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Two self-consistent band-structure calculations by the augmented-plane-wave method have been com-
pleted for metallic aluminum. In one, the rigid-core model was used. That is, only the conduction band
(35,3p) functions were allowed to vary as self-consistency was achieved. In the second, the (2s5,2p)-core
as well as the conduction-band functions were allowed to vary. Though the differences in the core eigen-
values of these two calculations were about 0.03 Ry, differences between equivalent states in the two bands
were less than 0.001 Ry. Both self-consistent-field calculations are in good agreement with previously
reported theoretical results. The calculations indicate that the Fermi surface of the third zone is multiply
connected at the zone corner W, but the calculations are not sufficiently precise to allow any definite con-

clusions to be drawn on this matter.

INTRODUCTION

EVERAL theoretical and experimental studies of
the electronic structure of aluminum have been
made. Most of these are in reasonably good agreement
as to the general shape of the bands and the Fermi
surface, but there are differences of opinion about the
topology of the Fermi surface near the point W in the
Brillouin zone. Gunnersen' studied the de Haas-van
Alphen effect in aluminum. His results indicated that
there are pockets of electrons near the Brillouin-zone
boundary, but he did not locate these well enough to
describe the shape of the Fermi surface. About the
same time, Heine** determined the band structure and
Fermi surface of aluminum from experimental data on
both the de Haas—van Alphen and the anomalous skin
effects and also from low-temperature specific-heat data.
In addition he calculated the band structure by the
orthogonalized-plane-wave (OPW) method. Thus, he
was able to describe the Fermi surface of aluminum as
consisting of a first zone nearly full of electrons, except
for small pockets of holes at the zone corners; a second
zone nearly empty, except for pockets of electrons near
the zone faces, but not including the zone corners; and
a third zone with only a few electrons in small isolated
regions along the zone edges. Harrison® reanalyzed the
de Hass-van Alphen data of Gunnersen! and found it
to be consistent with a free-electron model of the
Fermi surface for aluminum. In this model, the first
zone is completely full, the second zone contains a
single closed Fermi surface near the zone boundary
surrounding a nearly empty zone, the third zone con-
tains along the zone edges regions of electrons which
are multiply connected at the zone corners, and the
fourth zone contains small pockets of electrons at the
zone corners. The multiply connected regions in the
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third zone form what is referred to as “Harrison’s
monster.” Harrison® later extended Heine’s OPW calcu-
lation and deduced a Fermi surface almost the same as

that described above except for a rounding of the edges

of the surface which occurs in the second zone. Segall?
used the Green’s-function method to determine the
band structure of aluminum and obtained results con-
sistent with those of Harrison. Moore and Spong?
studied the cyclotron resonance of aluminum. Their
results did not provide topological details of the Fermi
surface but did indicate that the regions in the third
zone were multiply connected as predicted by Harrison.
However, recently, Ashcroft,? using de Hass-van Alphen
data, proposed a new model of the Fermi surface of the
third zone. In his model, the regions of electrons along
the zone edges are only doubly connected near the zone
corners at W about the square faces, forming isolated
“square” regions instead of Harrison’s multiply con-
nected ‘“monster.” Several experimental results!®—15
have been reported since then for a variety of methods,
with considerable disagreement as to details of the
Fermi surface. Segall'® pointed out in his report on the
Green’s-function calculation that a change in the
Fermi level of about 0.01 Ry in band-structure calcula-
tions can cause the connected third zone to become
completely disconnected. He also pointed out, however,
that the Fermi level would have to be changed by more
than 0.03 Ry if the corners of the second-zone surface
were to contact the zone boundary. Though most of the
reports on the second-zone Fermi surface since that of
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Fic. 1. Comparison of the initial and self-consistent

potentials with the atomic potential.

Heine** agree with the Harrison® model, Balcome'?
recently found that his magnetoresistance results are
consistent with a second-zone Fermi surface touching
the zone boundary at the corners of the zone. With
these differences of opinion still unresolved, it was felt
that a self-consistent augmented-plane-wave (APW)
calculation on the band structure of aluminum would be
of significant value. The band structure, density of
states, and Fermi surface resulting from such a calcula-
tion are reported here and compared with previously
reported results.

