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The purpose of this investigation was to determine the natural width or broadening of the Landau levels
of the conduction electrons in a perfect crystal when a uniform magnetic field is present. The eigenvalues
and eigenfunctions of the effective-Hamiltonian equation have been found in the WKB approximation.
Connection formulas good for all energies (including the region near the top of the barrier) were used to
connect the nearly degenerate solutions in adjacent zones. The energy levels were found to be essentially
discrete except in the immediate vicinity of open orbits. The effective-Hamiltonian solutions have been
related to the solutions of the exact Hamiltonian. We have demonstrated that the effective-Hamiltonian
formalism omits no source of level broadening (except for interband effects) since our solutions are com-
pletely consistent with the requirements of a group-theoretical treatment of the exact Hamiltonian.

I. INTRODUCTION

N 1930, the classic work of Landau' appeared in
which he found the energy levels of a free electron
in a magnetic field. Shortly thereafter, Peierls,? within
the framework of the tight-binding approximation,
carried out the first analysis of a Bloch electron in a
magnetic field. In 1952, Onsager® showed how to quan-
tize the allowed areas in % space of the electron orbits
and, hence, how to determine the energy levels.

Kohn* and Blount® have demonstrated the validity
of the effective-Hamiltonian formalism, which has been
one of the most useful methods of studying the Landau
levels of Bloch electrons. Blount,5 Zil’berman,’—8 and
Azbel”® have discussed the solutions of the effective-
Hamiltonian equation (the equivalent of the Schréd-
inger equation)

E(-iv+£;A>¢(r) — By (). (1.1)

It seems reasonable to conclude that the position of the
energy levels is well established by the Onsager rules,?
but the question of the natural width or broadening of
the energy levels has not been clearly answered.

A completely different approach has been tried by
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Brown and by Zak.'='* Brown found the irreducible
representations of the exact Hamiltonian,

1 e \?2
sc=——(p+——A> +V(), (12)
2m fic

whereas Zak treated the lattice potential V(r) as a
perturbation using the proper symmetry-adapted wave
functions. The perturbation approach, however, fails
for a real metal because the matrix elements of the
lattice potential exceed %w., the separation of the un-
perturbed levels. But, group theory can establish the
general nature of the solution.

The purpose of this work is to examine in detail the
eigenvalues and eigenfunctions of the effective-Hamil-
tonian equation (1.1), with particular emphasis on
determining the broadening of the Landau levels.

II. EFFECTIVE-HAMILTONIAN FORMALISM

We shall give a brief summary of the effective-
Hamiltonian formalism and justify its use in the present
problem. Let us first define the magnetic or modified
Wannier functions for the band # as'®!5

tn(t,R;) = WX Rig, (r—R;), (2.1)

where b=¢H/%¢c, a,(r) is the zero-field Wannier func-
tion, and Rj is a vector of the direct lattice. We take as
our basis functions

B, (k,r)=3 eitRiy,(r,R)). (2.2)
R;j

We restrict k to the first Brillouin zone (BZ). If we
expand the Schrodinger wave function ®(r) as

<I>(r)=Z/ %k fa(k)Ba(k,1), (2.3)
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the eigenvalue equation for the exact Hamiltonian 3C is

% [ dth R (e $XR)

"R — ENpu(k+1bXR;) 1fa(K)=0. (2.4)

We define the matrix elements H,,,(k) and N,..(k) as
H (k) =§ e xR ,a(R)),

(2.5)
Nun(k)=2 e*®iNpn(R;)
where Y
Won(R) = / 0 (4 R,)eGODX Rigea, (1)
(2.6)

Nua(R))= /a,,.*(r+ Rj)etibXrRig, (r)d% .

We choose the symmetric gauge for the vector potential
A=(1/2)HXr. 2.7
Consider the following eigenvalue equation, to which
we presume to know the solution:
> [Hun(—iV+3bXr)

—ENpn(—iV4+3bX 1) Wa(r)=0. (2.8)

Let us write

Yal) = / Bk vn(R)ee, 2.9)

where the integration is over all k. Substituting (2.9)
into (2.8), we obtain

> / &% ¢ Hyn (k--2bX 1)
" — ENpn(k+3bX 1) Wa(k)=0. (2.10)

Since (2.10) must hold for all r, it surely holds for
r=R;. Clearly, then, if we let

fn(k)=§ ¥a(k+KJ), (2.11)

where the sum is over all reciprocal lattice vectors K,
we have solved the eigenvalue equation (2.4). If we
substitute (2.11) and (2.2) into (2.3), we obtain on
taking account of (2.9)

‘I>(r)=RZ ¥n(R)ua(r,Ry). (2.12)

We have, therefore, established that the effective-
Hamiltonian equation (2.8) is equivalent to the exact
Schridinger equation. Equation (2.8) or its equivalent

has also been obtained by a number of authors*?®15:16
several different ways, including Chambers,'® who

161, M. Roth, J. Phys. Chem. Solids 23, 433 (1962).
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straightforwardly derived it using the Wannier repre-
sentation and ignoring the question of replacing R; by a
continuous variable r.
When the field vanishes (b=0), #.(r,R;)=a.(r—R;),
and
Hm"b(k) = E"(k)amﬂ )
Nopn(K)=68mn.

