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The purpose of this investigation was to determine the natural width or broadening of the Landau levels
of the conduction electrons in a perfect crystal when a uniform magnetic field is present. The eigenvalues
and eigenfunctions of the eRective-Hamiltonian equation have been found in the WKB approximation.
Connection formulas good for all energies (including the region near the top of the barrier) were used to
connect the nearly degenerate solutions in adjacent zones. The energy levels were found to be essentially
discrete except in the immediate vicinity of open orbits. The eRective-Hamiltonian solutions have been
related to the solutions of the exact Hamiltonian. We have demonstrated that the eRective-Hamiltonian
formalism omits no source of level broadening (except for interband eRects) since our solutions are com-
pletely consistent with the requirements of a group-theoretical treatment of the exact Hamiltonian.

I. INTRODUCTION

"N j.930, the classic work. of Landau' appeared in
~ - which he found, the energy levels of a free electron
in a magnetic field. Shortly thereafter, Peierls, within
the framework of the tight-binding approximation,
carried out the first analysis of a Bloch electron in a
magnetic field. In 1952, Onsager' showed how to quan-
tize the allowed, areas in k space of the electron orbits
and, hence, how to determine the energy levels.

Kohn' and Blount' have d.emonstrated the validity
of the effective-Hamiltonian formalism, which has been
one of the most useful methods of studying the Landau
levels of Bloch electrons. Blount, ' Zil'berman, ' ' and,
Azbel" have discussed the solutions of the effective-
Hamiltonian equation (the equivalent of the Schrod-
inger equation)

Brown' and by Zak." ' Brown found, the irreducible
representations of the exact Hamiltonian,

e
X= p+—A ~+V(r),

2ns ac I
(1 2)

whereas Zak treated the lattice potential V(r) as a
perturbation using the proper symmetry-adapted wave
functions. The perturbation approach, however, fails
for a real metal because the matrix elements of the
lattice potential exceed kv„ the separation of the un-
perturbed levels. But, group theory can establish the
general nature of the solution.

The purpose of this work is to examine in detail the
eigenvalues and eigenfunctions of the effective-Hamil-
tonian equation (1.1), with particular emphasis on
determining the broadening of the Landau levels.

e
E —iV —A r=E r.

hc l

It seems reasonable to conclude that the position of the
energy levels is well established, by the Onsager rules, '
but the question of the natural width or broadening of
the energy levels has not been clearly answered, .

A completely different approach has been tried. by

II. EFFECTIVE-HAMILTONIAN FORMALISM

We shall give a brief summary of the effective-
Hamiltonian formalism and, justify its use in the present
problem. Let us first define the magnetic or modified
Wannier functions for the band e as" "

Ns(r, R~) =e&'"&""'"~'a„(r—R~) (2.1)

where b=eH/hc, a„(r) is the zero-field Wannier func-
tion, and I; is a vector of the direct lattice. We take as
our basis functions
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~(Q r) P e'~ RiN„(r R.). '

Rg'

(2.2)

c(r)=p de f (it)8 (k, r),
n BZ

(2 3)
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We restrict it to the erst Brillouin zone (BZ). If we
expand the Schrodinger wave function C (r) as
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d8u e"R [a„.(k+-'. I X R,)

a„„(k)=E„(k)S„„,
iV..(k)=S„.. (2.13)We de6ne the matrix elements H „(k) and iV„„(k)as

H (k) =Q e'"'aiW „(Ri), E (k) is the energy-band. function for the band u in
the absence of a ield. When the energy gaps between
the bands are not so small as to allow magnetic break-
down, ' ' we can diagonalize (2.8) to any order of b by
a unitary transformation of the form

(2.5)R)

E (k) =p e'" aiiV„„(R;),
R)

where

the eigenvalue equation for the exact Hamiltonian 3'. is straightforwardly derived. it using the Wannier repre-
sentation and ignoring the question of replacing R; by a
continuous variable r.

