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Two self-consistent band-structure calculations by the augmented-plane-wave method have been com-
pleted for metallic aluminum. In one, the rigid-core model was used. That is, only the conduction band
(3s,3P) functions were allowed to vary as self-consistency was achieved. In the second, the (2s,2p)-core
as well as the conduction-band functions were allowed to vary. Though the differences in the core eigen-
values of these two calculations were about 0.03 Ry, differences between equivalent states in the two bands
were less than 0.001 Ry. Both self-consistent-Geld calculations are in good agreement with previously
reported theoretical results. The calculations indicate that the Fermi surface of the third zone is multiply
connected at the zone corner W, but the calculations are not sufBciently precise to allow any deGnite con-
clusions to be drawn on this matter.

INTRODUCTION

S EVERAL theoretical and experimental studies of
the electronic structure of aluminum have been

made. Most of these are in reasonably good agreement
as to the general shape of the bands and the Fermi
surface, but there are differences of opinion about the
topology of the Fermi surface near the point 5' in the
Brillouin zone. Gunnersen' studied the de Haas —van
Alphen eBect in aluminum. His results indicated that
there are pockets of electrons near the Srillouin-zone
boundary, but he did not locate these well enough to
describe the shape of the Fermi surface. About the
same time, Heine' 4 determined the band structure and
Fermi surface of aluminum from experimental data on
both the de Haas —van Alphen and the anomalous skin
effects and also from low-temperature specific-heat data.
In addition he calculated the band structure by the
orthogonalized-plane-wave (OPW) method. Thus, he
was able to describe the Fermi surface of aluminum as
consisting of a first zone nearly full of electrons, except
for small pockets of holes at the zone corners; a second
zone nearly empty, except for pockets of electrons near
the zone faces, but not including the zone corners; and
a third zone with only a few electrons in small isolated
regions along the zone edges. Harrison' reanalyzed the
de Hass —van Alphen data of Gunnersen' and found it
to be consistent with a free-electron model of the
Fermi surface for aluminum. In this model, the first
zone is completely full, the second zone contains a
single closed Fermi surface near the zone boundary
surrounding a nearly empty zone, the third zone con-
tains along the zone edges regions of electrons which
are multiply connected at the zone corners, and the
fourth zone contains small pockets of electrons at the
zone corners. The multiply connected regions in the

*Work performed under the auspices of the U. S. Atomic
Energy Commission.' E. M. Gunnersen, Phil. Trans. Roy. Soc. London, A249, 299
(1957).

2V. Heine, Proc. Roy. Soc. (London) A240, 340 (1957).
3 V. Heine, Proc. Roy. Soc. (London) A240, 354 (1957).
4V. Heine, Proc. Roy. Soc. (London) A240, 361 (1957).' W. A. Harrison, Phys. Rev. 116, 555 (1959).

third zone form what is referred to as "Harrison's
monster. "Harrison' later extended Heine's OPW calcu-
lation and deduced a Fermi surface almost the same as
that described above except for a rounding of the edges
of the surface which occurs in the second zone. SegalP
used the Green's-function method to determine the
band structure of aluminum and obtained results con-
sistent with those of Harrison. Moore and Spong
studied the cyclotron resonance of aluminum. Their
results did not provide topological details of the Fermi
surface but did indicate that the regions in the third
zone were multiply connected as predicted by Harrison.
However, recently, Ashcroft, 9 using de Hass —van Alphen
data, proposed a new model of the Fermi surface of the
third zone. In his model, the regions of electrons along
the zone edges are only doubly connected near the zone
corners at 8' about the square faces, forming isolated
"square" regions instead of Harrison's multiply con-
nected "monster. " Several experimental results'~"
have been reported since then for a variety of methods,
with considerable disagreement as to details of the
Fermi surface. Segall" pointed out in his report on the
Green's-function calculation that a change in the
Fermi level of about 0.01 Ry in band-structure calcula-
tions can cause the connected third zone to become
completely disconnected. He also pointed out, however,
that the Fermi level would have to be changed by more
than 0.03 Ry if the corners of the second-zone surface
were to contact the zone boundary. Though most of the
reports on the second-zone Fermi surface since that of

6 W. A. Harrison, Phys. Rev. 118, 1182 (1960).
T. W. Moore and F. W. Spong, Phys. Rev. 125, 846 (1962).
N. W. Ashcroft, Phys. Letters 4, 202 (1963).' N. A. Bezuglyi, A. A. Galkin, and A. I.Pushkin, Zh. Eksperim.

i Teor. Fiz. 44, 71 (1963) /English trsnsl. :Soviet Phys. —JETP 17,
50 (1963)j.