In a recent Hartree-Fock-Slater self-consistent-field
(SCF) atomic calculation on aluminum,'® the effect
that changes in the outer electron shells would have on
the SCF 1s eigenvalue was studied. It was found that
changing the electronic configuration of aluminum
from (3s23p') to (3s' 3p%) causes a shift of 0.13 Ry in
the SCF 1s eigenvalue. Comparing the size of this shift
with the self-consistency criterion of 0.002 Ry shows
that the shift is not trivial and cannot be ignored in the
self-consistent atomic calculations. Since the bands were
changed in energy as the calculation was taken to self-
consistency, there was no reason to believe that the
core states were self-consistent in the resulting field or
that the small effect on the resulting band structure
could be ignored in taking these states to self-con-

17 R, J. Balcombe, Proc. Roy. Soc. (London) A275, 113 (1963).
18 J, T, Waber and D. T. Cromer (unpublished)
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sistency. In the case of aluminum, as was pointed out
above, small changes in the bands can result in signifi-
cant changes in the Fermi surface of the third zone
near the zone corners at W.

For this reason, it was decided that the study should
be extended to include the core states in the band calcu-
lation while self-consistency was being achieved, rather
than ‘“freezing” these states, as is usually done in
band calculations.

An attempt was made to include all the core states
during a self-consistent calculation. Unfortunately, the
number of significant figures needed to specify the 1s
eigenvalue, from which a usable wave function could
be determined, exceeded the limits of the IBM 7094
computer used. It was possible, however, to complete
such a calculation for aluminum in which the (2s, 2p)
states as well as the (3s, 3p) states were included. Some
of the results of this calculation are reported and com-
pared with those obtained with the (2s, 2p) states in-
cluded in the “frozen” core.

METHOD OF CALCULATION

A self-consistent APW method was used in making
the calculations. In this method, the crystal potential
used was a “muffin-tin” type. That is, it was considered
to be spherically symmetric about the center of the
Wigner-Seitz cell, within the sphere of radius equal to
half the distance to the first nearest-neighboring atom,
and to be a constant elsewhere in the cell. This constant
value is referred to as the constant potential V.. The
potential for the first iteration was obtained from a
superpositioning of the atomic potentials of the first
four nearest neighbors in the fcc lattice. The atomic
potentials ‘were obtained from nonrelativistic Hartree-
Fock-Slater atomic SCF calculations as described by
Herman and Skillman.!® The potentials for the second
and following iterations were generated from the charge
density resulting from the band calculations of the
previous iteration. This iterative process was continued
until the self-consistency criterion was satisfied, ie.,
|AE(k)| for every point in the zone was less than 0.002
Ry between successive iterations. A more detailed de-
scription of this self-consistent APW method and
the methods of obtaining potentials are given by Snow
and Waber.®

RESULTS

The results reported here are from the self-consistent
calculation, covering 2048 points in the Brillouin zone,
in which the (2s, 2p) states were included in the
rigid core.

The values of the self-consistent potential resulting
from this calculation are listed in Table I for 0<r<2.78
Bohr units. Figure 1 compares the free atomic potential,

B F, Herman and S. Skillman, Atomic Structure Calculations
(Prentxce—HaIl Inc., Englewood Cliffs, New Jersey, 1963).
. C. Snow and] T. Waber, Phys Rev. 157, 570 (1967).
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TasBLE I. Potential of self-consistent aluminum for 0<»<2.78.
[7 in Bohr units and V(r) in atomic units.] V,=—0.831054
(uncorrected).