When the 6eld vanishes (b =0), u„(r,R;)=a„(r—R;),
—EX„„(k+-',bx R;)]f.(k) =0. (2.4)

W„„(R)= a~*(r+R )e&@" ~'"i3Cu„(r)d'r

(2.6)

B'=StBS,
X'=StES. (2.14)

iV„„(R;)= a„*(r+R,)e &"2&'"'aia„(r)d'r.

We choose the symmetric gauge for the vector potential

A= (1/2)HX r. (2.7)

Consider the following eigenvalue equation, to which
we presume to know the solution:

P [a„„(—zV+-,'bxr)

E(k) =g W(R;)e'"'Ri,
Rg

(2.15)

[W(R;) is given by (2.6) with m= I and b=0] we have
then the eigenvalue equation

To lowest order and, for all practical purposes, B' and,
E' are given by (2.13).

Dropping the band index u (we consider a single
band) and letting

Let us write

(—E&~ (—«+~bXr)]f„(r)=0. (2'8)
E~ i~y—A~y—(r) =g gr(R;)e&'"& i &"'& T''( R)p(r)

Ac] R;

P„(r)= a3u P„(k)e", (2 9) =E|t (r).

The translation operator 2'(R;) is de6ned by

(2.16)

where the integration is over all k. Substituting (2.9)
into (2.8), we obtain

f-(k) =Z 4-(k+K'), (2.11)

where the sum is over all reciprocal lattice vectors K;,
we have solved the eigenvalue equation (2.4). If we
substitute (2.11) and (2.2) into (2.3), we obtain on
taking account of (2.9)

d'k e'"'[H (k+-', bX r)

—Exalt „(k+-,'bXr)]P„(k) =0. (2.10)

Since (2.10) must hold for all r, it surely holds for
r=R;. Clearly, then, if we let

2'(R )=e'Ri' &-'v&

We write zii(r) in such a form as to reduce (2.16) to
an equation in one variable,

P(r) eikzz+ikzz i(bl'2)zyit (y P /—$) (2 17)

We choose the s axis to be along H, so that k, is a good,
quantum number. For convenience, the y axis is chosen
to be along the shortest reciprocal lattice vector K~ in
the plane perpendicular to H.

Substituting (2.17) into (2.16) and shifting the origin
of y to k,/b, we can show that P(y) satisfies the one-
dimensional equation

C(r)= Q P„(R;)u„(r,R,).
Rg', n

(2.12) where R;= (X;,F;,Z;) and

&(I'i)4 (y) =4 (y+ I'i) (2 19)
We have, therefore, established that the effective-

Hamiltonian equation (2.8) is equivalent to the exact
Schrodinger equation. Equation (2.8) or its equivalent
has also been obtained by a number of authors4 5""
several di6erent ways, including Chambers, " who

L. M. Roth, J. Phys. Chem. Solids 23, 433 (1962).

As in the free-electron case, '4 the eigenvalue is inde-
pendent of k, . [We shall see in Sec. VI that for each
solution P(y) only a discrete set of values for k, is
allowed. Therefore, the degeneracy of the solutions in
k, is not as large as one might expect at 6rst sight. )

It should be noted that the solutions to (2.16) must
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tinuous index Q, where
k(y)

4ob+rr) =e""4o(y) (2.20)

be of the Bloch form (in one dimension) because the
differential operator on the left-hand side is periodic in

y with period ri= Et/b. As a consequence, we can label

g(y) with a con
'

2K2

~75

Tg

77

In general, we must also label P(y) with a discrete index
n which corresponds to a particular Landau level. The
dependence of the energy on Q corresponds to the
broadening of the levels.

'/2K2

III. WEB SOLUTIONS

Zil'herman and, Blount' have shown that the WKB
solutions to (2.16) are of the form

exp +i k(y')dy'
V

(3.1) - /2r) 3
/2 r

where k(y) is given implicitly by

Ett by, k(y),—k.]=E
and

(3.2)

FIG. 1. Contours of constant energy in the k(y)-y plane
PE( by, k{y)—)=E). T~.'closed electron orbit; Ts.'closed hole
orbit; Ti, T4, and T~. open orbits. PI, P2, P~, P4, and Pf, . saddle
points in 8(—by, k(y)).