"A. A. Galkin, V. P. Naberezhnykn, and V. A. Melnik, Zh.
Eksperim. i Teor. Fiz. 44, 127 (1963) /English trsnsl. : Soviet
Phys. —JETP 17, 87 (1963}j.

~ G. N. Kamm and H. V. Bohm, Phys. Rev. 131, 111 (1963)."E. P. Volskii, Zh. Eksperim. i Teor. Fiz. 46, 123 (1964) )Eng-
lish trsnsl. : Soviet Phys. —JETP 19, 89 (1964)g.' F. W. Spong and A. F. Kip, Phys. Rev. 13?, A431 (1965).

» R.Stedman and G. Nilsson, Phys. Rev. Letters 15,634 (1965).
~'B. Segall, Phys. Rev. 131, 121 (1963).
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TmLE I. Potential of self-consistent aluminum for 0&r&2.78.
P in Bohr units and V(r} in atomic units. g V,= —0.831054
(uncorrected).
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Pro. 2. B(h} curves for self-consistent aluminum in
the direction of high symmetry.

Harrison contained a Bohm and Pines" correction. For
comparison, this correction has been removed from
these tvro sets of eigenvalues reported here.

The Fermi energy from the self-consistent calcula-
tion was found to be —0.62297 Ry or —8.476 eV. The
corresponding Fermi surface has the same general shape
as that found by Harrison, except that the electron
pockets of the fourth zone frere not found in the
present calculation. The intersections of the Fermi sur-
faces of the second and third zones with the (100) and
(110) planes are shown in Fig. 3. In this 6gure, the
area I', E, W, X, I' is in the (100) plane, and the area
I", E, 1., U, X, I' is in the (110) plane.

Thc density-of-states curve resulting from the present
calculation, plotted with respect to Ey=D, is shorn as
the solid line in Fig. 4. The dashed line in this figure
represents the parabolic curve based on the free-elec-
tron model. It should be pointed out that most of the
fluctuations in the solid curve are due to statistical
inaccuracies resulting from sampling relatively fear

a Points grhere the mesh size is doubled.
b Radius of APW sphere (RS =2.7057).

the initial crystal-starting potential, and the self-con-
sistent crystal potential.

The cigcnvalucs, relative to the constant potential
set equal to zero, for the points in 1/48 of the Brillouin
zone are given in Table II. The corrected value for the
constant potential, found to be —1.22522 Ry in the
manner described by Snow' and %aber, ~ must be added
to the values in the table to obtain the proper eigen-
values. Figure 2 is a plot of the corrected E(ir) curves
ln thc directions of high symmetry, Thc dot-dash line
labeled. Ey indicates the location of the Fermi energy
and the dashed line labeled V, indicates the location of
the corrected-constant potential. Table III compares
the eigenvalues for the points of high sylnmetry re-
ported by Heine, 4 Harrison, 6 and Segall~ arith those
obtained in the present calculation. It should be noted
that the original eigenvalucs reported by Heine and

Pro. 3. Intersections
of the (100} and (110}
planes edith the Fermi
surface for the second
and third zone of self-
consistent aluminum.

--—5r& ZONE

~' D. Pines, SOHd State I'bye s, edited by F. Seitz and D. Turn-
bull (Academk: Prc:ss Inc., ¹mYork, 1955},Vol. I, p. 368.
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TABLE II. Eigenvalues of points of 1/48 of the Brillouin zone considering 2048 points in the entire zone,
given with respect to V, =O.

r (000)/4
X {080)]4
I (444)/4

E 8t V (660)/4
(010)/4
{020)/4
(030)/4
(040)/4
{050)/4
(060)/4
(070)/4

2 (180)/4
Z (280}/4
Z (380}/4
8' (480)/4

(222)/4
(333)/4

0 (471)/4
0 (462)/4
Q (453)/4
Z (110)/4
Z (220)/4

(330)/4
Z {440)/4
Z (550)/4
S (181)/4

(120)/4
(130)/4
(140)/4
(150)/4
(160)/4
(170)/4
(230)/4
(240)/4
(250)/4
(260)/4
(2'jO)/4
{340)/4
(350)/4
(360)/4
(370)/4
(450)/4
(460)/4
(470)/4
(560)/4