E.(k) is the energy-band function for the band # in
the absence of a field. When the energy gaps between
the bands are not so small as to allow magnetic break-
down,*% we can diagonalize (2.8) to any order of & by
a unitary transformation of the form#* 1516

H'=StHS,

N'=StNS.
To lowest order and for all practical purposes, H' and
N’ are given by (2.13).

Dropping the band index » (we consider a single
band) and letting

E(k)=3 W (R,

(2.13)

(2.14)

(2.15)

[W (R;) is given by (2.6) with m=# and 5=0] we have
then the eigenvalue equation

E<—¢v+;;A)¢<r>=z W (R;)eGmRsr GXOT (R (x)
c R;

= Ey(r). (2.16)
The translation operator T'(R;) is defined by
T(R;)=ei®i V)

We write ¢/(r) in such a form as to reduce (2.16) to
an equation in one variable,

(1) = gibestikar—i®avg (y—F,/b). (2.17)

We choose the z axis to be along H, so that %, is a good
quantum number. For convenience, the y axis is chosen
to be along the shortest reciprocal lattice vector K; in
the plane perpendicular to H.

Substituting (2.17) into (2.16) and shifting the origin
of y to k,/b, we can show that ¢(y) satisfies the one-
dimensional equation

2 W(Ry)eheZimi@mXi¥i=vXiT(V ;)¢ (y) = Eg (y) , (2.18)

where Rj=(X;,V;,Z;) and
T(Yé(y)=o(y+7Y;).

As in the free-electron case,' the eigenvalue is inde-
pendent of k,. [We shall see in Sec. VI that for each
solution ¢(y) only a discrete set of values for &, is
allowed. Therefore, the degeneracy of the solutions in
k. is not as large as one might expect at first sight.]

It should be noted that the solutions to (2.16) must

(2.19)
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be of the Bloch form (in one dimension) because the
differential operator on the left-hand side is periodic in
y with period 7;=K1/b. As a consequence, we can label
¢(y) with a continuous index Q, where

do(y+r1)=e1¢o(y).

In general, we must also label ¢(y) with a discrete index
»n which corresponds to a particular Landau level. The
dependence of the energy on (Q corresponds to the
broadening of the levels.

(2.20)

III. WKB SOLUTIONS

Zil’berman’ and Blount® have shown that the WKB
solutions to (2.16) are of the form

1 Y
s0)=—en| i 2000y |, G
V'V
where k(y) is given implicitly by
E[—by, k(y),k:]=E 3.2)
and
1|9E
V=—|— (3.3)
Aok, [t

Since E (k) is periodic in reciprocal space, k(y) is not
uniquely defined by (3.2). Let us take K to be the
shortest reciprocal lattice vector in the %, direction.
(For an arbitrary field direction, K » may be exceedingly
long.5) For any k(y) which satisfies (3.2), we see that
k(y)=mK, also satisfies (3.2), where 7 is an integer.
The most general solution to (2.16) would then be

o (y)= % \% exp[i(m Koyt /yk (y,)dy,)]

+§ % eXP[i<mK 2y— / yk (y’)d;v’>], (3.4)

where we choose a particular solution or branch of
k(y') as defined by (3.2).

IV. A SIMPLE MODEL

In view of the absence of experimental data con-
cerning the details of the Landau spectrum (energy
spectrum) and level broadening, it does not seem
worthwhile at this point to worry about complicated
Fermi-surface topology, but rather to emphasize only
certain basic features. Therefore, we shall make a
number of simplifying assumptions to obtain a model
which demonstrates the important ideas involved.