1 BE
V=-

Pg BP ky k(y)
(3.3)

Since E(k) is periodic in reciprocal space, k(y) is not
uniquely defined by (3.2). Let us take Ks to be the
shortest reciprocal lattice vector in the k„direction.
(For an arbitrary field direction, Ks may be exceedingly
long. ') For any k(y) which satisfies (3.2), we see that
k(y) =mEs also satisfies (3.2), where m is an integer.
The most general solution to (2.16) would then be

A
P(y) =Q exp i mEsy+ k(y')dy' ~'

+Z exp il mKsy k(y')dy'
I

(3 &)

IV. A SIMPLE MODEL

In view of the absence of experimental data con-
cerning the details of the Landau spectrum (energy
spectrum) and level broadening, it does not seem
worthwhile at this point to worry about complicated,
Fermi-surface topology, but rather to emphasize only
certain basic features. Therefore, we shall make a
number of simplifying assumptions to obtain a mod, el
which demonstrates the important ideas involved.

For our model, we assume that the basis vectors a; of
the direct lattice form an orthogonal set (i.e., a,"a;=0,
iW j) and that H is directed along as. This means that
K~ and K2 coincide with the basis vectors of the re-
ciprocal lattice. Furthermore, we assume, for a given

where we choose a particular solution or branch of
k(y') as defined by (3.2).

Fro. 2. Orbits in the
region of saddle points.
(a) Saddle point at y
=~r1 (P2 in Fig. 1) for
X&IVI. y& and ym are
turning points. (b) Sad-
dle point at y=0 (P4 in
Fig. j.}for E&lV2.

k(y)

(a)

k (y)

k„ that E(k„0) and E(0,k„) (k, is fixed and will be
suppressed) are simple functions with maxima Wt and
Ws at the zone boundaries (+-,'Xt and &sEs). We
take 8'2& 8'~ so that the curves of constant energy in
the k(y)-y plane appear as in Fig. 1.

Under the assumptions of our model, saddle points in

E(k„k„) occur at two types of points (in reciprocal
space), (+-s,Er,0) and (0,+sos) or the equivalent
points in other zones. In Fig. 1, the saddle points of
the Grst type have been denoted by P~, P2, and P3,
while those of the second type have been denoted by
P4 and P5. Near these points, the orbits appear as in
Fig. 2. In our model, the k(y) —y coordinates coincide
with the principal axes of the saddle points.

Near the saddle point at y=-,'ri Dn the k(y)y-
plane], for example, when E(Wt, there is no real value
of k(y) which satisfies (3.2) for yi(y(ys Lsee Fig. 2(a)].
In this region between the turning points yz and y2,
the WKB solutions behave as if a potential barrier is
present. Similarly, the WKB solutions behave as if
there is a potential barrier at (0,—,'Es).

When 82 is su%ciently larger than 8'& so that a
sizeable region of open orbits exists, we expect that for
orbits such as Tt and Ts (in Fig. 1) the WEB solutions
will be inaccurate in the neighborhood of points such as
P„Ps, P, (i.e., close to turning points). Likewise, for
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orbits such as T2 and T~, the WEB solutions will be
inaccurate near P4 and P5. The open orbit T4 will be
described accurately everywhere by a WEB solution.
On the other hand, when 8"2 is nearly equal to Wj., all
the WEB solutions with energies near 8'& or TV2 may
be inaccurate in the neighborhood of both sets of saddle
points.

V. CONNECTION' FORMULAS

When the probability to tunnel through the barrier
(at —,'r1, for example) is negligible, each eigenstate can
be thought of as being localized in some valley. When
the coupling between the states in adjacent valleys is
negligible, all states are degenerate, and the levels are
discrete. When the tunneling probability or coupling is
not negligible, the degeneracies are removed, and. the
discrete levels are broadened. Such is the case whether
the coupling is intraband coupling, as discussed above,
or interband, coupling as in magnetic breakdown.