B' (570)/4
(121)/4
(131)/4
(141)/4
(1.51)/4
(161)/4
(171)/4
(221)/4
(231)/4
{241)/4
(251)/4
(261)/4
(271)/4

1
4I

3
1
1
1
1
1
1
1
3
3
3
3
1
1
1

1
1
1
1
3
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+

Band 1

—0.20725
0.38974
0.25958
0.46626

—0.19711
—0.16671
—0.11620
—0.04586

0.04397
0.15268
0.27860
0.39931
0.42801
0.47585
0.54287

—0.17684
—0.08600

0.06396
0.43303
0.33699
0.27896

—0.18697
—0.12629
—0.02580

0.11355
0.29029
0.40887

—0.15660
—0.10613
—0.03584

0.05393
0.16255
0.28835

—0.07595
—0.00582

0.08374
0.19211
0.31756
0.04406
0.13327
0.24120
0.36604
0.20227
0.30952
0.43334
0.39642
0.48542

—0.14648
—0.09607
—0.02582

0.06387
0.17241
0.29809

—0.11620
—0.06621

0.00418
0.09366
0.20194
0.32724

1
1

+
+
+

+

Band 2

0.47235
0.28401
0.49760

0.78146
0.60166
0.48206
0.51089
0.55726
0.54287

0.84781
0.53453
0.45501
0.36175
0.30361

0.86800
0.69597
0.56196
0.49162

0.94436
0.79046
0.61110
0.97270
0.88709
0.82046
0.77278
0.63899
0.78215
0.71528
0.66748
0.63879
0.62912
0.58114
0.55244
0.51412
0.51590

0.90025
0.83398
0.78161
0.62022
0.96792
0.86487
0.77979
0.71307
0.66486
0.62860

4
2'

+
+

Band 3

0.55872

0.85882
0.73460
0.62923
0.60099

0.74939
0.95925

0.94766
0.78268
0.65013
0.74986

0.89677
0.86832

0.96294-
0.89794
0.81328
0.74415
0.86560
0.80016
0.75127
0.67920
0.71663
0.66839
0.63734
0.60240
0.57644

0.80608
0.75964

0.82941
0.65852

Band 4

0.92231
0.81764
0.72062
0.65940

0.78191

0.95886
0.93143

0.85971
0.82733

0.86962
0.73581

0.93222
0.75964

0.84074

0.97324
0.94550
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(281)/4
(331)/4
(341)/4
(351)/4
(361)/4
(371)/4
(381)/4
(441)/4
(451)/4
(461)/4
(551)/4
(561)/4
(»2)/4
(242)/4
(252)/4
(262)/4
(272)/4
(332)/4
(342)/4
(352)/4
(362)/4
(372)/4
(442)/4
(452)/4
(552)/4
(343)/4
(353)/4
(363)/4
(443)/4

Band 1

0,43757
—0.01580

0.05402
0.14315
0.25095
0.37549
0.48542
0.12344
0.21205
0.31899
0.29977
0.39469

—0.03581
0.03410
0.12337
0.23133
0.35608
0.01417
0.08382
0.17269
0.27996
0.39469
0.15304
0.24117
0.31784
0.13329
0.22156
0.31766
0.20199

TABLE II. (coetiiwed) .

Band 2

0.51928
0.76126
0.67560
0.60853
0.56037
0.53112
0.51590
0.58951
0.52222
0.47423
0.45502
0.41818
0.74412
0.65838
0.59121
0.54297
0.51360
0.63968
0.55338
0.48588
0.43775
0.41818
0.46668
0.39917
0.34258
0.44770
0.38009
0.34249
0.36071

Band 3

0.62998

0.92279
0.86432
0.69825
0.57644
0.90574
0.84050
0.79277
0.77497
0.72752

0.85785
0.68050

0.90408
0.72752

0.95170

0.95065

Band 4

0.93626

0.88916
0.85045
0.84074

0.94169

states. Some, however, may be attributed to the fine
structure of the bands. Two such fluctuations are the
dips labeled as A and 3 in the 6gure. These dips are
probably due to the band gaps near the zone bound-

ary, between L2* and Lj and between 8'3 and W2*,
respectively. On the other hand, two similar dips
labeled as C and D do not correspond to any such gaps
in any of the high-symmetry directions. It should be
recognized, therefore, that the use of such a density-
of-states curve to identify fine structure in the energy
bands is quite limited. Of course, impmved statistical

TABLE III. A comparison of energies (in Ry) for states of
high symmetry, with respect to j. & =0.

accuracy could be attained by 6tting a pseudopotential
to the data and locating as many more states as de-
sired. With a sufficiently large number of states, a
density of states could be derived that would give a
more complete picture of the fine structure of the bands.