For our model, we assume that the basis vectors a; of
the direct lattice form an orthogonal set (i.e., a;-a;=0,
i) and that H is directed along as;. This means that
K; and K; coincide with the basis vectors of the re-
ciprocal lattice. Furthermore, we assume, for a given
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Fic. 1. Contours of constant energy in the k(y)-y plane
LE(—by, k(y))=E]. T1: closed electron orbit; T: closed hole
orbit; T's, T4, and Ts: open orbits. Py, Py, P3, P4, and Ps: saddle
points in E(—by, k(¥)).

k., that E(k;,0) and E(0,k,) (k. is fixed and will be
suppressed) are simple functions with maxima W, and
W, at the zone boundaries (+1K; and +31K;). We
take Ws>Wy so that the curves of constant energy in
the k(y)-y plane appear as in Fig. 1.

Under the assumptions of our model, saddle points in
E(kg,k,) occur at two types of points (in reciprocal
space), (£31K,0) and (0,23K:) or the equivalent
points in other zones. In Fig. 1, the saddle points of
the first type have been denoted by Pi, Ps, and Ps,
while those of the second type have been denoted by
P, and P;. Near these points, the orbits appear as in
Fig. 2. In our model, the %2(y)—y coordinates coincide
with the principal axes of the saddle points.

Near the saddle point at y=3%r; [in the k(y)y—
plane], for example, when E<Wj, there is no real value
of £ (y) which satisfies (3.2) for y; <y<y:[see Fig. 2(a)].
In this region between the turning points y; and ys,
the WKB solutions behave as if a potential barrier is
present. Similarly, the WKB solutions behave as if
there is a potential barrier at (0,3K3).

When W, is sufficiently larger than W, so that a
sizeable region of open orbits exists, we expect that for
orbits such as T and T'; (in Fig. 1) the WKB solutions
will be inaccurate in the neighborhood of points such as
Py, Py, P; (i.e., close to turning points). Likewise, for

3
/x

k(y)

[ 7,
NN

(a) (b)

Fic. 2. Orbits in the kty)

region of saddle points.
(a) Saddle point at ¥
=4%r (P in Fig. 1) for
E<W;. v, and y. are
turning points. (b) Sad-
dle point at y=0 (P4 in
Fig. 1) for E<W..

er—— s
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orbits such as T’y and T, the WKB solutions will be
inaccurate near P, and P;. The open orbit 7'y will be
described accurately everywhere by a WKB solution.
On the other hand, when W, is nearly equal to W, all
the WKB solutions with energies near W, or W, may
be inaccurate in the neighborhood of both sets of saddle
points.

V. CONNECTION FORMULAS

When the probability to tunnel through the barrier
(at 37y, for example) is negligible, each eigenstate can
be thought of as being localized in some valley. When
the coupling between the states in adjacent valleys is
negligible, all states are degenerate, and the levels are
discrete. When the tunneling probability or coupling is
not negligible, the degeneracies are removed and the
discrete levels are broadened. Such is the case whether
the coupling is intraband coupling, as discussed above,
or interband coupling as in magnetic breakdown.

Since the WKB connection formulas and transmission
coefficient (tunneling probability) are not accurate for
energies near the top of the barrier or above the barrier,
it was desirable to have a better approximation in this
region where all the interesting effects take place. Away
from the turning points, the WKB solutions are certainly
accurate enough for our purposes. It is in the neighbor-
hood of the turning points where a more careful analysis
is necessary in order to obtain the proper connection
between the solutions in adjacent valleys.

Azbel’® gave a cursory treatment of the problem, but
did not develop it enough to be of any help in the
present investigation. The same type of barrier problem
for the simpler kinetic-energy operator — (%%/2m)
X (d*/dy?) has been solved by Miller and Good.!” The
additional complications introduced by the operator
E(—by, —i(d/dy)) are, however, minor, and the analy-
sis of Miller and Good will be useful.

For y near 3r,, we can expand E(—by, k(y)) about its
local maximum:

h2b2
——— (=) 1)

me*  2my

h2k?
E(=by, ko) =TWrt— )

The effective mass m; is defined as positive, since the
appropriate minus sign appears in (5.1), and the asterisk
on my* designates an effective mass at the bottom of
the band.

In a restricted region around %7y, then,

7?
Wi——(y—in)?=E.
ZM2* ! mi I

7R (y) 5.2

If we replace k(y) by —i(d/dy) in (5.2) and operate on
¢(y), we obtain an equation which is correct for y near

17§, C. Miller, Jr., and R. H. Good, Jr., Phys. Rev. 91, 174
(1953).

L. C. DAVIS AND S.

H. LIU 158

471, and which can be solved exactly,

O I  ryem E=Ws. (53)
L —ir)e=(E-Ws. (5.
g Ay amy '
If we let
S=[(ms*/m)b* ] (y—371)
and

a=

(M1M2*)1/2/E_ W1
2 ) :
m \ fwe

where w,=eH /mc, and m is the free-electron mass, then
(5.3) becomes
d*¢
—+(a+5%)¢=0.
as?

