Hall coefBcient,

Ep (h'/4——ep') .
Since half the volume of the octahedron is ~~of the
product of the area of a central cross section and the
perpendicular distance to the appropriate vertex,

&= (2/h') (s)p(2p'); (17)

using this, as before, to eliminate p from Eq. (16) gives

Thus for an octahedral surface, r= -', .

CONCLUSIONS

We have derived in an elementary fashion the weak-
field Hall anisotropy factor for two cases of constant-
energy surfaces bounded by plane surfaces, a cube and
an octahedron. These were chosen because they had
been derived previously by a much more complicated
method, and berause they are surfaces which approxi-
mate those. in actual materials. The cube is not very
different from the heavy-mass valence band in Ge,'
and the octahedron resembles the hole band in W which
is centered on the point H in the bcc Brillouin zone. s

Ke intend to extend this simple technique to other
cases of interest in a later publication. So far as we
know, the value r=-,' for a cube is the largest deviation
from r=1 (for a sphere) for any single, cubically
syrrnnetric surface. We would like to 6nd out what
general shapes of surfaces might lead to larger devia-
tions. We also intend to investigate examples of multi-
valley models, and models in which the Fermi surface
has necks extending to the boundaries of the Brillouin
zone.
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