DISCUSSION

The E(k) curves given in Fig. 2, obtained from the
present calculation, have the same general shape as

l ' 1 ' I

Eg

Heine' Harrisonb Segall' Present

1'x (000)/4
X4'(080)/4
Xg (080)/4
w, (48o)/4
w, (48o)/4
w, (48o)/4
I,2' (444) /4
I., (444)/4
x, (66o)/4
Zg (660)/4
x (66o)/4

0.000
0.592
0.717
0.774
0.826
0.949

~ ~ ~

0.699
0.742
1.075

0.000
0.585
0.693
0.774
0.826
0.949

~ ~ ~

0.679
0.713
0.810

0.000
0.622
0.698
0.776
0.819
0.923
0.483
0.512
0.699
0.723
0.802

0.000
0.597
0.679
0.750
0.808
0.866
0.467
0.491
0.673
0.705
0.766

~0.2
I

l/l
lal
I~

' As listed by Segall (Ref. 7).
b Reference 6.
o Reference 7.

-p.o 0.4 02
ENERGY (Ry)

0.0

FxG. 4. Density-of-states curve for self-consistent aluminum.
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those given by Harrison' and Segall. ' The only differ-
ence that seems possibly significant among the three
sets of results (see Table III) is that the bands resulting
from the present calculation are, in general, slightly
narrower than those reported by either Harrison or
Segall. Figure 4 indicates that these narrower bands
give a slightly higher density of states than is predicted
by the free-electron model, but which is still in reason-
ably good agreement with that approximation.

The Fermi surface resulting from this calculation
(see Fig. 3) is also in good agreement with those given
by Harrison' ' and Segall."The Fermi surface of the
second zone is a single closed surface near the zone
boundary, while the Fermi surface of the third zone
consists of small pockets of electrons along the zone
edges, multiply connected at the zone corners W'. As
was pointed out by Segall, a very small shift in the
Fermi level with respect to F'2' could cause the Fermi
surface of the third zone to become only doubly con-
nected, as was indicated by Ashcroft, ' or even com-
pletely disconnected at the corners of the zone. In the
present calculation, the W&' eigenvalue lies only
0.0013 Ry below the Fermi energy. Since the self-
consistency criterion of the present calculation is on the
order of 0.002 Ry, any definite conclusion about how
the Fermi surface of the third zone is connected at the
zone corners would not be justified.

As mentioned above, an attempt was made to include
the core states in the self-consistent band-structure cal-
culations. A calculation in which the (2s, 2p) core
states were considered to be part of the bands and the
corresponding functions allowed to vary was converged
to self-consistency. When the results of this calculation

were compared with those obtained with these two
states "frozen" in the core, very little effect could be
attributed to the valence-band states, the maximum
energy difference between equivalent states in the
valence bands being on the order of 0.001 Ry. The
energy difference between the equivalent (2s, 2p) states,
however, was on the order of 0.03 Ry. Though no
significant change in the bands resulted from including
the (2s, 2p) states in the calculation, the changes in the
eigenvalues of these core states could have a significant
effect on the total binding energy.

CONCLUSIONS

From the work reported here, it was concluded that
the self-consistent APW calculations for metallic alumi-
num yield results that are in reasonably good agree-
ment with those previously reported. These calculations,
how'ever, are not sufficiently precise to allow' drawing
definite conclusions about how the Fermi surface of the
third zone is connected at the zone corner 8'.

Allowing the core functions to vary as self-consistency
is achieved was found to have very little effect on the
resulting band states in the APW calculation on alumi-
num. However, it was noted that the resulting shifts
in the eigenvalues of these core states could have a
significant e6ect on the total binding energy.

ACKNOWLEDGMENTS

The author wishes to thank Dr. J. T. Waber and
Dr. J. H. Wood for their help and guidance during all
stages of this work. The interest and assistance of F. W.
Schonfeld and W. N. Miner are also appreciated.