r —V(r) 7 -V 4 —V()
0.005 5141.218 0.400 28.075 1.280 3.116
0.010 2540.280 0.420 25.869 1.300 3.017
0.015 1672.913 0.440 23.905 1.320 2.924
0.020 1239.081 0.460 22.150 1.340 2.835
0.025 978.773 0.480 20.576 1.360 2.751
0.030 805.275 0.500 19.158 1.380 2.670
0.035 681.429 0.520 17.879 1.400 2.594
0.040 588.635 0.540 16.720 1.420 2.521
0.045 516.561 0.560 15.667 1.440 2.452
0.050 458.998 0.580 14.709 1.460 2.386
0.055 411.996 0.600 13.833 1.480 2.324
0.060 372.916 0.620 13.032 1.500= 2.264
0.065 339.930 0.640 12.296 1.540 2.152
0.070 311.733 0.660 11.620 1.580 2.049
0.075 287.365 0.680 10.996 1.620 1.955
0.080 266.107 0.700 10.419 1.660 1.868
0.085 247.408 0.720 9.884 1.700 1.787
0.090 230.841 0.740 9.388 1.740 1.712
0.095 216.066 0.760 8.927 1.780 1.643
0.100= 202.814 0.780 8.497 1.820 1.578
0.110 180.041 0.800 8.096 1.860 1.518
0.120 161.201 0.820 7.720 1.900 1.462
0.130 145.378 0.840 7.368 1.940 1.409
0.140 131.926 0.860 7.038 1.980 1.360
0.150 120.365 0.880 6.728 2.020 1.313
0.160 110.342 0.900 6.436 2.060 1.270
0.170 101.582 0.920 6.162 2.100 1.230
0.180 93.877 0.940 5.903 2.140 1.192
0.190 87.056 0.960 5.658 2.180 1.157
0.200 80.986 0.980 5.427 2.220 1.124
0.210 75.556 1.000 5.209 2.260 1.093
0.220 70.676 1.020 5.002 2.300 1.065
0.230 66.271 1.040 4.806 2.340 1.039
0.240 62.278 1.060 4.621 2.380 1.014
0.250 58.645 1.080 4.445 2.420 0.992
0.260 55.327 1.100 4278 2.460 0.971
0.270 52.287 1.120 4,120 2.500 0.953
0.280 49.492 1.140 3.970 2.540 0.936
0.290 46.916 1.160 3.828 2.580 0.920
0.300= 44,534 1.180 3.693 2.620 0.906
0.320 40.279 1.200 3.565 2.660 0.895
0.340 36.595 1.220 3.444 2.700v 0.884
0.360 33.382 1.240 3.329 2.740 0.875
0.380 30.562 1.260 3.220 2.780 0.867

a Points where the mesh size is doubled.
b Radius of APW sphere (RS =2.7057).

the initial crystal-starting potential, and the self-con-
sistent crystal potential.

The eigenvalues, relative to the constant potential
set equal to zero, for the points in 1/48 of the Brillouin
zone are given in Table IT. The corrected value for the
constant potential, found to be —1.22522 Ry in the
manner described by Snow and Waber,” must be added
to the values in the table to obtain the proper eigen-
values. Figure 2 is a plot of the corrected E(k) curves
in the directions of high symmetry. The dot-dash line
labeled E; indicates the location of the Fermi energy
and the dashed line labeled V. indicates the location of
the corrected-constant potential. Table III compares
the eigenvalues for the points of high symmetry re-
ported by Heine,* Harrison,® and Segall’ with those
obtained in the present calculation. It should be noted
that the original eigenvalues reported by Heine and
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Harrison contained a Bohm and Pines? correction. For
comparison, this correction has been removed from
these two sets of eigenvalues reported here.

The Fermi energy from the self-consistent calcula-
tion was found to be —0.62297 Ry or —8.476 eV. The
corresponding Fermi surface has the same general shape
as that found by Harrison, except that the electron
pockets of the fourth zone were not found in the
present calculation. The intersections of the Fermi sur-
faces of the second and third zones with the (100) and
(110) planes are shown in Fig. 3. In this figure, the
area T, K, W, X, T is in the (100) plane, and the area
T, K, L U, X, Tisin the (110) plane.

The density-of-states curve resulting from the present
calculation, plotted with respect to E;=0, is shown as
the solid line in Fig. 4. The dashed line in this figure
represents the parabolic curve based on the free-elec-
tron model. It should be pointed out that most of the
fluctuations in the solid curve are due to statistical
inaccuracies resulting from sampling relatively few

F1c. 3. Intersections
of the (100) and (110)
planes with the Fermi
surface for the second
and third zone of self-
consistent aluminum.