Since the WEB connection formulas and transmission
coefficient (tunneling probability) are not accurate for
energies near the top of the barrier or above the barrier,
it was desirable to have a better approximation in this
region where all the interesting effects take place. Away
from the turning points, the WEB solutions are certainly
accurate enough for our purposes. It is in the neighbor-
hood of the turning points where a more careful analysis
is necessary in order to obtain the proper connection
between the solutions in adjacent valleys.

Azbel" gave a cursory treatment of the problem, but
did not develop it enough to be of any help in the
present investigation. The same type of barrier problem
for the simpler kinetic-energy operator —(kz/2m)
X (d'/dy') has been solved by Miller and Good."The
additional complications introduced by the operator
E( by, z(d/dy——)) are, however, minor, and the analy-
sis of Miller and Good will be useful.

For y near —',r1, we can expand E( by, k(y)) abou—t its
local maximum:

$2k2(y) $2b2

E(—by k(y))=~1+ — (y—2~1)'+ (5 1)
2m2 2m/

The effective mass m~ is defined as positive, since the
appropriate minus sign appears in (5.1), and the asterisk
on m2* designates an effective mass at the bottom of
the band.

In a restricted, region around -', r~, then,

—,'r&, and, which can be solved exactly,

Pg2 de fg2/2

(y—l )'~=(E-~)e. (5.3)
2m2* dy2 2m'

If we let
S= [(mz*/mi)b'j'"(y —-', ri)

and
(m,m,")"'yp W,)—a=2

nz & b(a,

where co,=eH/mc, and m is the free-electron mass, then
(5.3) becomes

de
+(o+S2)y=O.

dS'
(5.4)

Equation (5.4) arises when the scalar Helmholtz
equation is separated in parabolic coordinates. " For
every value of a, there are two solutions'

Q1 D(1/2)(' 1)(~2Se ' ")

&2= D(V2) i—' —1) (~2S~' ")

(5.5)

(5.6)

&(i~2) ~~

exp i kdy),
V M

and for S large and negative,

(5.9)

The functions D„(s) are defined, by Whittaker and
Watson, "but only their asymptotic form will concern
us.

The general WEB solution will be for y&y~

I y
" B2

Q(y)= exp i kdy + exp i kdy l, (5.7—)gv „, gv
and for y&y&,

A2 Vl

d(y)= expe kdy+ exp —e kdy). (k.k)
Qv „ Qv

[For convenience, the argument y in k(y) and the
primes on the variable of integration. have been
dropped. .]When E&W1, we take yi ——yz ———,'ri.

In the region where the solutions (5.5) and (5.6) join
onto the WEB solutions (5.7) and (5.8), it is reasonable
to use the asymptotic form of $1 and. &2. From Miller
and Good, '2 we have for S large and positive (with an
appropriate normalization),

kzkz(y) kzb2

+Wz — (y—21ri)'=E.
2m2 - 2m/

(5 2)
C&(i/4) a~ i

expl z k&y
l expl z kdy

gv k „ / gv
(5.10)

If we replace k(y) by z(d/dy) in (5—.2) and operate on

p(y), we obtain an equation which is correct for y near

7 S. C. Miller, Jr, , and R. H. Good, Jr., Phys. Rev. 91, 174
{1953).

"P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc., New York, 1953), pp.
1398—1405."E.T. Whittaker and G. N. Watson, Modern Analysis (The
University Press, Cambridge, England 1915),p. 347.
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where
t'2) i/2

//
I
a

I )C=
I
—

I I I
I"(s'+2'ia) cosh-', an. . (5.11)

E.m) 4 2e )
The second solution &2 gives the complex conjugate of
(5.9) and of (5.10).The solution (5.9) corresponds to a
wave traveling to the right, away from the barrier in
the region y)y2 (since the phase is increasing as y
increases), whereas (5.10) is the sum of two terms, the
first being a wave traveling to the right, toward. the
barrier in the region y(y~, and, the second being a wave
traveling to the left and away from the barrier (y&yr).
Symbolically, we have

a 1+a') 1
=n—ln ~ ~ ~

4 a' ) 6a

which goes to zero as 1/12a for large a.
We now write (5.14) and (5.15) as

(5.22)