(5.4)

Equation (5.4) arises when the scalar Helmholtz
equation is separated in parabolic coordinates.!® For
every value of a, there are two solutions'?

é1=D (12 (ia—1) (V2Se~i""%) (5.5)
and
$2= D (1/9) (—ia—1) (V2Se™4). (5.6)

The functions D,(z) are defined by Whittaker and
Watson,!® but only their asymptotic form will concern
us.
The general WKB solution will be for y> v,

¢<y>=\—/—';‘exp(i / ykdy)+% exp( i / dey>, (5.7)

2

and for y<ys,

¢(y)=% exp(i /,, “kdy>+§:7 exp(—i /y mkdy). (5.8)

[For convenience, the argument y in k(y) and the
primes on the variable of integration have been
dropped.] When E> Wi, we take y1=ys=3r1.

In the region where the solutions (5.5) and (5.6) join
onto the WKB solutions (5.7) and (5.8), it is reasonable
to use the asymptotic form of ¢; and ¢.. From Miller
and Good,' we have for S large and positive (with an
appropriate normalization),

6(1/2)0,1- Yy
exp(i / kdy> )
a4 v

and for S large and negative,

CeWban Y1 7 v1
¢1— exp(— 7 / kdy)—— exp(i / kdy) R
V'V v V'V v
(5.10)

18 P, M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc.,, New York, 1953), pp.
1398-1405.

B E. T. Whittaker and G. N. Watson, Modern Analysis (The
University Press, Cambridge, England, 1915), p. 347.

(5.9)

b1 —
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where
2\I2 /| a|\~Wie
C= (—) <—> I'((+3%ia) coshiar.
T 2e

(5.11)

The second solution ¢. gives the complex conjugate of
(5.9) and of (5.10). The solution (5.9) corresponds to a
wave traveling to the right, away from the barrier in
the region y>y, (since the phase is increasing as y
increases), whereas (5.10) is the sum of two terms, the
first being a wave traveling to the right, toward the
barrier in the region y<yi, and the second being a wave
traveling to the left and away from the barrier (y<yi).
Symbolically, we have

Ar B
— —
Az Bz.
.ﬁ P

Let us now use the notation that Pippard® used in
the analogous situation in magnetic breakdown. First,
assume that B, is zero so that we have only a trans-
mitted wave for y>y;. We write

Bi=pA,, (5.12)
and

A1=qdo, (5.13)

where A, is the amplitude of the incoming wave for
y<y1, A1 1s the amplitude of the reflected wave, and B,
is the amplitude of the transmitted wave. The factors p
and ¢ are the probability amplitudes (with definite
phase) for transmission and reflection. The transmission
coefficient is |p|? and conservation of probability re-
quires that |p|?+|g]?=1. From (5.9) and (5.10), we
have

p=C"leWar (5.14)
and

q=—iC-lg~Whar, (5.15)

We can evaluate |C|? by imposing the conservation of
probability,

|C|2=2 coshar. (5.16)

From (5.14) and (5.16) we obtain for the transmission
coefficient

|p[*=1/(1+em). (5.17)

In the limit of large, negative a, (5.17) agrees with the
usual WKB tunneling probability.

If now we consider 4.=0, we can, with the help of
(5.9) and (5.10) and the complex conjugates of (5.9)
and (5.10), show that

A1=pB,, (5.18)
and

B1=¢B,. (5.19)

Equations (5.18) and (5.19) are to be expected since
the barrier appears the same from either side.

2 A. B. Pippard, Proc. Roy. Soc. (London) Al, 270 (1962).
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Let us write C=|C|e®, where from (5.11),
a=%a[1—In(}|a|)]+argl (3+5i0), (5.20)
and from (5.16),
|C|= (2 coshiar)!2, (5.21)

For ¢=0,a=0, and from asymptotic expansion of
T'(3+%4a) for large a (positive or negative)

e /140 1
—a ln< >——+ (5.22)
4 a? 6a
which goes to zero as 1/12a for large a.
We now write (5.14) and (5.15) as
p=e"¢(14¢om)"12 (5.23)
g= —iet*(14-¢om)~12, (5.24)

To connect the solutions in adjacent valleys, then,
we merely employ p and ¢ as in (5.12), (5.13), (5.18),
and (5.19). We find

A1=qAs+pBs,
and

(5.25)
Bl=?A o+¢Bs.

At the origin, the WKB solutions also behave as if a
barrier is present (see Tz in Fig. 1 for example). We
must, therefore, derive connection formulas appropriate
for the saddle points such as P; and Ps.