-—-- 2nd ZONE
— 3rd ZONE X

2 D, Pines, Solid State Physics, edited by F. Seitz and D. Turn-
bull (Academic Press Inc., New York, 1955), Vol. I, p. 368.
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TasLE II. Eigenvalues of points of 1/48 of the Brillouin zone considering 2048 points in the entire zone,
given with respect to V.=0.
K Band 1 Band 2 Band 3 Band 4
r  (000)/4 1 —0.20725
X  (080)/4 4 0.38974 1 0.47235
L (444)/4 2 0.25958 1 0.28401
K & U (660)/4 3 0.46626 1 0.49760 1 0.55872
A (010)/4 1 —0.19711
A (020)/4 1 —0.16671
A (030)/4 1 —0.11620
A (040)/4 1 —0.04586
A (050)/4 1 0.04397
A (060)/4 1 0.15268 1 0.78146
A (070)/4 1 0.27860 1 0.60166
Z  (180)/4 3 0.39931 1 0.48206 4 0.85882 1 0.92231
Z  (280)/4 3 0.42801 1 0.51089 4 0.73460 1 0.81764
Z  (380)/4 3 0.47585 1 0.55726 4 0.62923 1 0.72062
W (480)/4 3 0.54287 3 0.54287 2! 0.60099 1 0.65940
A (111)/4 1 —0.17684
A (222)/4 1 —0.08600 1 0.84781
A (333)/4 1 0.06396 1 0.53453
Q (@i)/4 - 0.43303 + 0.45501 - 0.74939 + 0.78191
Q (462)/4 - 0.33699 + 0.36175 - 0.95925
Q  (453)/4 - 0.27896 + 0.30361
z (110)/4 1 —0.18697
z (220)/4 1 —0.12629
z (330)/4 1 —0.02580 3 0.86800 1 0.94766
p> (440) /4 1 0.11355 3 0.69597 1 0.78268
z . (550)/4 1 0.29029 3 0.56196 1 0.65013
S (181)/4 3 0.40887 1 0.49162 1 0.74986
(120)/4 + —0.15660
(130)/4 + —0.10613
(140)/4 + —0.03584
(150)/4 + 0.05393 - 0.94436
(160) /4 + 0.16255 + 0.79046 - 0.89677 + 0.95886
(170)/4 + 0.28835 + 0.61110 0.86832 + 0.93143
(230)/4 + —0.07595 — 0.97270
(240)/4 + —0.00582 - 0.88709 + 0.96294
(250) /4 + 0.08374 - 0.82046 + 0.89794
(260)/4 + 0.19211 - 0.77278 + 0.81328 + 0.85971
(270)/4 + 0.31756 + 0.63899 — 0.74415 + 0.82733
(340)/4 + 0.04406 - 0.78215 + 0.86560
(350)/4 + 0.13327 - 0.71528 + 0.80016
(360) /4 + 0.24120 — 0.66748 + 0.75127 + 0.86962
(370)/4 + 0.36604 — 0.63879 + 0.67920 + 0.73581
(450) /4 + 0.20227 - 0.62912 + 0.71663
(460) /4 + 0.30952 — 0.58114 + 0.66839 -+ 0.93222
(470)/4 + 0.43334 - 0.55244 + 0.63734 + 0.75964
(560) /4 + 0.39642 — 0.51412 + 0.60240
B (570)/4 - 0.48542 + 0.51590 + 0.57644 + 0.84074
(121)/4 + —0.14648
(131)/4 + —0.09607
(141)/4 + —0.02582 + 0.90025
(151)/4 + 0.06387 + 0.83398
(161)/4 + 0.17241 + 0.78161 + 0.80608
171)/4 + 0.29809 + 0.62022 + 0.75964
(221)/4 + —0.11620 + 0.96792
(231)/4 —0.06621 0.86487
(241)/4 0.00418 0.77979
(251)/4 0.09366 0.71307
(261)/4 0.20194 0.66486 0.82941 0.97324
(2711)/4 0.32724 0.62860 0.65852 0.94550
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TaBLE I1. (continued).

K Band 1 Band 2 Band 3 Band 4
(281)/4 - 0.43757 + 0.51928 + 0.62998 + 0.93626
(331)/4 + —0.01580 + 0.76126
(341)/4 0.05402 0.67560
(351)/4 0.14315 0.60853 0.92279
(361)/4 0.25095 0.56037 0.86432 0.88916
371)/4 0.37549 0.53112 0.69825 0.85045
(381)/4 — 0.48542 + 0.51590 + 0.57644 + 0.84074
(441)/4 + 0.12344 =+ 0.58951 =+ 0.90574
(451)/4 0.21205 0.52222 0.84050
461)/4 0.31899 0.47423 0.79277 0.94169
(551)/4 + 0.29977 + 0.45502 + 0.77497
(561)/4 0.39469 0.41818 0.72752
(232)/4 + —0.03581 + 0.74412
(242) /4 + 0.03410 + 0.65838
(252)/4 + 0.12337 + 0.59121
(262)/4 + 0.23133 + 0.54297 + 0.85785
(272)/4 + 0.35608 + 0.51360 + 0.68050
(332)/4 + 0.01417 + 0.63968
(342) /4 0.08382 0.55338
(352)/4 0.17269 0.48588
(362) /4 0.27996 0.43775 0.90408
372)/4 0.39469 0.41818 0.72752
(442)/4 + 0.15304 + 0.46668
(452)/4 0.24117 0.39917