Let us write C=
I CI e', where from (5.11),

4r =-', aL1—1n(P a
I )j+argl'(-', +2ia), (5.20)

and from (5.16),

I
C I

= (2 cosh-', air) U2. (5.21)

For a=0, a=0, and from asymptotic expansion of
I'(-,'+-', ia) for large a (positive or negative)

A2

By

B2

p e—/a(1+e aa) 1—/2-

q
— ig 4a(1+eaa)—1/2

(5.23)

(5.24)

Let us now use the notation that Pippard, "used in
the analogous situation in magnetic breakdown. First,
assume that 82 is zero so that we have only a trans-
mitted wave for y&y2. We write

Bi——pA 2, (5.12)

Ag ——F2, (5.13)

p C—Ie(1/4) aa (5.14)

where A2 is the amplitude of the incoming wave for
y(y&, A & is the amplitude of the reflected wave, and 8j
is the amplitude of the transmitted wave. The factors p
and q are the probability amplitudes (with definite
phase) for transmission and reflection. The transmission
coefficient is IpIr and conservation of probability re-
quires that IpI'+ IqI'=1. From (5.9) and (5.10), we
have

To connect the solutions in adjacent valleys, then,
we merely employ p and q as in (5.12), (5.13), (5.18),
and (5.19).We find

and
Ai ——qAr+pBr,

Bi=pA2+qBr
(5.25)

At the origin, the WKB solutions also behave as if a
barrier is present (see Tr in Fig. 1 for example). We
must, therefore, derive connection formulas appropriate
for the saddle points such as P4 and P5.

For y near y=0 and k(y) near —',E'&, E( by, k(y))—
reaches a maximum t)V2, and we can expand,

$2b2y2 $2
8( by, k(y)) = W—m+ — (k(y) ——,'Ep)'+

2mj 2m2

Hence, we have, for y near the origin and k (y) near 2Er,

q = —jC—~g—(~«)« (5.15)
a2b2y2

Lk(y) —-,'E2]'+ W2+ =E.
2'PN2 2m'*

(5.26)

I
C I'= 2 cosh-', air.

We can evaluate
I C I

' by imposing the conservation of
probability,

(5.16)

Replacing k(y) by i(d/dy) and—operating on P(y),
we obtain after multiplication by —1,

(
—k' d i )' A'b'y'

4 = (W2—B)y. (5.»)
2m& dy 2 ) 2mi*

I
pI'= 1/(1+e -). (5.17)

If we let

From (5.14) and (5.16) we obtain for the transmission
coefficient

A i pBr, ——(5.18)

In the limit of large, negative a, (5.17) agrees with the
usual WKB tunneling probability.

If now we consider A 2= 0, we can, with the help of
(5.9) and (5.10) and the complex conjugates of (5.9)
and (5.10), show that

( mm
'/4

4(y) =e""' '"n(y),
(mr*

(mi*m2)"' W2 —&,a'=2
m ho/, )

and
Bg= q82.

then r/(y) obeys an equation analogous to (5.4),
(5.19)

Equations (5.18) and (5.19) are to be expected since
the barrier appears the same from either side.

ro A. B. Pippard, Proc. Roy. Soc. (London) Al, 270 (1962).

+ (a'+S")r/= 0
dS"

for which there are two solutions qj and g2.

(5.28)
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where
D„e—'& =qC„e'&+pA„ee(&+o'"",

kdy.

condition (2.9),

P e *5—+'9 )=pP e k+q'P ee((+Qrrr)
m

(6.7)
FIG. 3. Landau-level

broadening - in the transi-
tion region between open
and closed orbits.