For y near y=0 and k(y) near 3K, E(—by, k(y))
reaches a maximum W, and we can expand

h2b2y2 #2

E(—by, k(y))=W:+ ——(k()— 3K+ - .
27}12

2m*
Hence, we have, for y near the origin and %(y) near 3K,
7i2b*y*
2m* -

Replacing k(y) by —i(d/dy) and operating on ¢(y),
we obtain after multiplication by —1,

— h2
—k(y)— 3K P+ Wt E. (5.26)
21y

—"sd i \* B
———-(——-—Kz) ¢———¢=(W.—E)¢p. (5.27)
2mo dy 2 2my*
If we let
my \M4
s =cmrmy), 5=(2p) 3,
ml*
and * 1/2
a’=2(m1 Ma) /Wg—b> ’
m \ fiw,
then 7(y) obeys an equation analogous to (5.4),
d’y
+ (a/+-S5?)n=0, (5.28)

A

for which there are two solutions 7; and 7,.
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Let us define the turning points y," and y," analo-
gously to y; and ys (y1'=v¢'=0 when E<WW5) except
shifted to the left by 371, and let k(y) =% (y) —3K ;. Then
the asymptotic expressions (5.9) and (5.10) can be
taken over, for y>0

8(1/2) a’

T Yy
exp(i / xdy) ,
14 y2!
'’

¢ ) ( [ d >
e(/Da'T exp —z/ kdy
44 v

7 Y1
- exp(i / Kdy> , (5.30)
VvV v
where

2 1/2 Iall —(1/2)ia’
C'= (_> (---) T'(3+3%ia’) coshia'r.

T, 2e

m— (5.29)

and for <0,

n1—>

The second solution 7. gives the complex conjugate of
(4.29) and of (4.30). Multiplying (4.29) and (4.30) by
the factor exp(é/2)K sy gives the form of ¢(y) near the
origin.

From (4.26), it is easy to see that the WKB solutions
approach

¢(y)=7117 expi(%sz:ti ] yxdy), (5.31)

for y near the origin, and join onto the solutions

e(i/2)K21l7h and e(’i/2)KZZI»)12.

Hence, the connection formulas are given by equations
like (5.12), (5.13), (5.18), and (5.19) if we replace p
and ¢ by p’ and ¢’. The primes denote replacing a by
a’ in @ and in (5.23) and (5.24).

VI. EIGENVALUES AND EIGENFUNCTIONS

In a recent paper, Roth? has derived a quantization
condition for what could be called one-dimensional
coupling. The term ‘“‘one-dimensional” arises because
the solutions couple only at points like Py, Ps, P3in the
electron orbits and at P4 and Pj in the hole orbits (in
Fig. 1). As a consequence, the energy levels can be
shown to depend upon a one-dimensional wave number
Q. In this section, we consider two-dimensional coupling,
which reduces to the one-dimensional case when W
exceeds Wy by a few %w. or more.

If W, is nearly equal to Wy so that only a narrow
region of open orbits exists, coupling occurs at

y= :l:%?’l, ﬂ:%f]' ) (61)

and at
+2r1- -, (6.2)

y=0, =7y,

The intermediate open orbit (74 in Fig. 1) is an ex-

21, M. Roth, Phys. Rev. 145, 434 (1966).
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ample of such two-dimensional coupling when W, is
nearly equal to W;. The term two-dimensional arises
because ¢(y) can be labeled with a two-dimensional
wave vector (Q1,Q2).

The WKB solutions are accurate except near the
points (6.1) and (6.2), where the solutions are to be
connected with the p-¢ formulas. In Fig. 1 it is clear
that the pairs of solutions coupled at (6.1) are not the
same pairs coupled at (5.2). Hence, we must couple all
possible solutions of the type k(y)+mK s where m is an
integer. The WKB solution now becomes an infinite
sum over m. We write for y<y,’

A m y1’
(=2 — eXpi(mK 2+ / kdy)
m \/V y

B, v’
+> — expi(szy— f kdy) , (6.3)
"V v

and for y'<y,

Cn v
() =§ :/—17 expi<mK v+ f,, 2Ikaly)

74

+T % expi(ngy— / ykdy), (6.4)

where k(y) is the branch depicted by 7' or the closed-

orbit branches nearest T4 That (6.3) and (6.4) are

solutions to (2.7) can be verified by direct substitution.
Near y=0, we can see from (5.26) that

Y Y
/ kdy=3Ka(y—y:)+ / «dy ,
y2' y2'

and (6.5)

vy’ 1’
/ kdy=3Ks(yi'—y)+ / «dy,
Y v

so for a given m, A1 and C,, represent outgoing waves
while B,, and Dy, represent incoming waves near y=0:

Amq1 Cn
«— -
Bm Dm+l
— «—

The connection formulas give
Ce~ G0 Ewd = p' B e GIDKawt' | o' D, 10 G2 Kayy’,
and

AmyreCiD K = q’Bme—(i/2)sz1'+P'Dm+le(i/2)sza’ .