F (552)/4 =+ 0.31784 + 0.34258 =+ 0.95170
(343)/4 + 0.13329 + 0.44770
(353)/4 + 0.22156 + 0.38009

F (363)/4 + 0.31766 -+ 0.34249 + 0.95065
(443) /4 + 0.20199 + 0.36071

states. Some, however, may be attributed to the fine
structure of the bands. Two such fluctuations are the
dips labeled as A and B in the figure. These dips are
probably due to the band gaps near the zone bound-
ary, between L,* and L; and between W3 and Wy¥
respectively. On the other hand, two similar dips
labeled as C and D do not correspond to any such gaps
in any of the high-symmetry directions. It should be
recognized, therefore, that the use of such a density-
of-states curve to identify fine structure in the energy
bands is quite limited. Of course, improved statistical

TasLE III. A comparison of energies (in Ry) for states of
high symmetry, with respect to I'y =0.

Heine*  Harrison®  Segall® Present
T1(000) /4 0.000 0.000 0.000 0.000
X4 (080)/4 0.592 0.585 0.622 0.597
X1(080)/4 0.717 0.693 0.698 0.679
W5(480)/4 0.774 0.774 0.776 0.750
W' (480) /4 0.826 0.826 0.819 0.808
W1(480)/4 0.949 0.949 0.923 0.866
Ly (444)/4 e e 0.483 0.467
L,(444)/4 ces ‘o 0.512 0.491
K5(660)/4 0.699 0.679 0.699 0.673
K,(660) /4 0.742 0.713 0.723 0.705
K,(660)/4 1.075 0.810 0.802 0.766

a Ag listed by Segall (Ref. 7).
b Reference 6.
¢ Reference 7.

accuracy could be attained by fitting a pseudopotential
to the data and locating as many more states as de-
sired. With a sufficiently large number of states, a
density of states could be derived that would give a
more complete picture of the fine structure of the bands.

DISCUSSION

The E(k) curves given in Fig. 2, obtained from the
present calculation, have the same general shape as
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those given by Harrison® and Segall.” The only differ-
ence that seems possibly significant among the three
sets of results (see Table IIT) is that the bands resulting
from the present calculation are, in general, slightly
narrower than those reported by either Harrison or
Segall. Figure 4 indicates that these narrower bands
give a slightly higher density of states than is predicted
by the free-electron model, but which is still in reason-
ably good agreement with that approximation.

The Fermi surface resulting from this calculation
(see Fig. 3) is also in good agreement with those given
by Harrison®¢ and Segall.!® The Fermi surface of the
second zone is a single closed surface near the zone
boundary, while the Fermi surface of the third zone
consists of small pockets of electrons along the zone
edges, multiply connected at the zone corners W. As
was pointed out by Segall, a very small shift in the
Fermi level with respect to W,' could cause the Fermi
surface of the third zone to become only doubly con-
nected, as was indicated by Ashcroft,’ or even com-
pletely disconnected at the corners of the zone. In the
present calculation, the W,' eigenvalue lies only
0.0013 Ry below the Fermi energy. Since the self-
consistency criterion of the present calculation is on the
order of 0.002 Ry, any definite conclusion about how
the Fermi surface of the third zone is connected at the
zone corners would not be justified.

As mentioned above, an attempt was made to include
the core states in the self-consistent band-structure cal-
culations. A calculation in which the (2s, 2p) core
states were considered to be part of the bands and the
corresponding functions allowed to vary was converged
to self-consistency. When the results of this calculation

SNOW 158
were compared with those obtained with these two
states ‘“frozen’ in the core, very little effect could be
attributed to the valence-band states, the maximum
energy difference between equivalent states in the
valence bands being on the order of 0.001 Ry. The
energy difference between the equivalent (2s, 2p) states,
however, was on the order of 0.03 Ry. Though no
significant change in the bands resulted from including
the (2s, 2p) states in the calculation, the changes in the
eigenvalues of these core states could have a significant
effect on the total binding energy.

CONCLUSIONS

From the work reported here, it was concluded that
the self-consistent APW calculations for metallic alumi-
num yield results that are in reasonably good agree-
ment with those previously reported. These calculations,
however, are not sufficiently precise to allow drawing
definite conclusions about how the Fermi surface of the
third zone is connected at the zone corner W.

Allowing the core functions to vary as self-consistency
is achieved was found to have very little effect on the
resulting band states in the APW calculation on alumi-
num. However, it was noted that the resulting shifts
in the eigenvalues of these core states could have a
significant effect on the total binding energy.
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