E

4WF~~~~ OPEN ORBITS

CLOSED ORBITS

We can solve (6.6) and (6.7) if we assume that

A~, = e ~~"~A,

(6.8)

where rs= K s/b and Qs is a wave number of range 2~/rs.
Equations (6.6), (6.7), and (6.8) have a solution only
if their secular determinant vanishes. The secular equa-
tion then gives the quantization condition after some
manipulations:

cosg2&+-', Ks(ys' —y&')+(r+(r']

COS

L(1+e )(1+e " )]'"
-Q". („)+

L(1+" ) (1+"")j'"

It can be shown that (6.9) gives the correct results
for one-dimensional coupling when I/t/'2 exceeds lV& y

Pi
""Our results are also in agreement

with the calculations of Brailsford, " who so ve t e
equivalent Schrodinger equation for the tight-binding
case by the finite-difFerence technique of Harper. '4

It is clear that for all closed orbits, except those near
open orbits, the energy levels are essentially discrete.
In Fig. 3 we have shown how the energy levels appear
near Wi (for the one-dimensional case). For Ws=Wi,
the relative linewidth at E=lV~ ——H/'2

uni y an't d significant broadening extends roughly twice
as far into the discrete region of the spectrum as in e
case of one-dimensional coupling. In both cases, the
transition from iscre ed.

'
te to continuous behavior occurs

in an extremely narrow energy range, —,. T&S-)0 a, . T e
dependence of the eigenvalues on a two-dimensional
wave vector y~~, ~2(Q Q ) is similar to the magnetic-break-
down case in hexagonal metals, d t t1 ""alld re ects t e
symme ry e wt between the x and y directions not apparent

i 11 2.17in our original choice of wave function ( . ).
The two-dimensional coupling case is particularly

impor an et t b cause the effective-Hamiltonian solution
xactcan be related. to the actual solution of the exac

419. L'f h'tz and M. I. Kaganov, Usp. FIz. Nau
i1959) /English transl. : Soviet Phys. —Usp.

2' A. D. Brailsford, Proc. Phys. Soc. (London)

25 A. B.Pippard, Phil. Trans. Roy. Soc. Lond
~6 R. G. Chambers, Proc. Phys. Soc. (London) 88, 701

Hamilton)an (1.2) in an interesting manner. In ec.In ec. II
it was shown that the eigenvalues are independent o
k„but from group theory' we know that there must

well as the y component, of some wave vector. As we
shall demonstrate, the wave vector serves this
purpose an us mad th kes the effective-Hamiltonian
analysis consistent with the requirements of group

to theTo relate the solutions)p(r) that we have found to e
solutions C (r) of the exact Hamiltonian (1.2), we must

tion to the Schrodinger representation. e take
form of the transformation to be that given by (2.12)
(for a single band)

c (r) =p )p(R;)N(r, R,). (6.10)

where g(y) is of the form (except near the turning
points)

v
q 8

( ) = exp e bde H- exp i bdy). —(6.12)
QV & QV

In (6.10), only the value of )P(r) at R, is important.
Since X~I; equals an integral number of 2x and br2= E2,
it is easy to see that the infinite sum vanishes unless

7b, =Qs+/bs7rb/Ks, (6.13)

vanishes unless (6.13) is satisfied, the degeneracy o
the solutions in k, is only a degeneracy in p. There ore,
f h &~ k takes on only a discrete set of values.or eac
The wave function and the eigenvalues aso epen
upon Qi since g(y) is of the form

g(y+rt) =e'""'g(y). (6.14)

Since r~ and r2 are much larger than the lattice spac-

The general form of P(r) for our model is from 2.17
(6.3), (6.4), and (6.8):

)p(r) = e'( ) 'be+eb e: ((b/S)e. (( P—ee[eeeKs((( be/b)+eeegsrsl—

k.)
Xg~ y——I, (611)



696 L. C. DAVIS AND S. H. LIU

ings (typically 10' to 10' times larger), Qq and Qq span
only a small fraction of the Brillouin zone. One can, in
fact, '",,show that the fraction spanned is the same as
predicted by group theory. Following Brown, "we re-
quire that b satisfy'~

b =27r/Earap, (6.15)

where E is an integer, a~ and a~ are the lattice spacings
in the x and y directions. A requirement such as
(6.15) is necessary if periodic boundary conditions are
to be imposed upon a Gnite volume. "

Since brr=Xq and Er= 2~/aq', (6.15) implies that

rg= Wag.

Similarly, for r& we have

rg ——Rag.

(6.16)

(6.17)

The range of Qq is 2m/rq, which is., from (6.16), 2~/Xa~.
Likewise, the range of Q~ is 2~/1Var. The range of Qr
and the range of Qz coincide with those described by
Brown, so the proper fraction of the Brillouin zone is
spanned.