(6.6)

The appearance of m-+1 terms in (6.6) reflects the two-
dimensional character of the problem, because the
coupling at y=0 is between # and m--1 solutions while
the coupling at 37; involves only m solutions. At 37,
the connection formulas give, after imposing the Bloch
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condition (2.9),

B i = pC, eitt g4, i) |
and

6.7)
Dme“‘.é= qcmeif_i_PAmei(E“-erl) ,

y1
&= / kdy.
y2'

We can solve (6.6) and (6.7) if we assume that

where

Am,_*_lz eiQMzAm y
and

D= 64D, | (6.8)

where 79=K /b and Q2 is a wave number of range 2m/7.
Equations (6.6), (6.7), and (6.8) have a solution only
if their secular determinant vanishes. The secular equa-
tion then gives the quantization condition after some
manipulations:

cos[2&+3K2(yy' —y1)+tatd']
cosQyr1
L(A+eom)(14-e ') ]2
cosQars

+ .
[(1"‘6“’”) (1+ea'7r)]1/2

(6.9)

It can be shown that (6.9) gives the correct results
for one-dimensional coupling when W, exceeds W by
a few Aw. or more.2? Qur results are also in agreement
with the calculations of Brailsford,® who solved the
equivalent Schrodinger equation for the tight-binding
case by the finite-difference technique of Harper.2*

It is clear that for all closed orbits, except those near
open orbits, the energy levels are essentially discrete.
In Fig. 3 we have shown how the energy levels appear
near Wi (for the one-dimensional case). For Wao=Wy,
the relative linewidth at E=W;=W, (ea=d'=0) is
unity and significant broadening extends roughly twice
as far into the discrete region of the spectrum as in the
case of one-dimensional coupling. In both cases, the
transition from discrete to continuous behavior occurs
in an extremely narrow energy range (5-10 %w.). The
dependence of the eigenvalues on a two-dimensional
wave vector (Qy1,02) is similar to the magnetic-break-
down case in hexagonal metals,>?6 and reflects the
symmetry between the x and y directions not apparent
in our original choice of wave function (2.17).

The two-dimensional coupling case is particularly
important because the effective-Hamiltonian solution
can be related to the actual solution of the exact

2], M. Lifshitz and M. I. Kaganov, Usp. Fiz. Nauk 69, 419
(1959) [English transl.: Soviet Phys.—Usp. 2, 831 (1960)].

% A, D. Brailsford, Proc. Phys. Soc. (London) A70, 275 (1957).

24 P, H. Harper, Proc. Phys. Soc. (London) A68, 874 (1955).

25 A, B. Pippard, Phil. Trans. Roy. Soc. London 256, 317 (1964).

26 R. G. Chambers, Proc. Phys. Soc. (London) 88, 701 (1966).
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Fic. 3. Landau-level OPEN ORBITS

broadening in the transi-
tion region between open W
and closed orbits.

CLOSED ORBITS

Hamiltonian (1.2) in an interesting manner. In Sec. IT
it was shown that the eigenvalues are independent of
ks, but from group theory® we know that there must
indeed be some dependence upon the x component, as
well as the y component, of some wave vector. As we
shall demonstrate, the wave vector (Q1,Q2) serves this
purpose and thus makes the effective-Hamiltonian
analysis consistent with the requirements of group
theory.

To relate the solutions ¢/ (r) that we have found to the
solutions ®(r) of the exact Hamiltonian (1.2), we must
transform from the effective-Hamiltonian representa-
tion to the Schrodinger representation. We take the
form of the transformation to be that given by (2.12)
(for a single band)

B(1)=5 ¢(R)u(r,R,). (6.10)

The general form of ¢ (r) for our model is from (2.17),
(6.3), (6.4), and (6.8):

Y (1) = gthetiker—i®/2ay 3 pilmKa(y—ks/b)+mQara]

: ><g<y—%> , (6.11)

where g(y) is of the form (except near the turning
points)

gly)= ;AI—/ exp(i / ykdy)+\% exp(—i f ykdy). (6.12)

In (6.10), only the value of ¢(r) at R; is important.
Since K2Y; equals an integral number of 27 and bre= K,
it is easy to see that the infinite sum vanishes unless

Fo=Qutuirb/K, (6.13)

where p is an integer. Since the actual wave function
vanishes unless (6.13) is satisfied, the degeneracy of
the solutions in &, is only a degeneracy in u. Therefore,
for each Qs, &, takes on only a discrete set of values.
The wave function and the eigenvalues also depend
upon Q; since g(y) is of the form

gly+r)=e0rig(y).

Since 7y and 7; are much larger than the lattice spac-

(6.14)
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ings (typically 10? to 10? times larger), Q1 and Q2 span
only a small fraction of the Brillouin zone. One can, in
fact,¥show that the fraction spanned is the same as
predicted by group theory. Following Brown,'* we re-
quire that b satisfy?”

b= 21r/Na1a2, (615)

where N is an integer, a; and a; are the lattice spacings
in the x and y directions. A requirement such as
(6.15) is necessary if periodic boundary conditions are
to be imposed upon a finite volume.!

Since bry=K; and K1=2x/a,, (6.15) implies that

r1=Nas. 6.16)
Similarly, for 7, we have
7’2=Na1. (6.17)

The range of Q1 is 27/r1, which is, from (6.16), 27/ Na..
Likewise, the range of Q: is 2r/Na;. The range of Q
and the range of Q2 coincide with those described by
Brown, so the proper fraction of the Brillouin zone is
spanned.

One can also show that the effective-Hamiltonian
formalism accounts for all the states and the appropriate
degeneracies in accordance with group theory. In a
unit area of the xy plane, there are [1/(27)*](2r/Nay)
X (2r/Nas) states in the fraction of the Brillouin zone
spanned by Q; and Q.. Just as in the group-theory ap-
proach, the states are degenerate with respect to u in
(6.13). If we allow u to take on N values, the range of
ks is 2w/a;, and the total number of states per unit
area for a given £, and » (Landau-level quantum num-
ber) is 1/Naja,, which agrees with Brown. It is also
shown in the Appendix that the solution &(r) which we
have obtained by solving the equivalent Schrédinger
equation satisfies the magnetic-translational symmetries
of the exact Schrédinger equation.

Since the eigenvalues and eigenfunctions found in the
effective-Hamiltonian approach are of the form re-
quired from group-theoretical considerations of the
exact Hamiltonian, it would seem that the analysis is
correct, and that no source of level broadening due to
the lattice potential has been omitted. Hence, the
Landau levels in a perfect crystal are discrete even in
the presence of the strong lattice potential of a real
metal except when some type of infinite coupling of the
orbits exists.

VII. DISCUSSION

A detailed analysis of a simplified model of the
effective-Hamiltonian formalism has been given. The
simplifications assumed were made primarily for con-
venience and clarity, and were not essential to the
analysis. The conclusions drawn from the model are,
in fact, correct beyond its range of validity. As a bridge

27 Brown’s expression corresponding to (6.15) also contains a

multiplicative integer # on the right-hand side which we set
equal to 1.

L. C. DAVIS AND S.

H. LIU 158
between the model and the general problem, a brief
description of the analysis of the general problem will
be indicated.

Blount5 has discussed the types of solutions to be
expected when H (and k) are oriented at an arbitrary
direction with respect to a symmetry axis. The repeti-
tious pattern of the curves of constant energy for fixed
k. (such as Fig. 1) can be quite tortuous, but we should
not expect the degeneracies among solutions in different
zones to be lifted in the absence of any coupling.

As we have shown in Sec. II, the general problem can
be reduced to an equation in a single variable y. But,
this one-dimensional approach is not useful for compli-
cated orbits such as a star-shaped orbit. The one-
dimensional approach only works nicely if the coupling
points are of the type of Fig. 2(a) or 2(b). That is, when
k(y) and y coincide with the principal axes of the saddle
point. In the star-shaped orbit, for example, the k(y)-y
coordinate system cannot be chosen so that all of the
coupling points (assumed to be at the tips of the star)
are of the two types in Fig. 2. The local equations near
the coupling point mix k(y) and y since there are cross
terms in an expansion of E(k) about the saddle point.
The cross terms complicate the differential equations
for ¢(y) when &(y) is replaced by —i(d/dy).

Perhaps an even simpler approach to the general
problem, than that of the model, is an equivalent semi-
classical treatment such as Pippard’s?®:?5 analysis of
magnetic breakdown. In the semiclassical approach, we
suppose that the electron is a wave packet traveling
about a trajectory in real space similar to the &(y)-y
curves of Fig. 1. The phase change of the wave packet
between two points is related to simple geometrical
properties of the trajectory as in the Onsager rules.
When a wave packet of unit amplitude encounters a
coupling point, the amplitude of the transmitted por-
tion is p and the amplitude of the reflected portion is q.
Since we can verify the semiclassical approach for
Pippard’s one-dimensional network within the frame-
work of the effective-Hamiltonian formalism, we expect
the semiclassical approach to be quite useful for the
complicated networks found in real metals, if we are
not concerned with details such as 7/2 in factors of
(n+3)m, which are omitted in Pippard’s analysis.