One can also show that the effective-Hamiltonian
formalism accounts for all the states and the appropriate
degeneracies in accordance with group theory. In a
unit area of the xy plane, there are [1/(2~)'j(2~/Xaz)
&& (2n/Ea~) states in the fraction of the Brillouin zone
spanned by Q& and Q&. Just as in the group-theory ap-
proach, the states are degenerate with respect to p, in
(6.13). If we allow p to take on E values, the range of
k, is 2n/aq, and the total number of states per unit
area for a given k, and rl, (Landau-level quantum num-
ber) is 1/Eaqaq, which agrees with Brown. It is also
shown in the Appendix that the solution C (r) which we
have obtained by solving the equivalent Schrodinger
equation satisfies the magnetic-translational symmetries
of the exact Schrodinger equation.

Since the eigenvalues and eigenfunctions found in the
effective-Hamiltonian approach are of the form re-
quired from group-theoretical considerations of the
exact Hamiltonian, it would seem that the analysis is
correct, and that no source of level broadening due to
the lattice potential has been omitted. Hence, the
Landau levels in a perfect crystal are discrete even in
the presence of the strong lattice potential of a real
metal except when some type of infinite coupling of the
orbits exists.

VII. DISCUSSION

A detailed analysis of a simplified model of the
effective-Hamiltonian formalism has been given. The
simplifications assumed were made primarily for con-
venience and clarity, and were not essential to the
analysis. The conclusions drawn from the model are,
in fact, correct beyond its range of validity. As a bridge

Brovrn's expression corresponding to (6.15) also contains a
multiplicative integer e on the right-hand side which we set
equal to 1.

between the model and the general problem, a brief
description of the analysis of the general problem will
be indicated.

Blount' has discussed the types of solutions to be
expected when H (and k,) are orien. ted at an arbitrary
direction with respect to a symmetry axis. The repeti-
tious pattern of the curves of constant energy for fixed
k, (such as Fig. 1) can be quite tortuous, but we should
not expect the degeneracies among solutions in different
zones to be lifted in the absence of any coupling.

As we have shown in Sec. II, the general problem can
be reduced to an equation in a single variable y. But,
this one-dimensional approach is not useful for compli-
cated orbits such as a star-shaped orbit. The one-
dimensional approach only works nicely if the coupling
points are of the type of Fig. 2(a) or 2(b). That is, when

k(y) and y coincide with the principal axes of the saddle
point. In the star-shaped orbit, for example, the k(y)-y
coordinate system cannot be chosen so that all of the
coupling points (assumed to be at the tips of the star)
are of the two types in Fig. 2. The local equations near
the coupling point mix k(y) and y since there are cross
terms in an expansion of E(k) about the saddle point.
The cross terms complicate the differential equations
for P(y) when k(y) is replaced by i (d/dy). —

Perhaps an even simpler approach to the general
problem, than that of the model, is an equivalent semi-
classical treatment such .as Pippard's"" analysis of
magnetic breakdown. In the semiclassical approach, we
suppose that the electron is a wave packet traveling
about a trajectory in real space similar to the k(y)-y
curves of Fig. 1. The phase change of the wave packet
between two points is related to simple geometrical
properties of the trajectory as in the Onsager rules.
When a wave packet of unit amplitude encounters a
coupling point, the amplitude of the transmitted por-
tion is p and the amplitude of the reflected portion is q.
Since we can verify the semiclassical approach for
Pippard s one-dimensional network within the frame-
work of the effective-Hamiltonian formalism, we expect
the semiclassical approach to be quite useful for the
complicated networks found in real metals, if we are
not concerned with details such as 7r/2 in factors of
(e+ ~~)7r, which are omitted in Pippard's analysis.