Whether we treat the orbits in terms of wave func-
tions or in terms of semiclassical wave packets, the
conclusions must be the same as in the model. Significant
broadening of the energy levels associated with closed
orbits in a perfect crystal can only occur when there is
either intraband coupling, or interband coupling, to
other degenerate orbits and the conditions for such
coupling to occur are extremely stringent. Broadening
can also arise when impurities and dislocations are
present.?8-30 Since we have been able to show that the

28 R. B. Dingle, Proc. Roy. Soc. (London) A500, 211 (1952a)
» R. B. Dingle, Proc. Roy. Soc. (London) A517, 211 (1952b).
% A. B. Pippard, Proc. Roy. Soc. (London) A165, 287 (1965).
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effective-Hamiltonian formalism is completely con-
sistent with the requirements of a group-theoretical
treatment of the exact Hamiltonian, it would appear
that no source of level broadening in a perfect crystal
has been omitted, and the analysis given in this in-
vestigation is essentially correct.
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APPENDIX
Zak'® has shown that when?®
b=4r/Naa,, (A1)
the symmetry-adapted wave function ®(r) obeys
7(Ry)®(r) =™ Rv(r). (A2)

3 Note that (A1) and (6.16) differ by a factor of 2 on the right-
hand side. The analysis of Zak is good only for field values which
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The magnetic translation operator 7(R) is defined as
7(R)=exp[i(—iv—3bXr)-R], (A3)

and Ry is given by

(A4)

where 71, #2, and #; are integers. The wave vector k
corresponds to

k= (Qutu2rd/Ks, Quks). (AS)

Now, if we write ®(r) as in (6.10), the magnetic
Wannier functions have the property?*?

u(r,R;)=7(—R)u(r,0).
Equations (6.10), (A2), and (A6) then imply that
¥ (R;+Ry)=exp[i(k+3bXR,)-Rv W (R)). (A7)

From (6.11) and (6.14), it is easy to see that our solu-
tion for ¢ (R;) satisfies (A7), and therefore our solution
for ®(r) has the proper magnetic translational symmetry.

RN= (n101,%2N dz,ﬂads) s

(A6)

satisfy (A1), whereas the analysis of Brown is good only when
(6.15) holds.
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The Friedel sum rule relating the phase shifts for scattering by an ion to the charge of the ion is extended
to apply to semiconductors by taking nondegenerate statistics and the presence of several types of carriers
into account. When the first Born approximation is valid, the phase shifts for the customary screened

Coulomb potential obey the sum rule.

I. THE PHASE-SHIFT SUM RULE

HEN carriers with spherical energy surfaces are
scattered by a spherically symmetric potential
which goes to zero faster than ! at large 7, the dif-
ferential scattering cross section is given in terms of
the phase shifts n; for angular momentum I.! It was
shown by Friedel® that the phase shifts also give the
magnitude of the electronic charge attracted to, or
repelled from, the neighborhood of the scattering
center. The requirement that the center should appear
neutral at large distances imposes a condition on the
phase shifts, and thus on the potential.
Most applications of the Friedel sum rule have been
to metals, which have degenerate statistics. In semi-

L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc., New York, 1955), 2nd ed., Sec. 19.

2 J. Friedel, Advan. Phys. 3, 446 (1954); Nuovo Cimento
Suppl. 7, 287 (1958).

conductors, the relation must be extended to take
account of Fermi statistics at 7540 and the presence
of carriers of more than one type. We confine ourselves
here to spherical energy surfaces, although more general
cases can be treated.?*

We find, by obvious modification of the derivation?5:6
of the Friedel phase-shift sum rule, that its extended
form for semiconductors can be written

© dn,i

7 (2 Dggs / (tid—E>fi(E)dE=—Ze. )

-0

Here the index ¢ identifies the populated bands, each
with degeneracy g;; E is the energy of the scattered

3].S. Langer and V. Ambegaokar, Phys. Rev. 121, 1090 (1961).

4 J. Callaway, J. Math. Phys. 5, 783 (1964).

5 W. A. Harrison, Phys. Rev. 110, 14 (1958).

¢ C. Kittel, Quantum Theory of Solids (John Wiley & Sons,
Inc., New York, 1963), p. 341,