Whether we treat the orbits in terms of wave func-
tions or in terms of semiclassical wave packets, the
conclusions must be the same as in the model. Signifi. cant
broadening of the energy levels associated with closed
orbits in a perfect crystal can only occur when there is
either intraband coupling, or interband coupling, to
other degenerate orbits and the conditions for such
coupling to occur are extremely stringent. Broadening
can also arise when impurities and dislocations are
present. ""Since we have been able to show that the

"R.B.Dingle, Proc. Roy. Soc. (London) AS00, 211 (1952a)"R. B.Dingle, Proc. Roy. Soc. (London) AS17, 211 (1952b).' A. B.Pippard, Proc. Roy. Soc. (London) A165, 287 (1965).
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efI'ective-Hamiltonian formalism is completely con-
sistent with the requirements of a group-theoretical
treatment of the exact Hamiltonian, it would appear
that no source of level broadening in a perfect crystal
has been omitted, and the analysis given in this in-
vestigation is essentially correct.
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The magnetic translation operator r(R) is defined as

r(R) =exp[i( —itt —-,'1&& r) Rj, (A3)

and R~ is given by

Rtr = (era„ngNas, ttsas), (A4)

where ttt, es, and ns are integers. The wave vector k
corresponds to

k= (Qs+tt2srb/Ks, Q„i't,) . (AS)

Now, if we write C(r) as in (6.10), the magnetic
Wannier functions have the property"

APPENDIX tt(r, R;)= r(—R,)N(r, 0) . (A6)
Zak" has shown that when"

b =4sr/A atas, (A1)

Equations (6.10), (A2), and (A6) then imply that

p(Rs+Rttt) =exp| i(k+sbXR;) Rtr]lt (R;). (A7)

the symmetry-adapted wave function C (r) obeys

r(Rtr)C(r)=e" ~ae(r). (A2)

3' Note that (A1) and (6.16) dif'fer by a factor of 2 on the right-
hand side. The analysis of Zak is good only for field values which

From (6.11) and (6.14), it is easy to see that our solu-
tion for f (R;) satisfies (A7), and therefore our solution
for C (r) has the proper magnetic translational symmetry.

satisfy (A1), whereas the analysis of Brown is good only when
(6.15) holds.
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Friedel Phase-Shift Sum Rule for Semiconductors
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The Friedel sum rule relating the phase shifts for scattering by an ion to the charge of the ion is extended
to apply to semiconductors by taking nondegenerate statistics and the presence of several types of carriers
into account. When the first Born approximation is valid, the phase shifts for the customary screened
Coulomb potential obey the sum rule.

I. THE PHASE-SHIFT SUM RULE

HEN carriers with spherical energy surfaces are
scattered by a spherically symmetric potential

which goes to zero faster than r ' at large r, the dif-
ferential scattering cross section is given in terms of
the phase shifts q~ for angular momentum /. ' It was
shown by FriedeP that the phase shifts also give the
magnitude of the electronic charge attracted to, or
repelled from, the neighborhood of the scattering
center. The requirement that the center should appear
neutral at large distances imposes a condition on the
phase shifts, and thus on the potential.

Most applications of the Friedel sum rule have been
to metals, which have degenerate statistics. In semi-

~ L. I. Schi6, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc. , New York, 1955), 2nd ed. , Sec. 19.' J. Friedel, Advan. Phys. 3, 446 (1954); Nuovo Cimento
Suppl. 7, 287 (1958).

conductors, the relation must be extended to take
account of Fermi statistics at 7&0 and the presence
of carriers of more than one type. We confine ourselves
here to spherical energy surfaces, although more general
cases can be treated. '4

We find, by obvious modification of the derivation" '
of the Friedel phase-shift sum rule, that its extended
form for semiconductors can be written

(dtl t),
s. ' Qt„(21+1)g,tt; i f;(E)dE= Ze (1)— .„ t dE

Here the index i identifies the populated bands, each
with degeneracy g;; E is the energy of the scattered

' $. S.Langer and V. Ambegaokar, Phys. Rev. 121, 1090 (1961).
$. Callaway, J. Math. Phys. 5, 783 (1964).

~ W. A. Harrison, Phys. Rev. 110, 14 (1958).'C. Kittel, Qttaltlet Theory of SoMs 0'ohn Wiley 8t Sons,
j:nc., New Pork, 1963), p. 341,


