
PHYSICAL REVIEW VOLUME 158, NUM B ER 8 15 JUNE 1967

Transport Phenomena in the Simple Metals*
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The low-excitation-energy phenomena characteristic of the simple metals is discussed. The model used
takes into account both the electron-phonon and electron-electron interactions. The result obtained is an
extended form of Landau's Fermi-liquid theory. The parameters of the theory are related to the underlying
interactions, and the relationships corresponding to the relation of the effective mass with the "scattering
function" discovered by Landau are developed. The theory is used to classify the renormalization sects
in the interacting electron-phonon model of the metal. The results are valid when excitation energies no
greater in magnitude than the Debye energy are involved, with the exception that the usual diGerential
form of the Landau-Boltzmann transport equation does not hold if time variations of frequency comparable
to the Debye frequency are considered.
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E discuss in this paper the system of electrons
and phonons, taking into account the Coulomb

interactions of the electrons. We can also include static
lattice e6ects in a phenomenological way. This model
of the simple metals should be, and has proved, remark-

ably successful in dealing with those phenomena in-

volving excitation energies low in comparison with the
atomic-binding energies (but perhaps comparable with
lattice-vibration energies).

lt has long been appreciated that the interactions
undergone by the electrons with each other, ' ' and with
the phonons, ' although quite strong in magnitude, have
extraordinarily simple consequences, largely because
the bulk of the electrons are frozen into place in mo-
mentum space by the low-excitation condition and the
Pauli principle.

However, most of the theoretical treatments up to
this time, while convincing enough, have either treated
one aspect of the interaction problem to the exclusion
of others, or have resorted to approximations now
known to be unnecessary. We therefore feel that it is a
worthwhi1e exercise to carry out a full formal treatment
of the problem, making only the assumption that the
system is "normal" and using the "weak-momentum-
dependence approximation" of Migdap which has
proven validity.

There are a number of treatments of this problem in
the literature. Abrikosov, Gorkov, and Dzyaloshinski4
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have discussed the electron-phonon problem and the
Coulomb interaction problem separately, in their excel-
lent book. Nozieress gives a more exhaustive treatment
of the direct interaction problem, and SchrieGer' dis-
cusses extensively the electron-phonon problem, and
includes some of the eGects of Coulomb interaction.
Many authors have recognized that somehow the
phonon sects could be taken into account by building
on the underlying Coulomb quasiparticle system7 9;
generally, they were content to neglect all further
Coulomb interaction eGects. However, Leggett" treats
superQuidity as a weak aftereffect in much the same
spirit as we treat the phonons.

There is also a body of literature dealing speci6cally
with both types of interactions. Among the earliest of
these we mention that of Quinn and Ferrell. " Silver-
stein" and Simkin" also make important contributions.
More recently, Satyev and Pokrovskii'4 analyzed the
electron-phonon-Coulomb system graphically, but did
not treat transport properties. Very recently, after the
results we will present had been obtained, a paper of
Heine, Nozieres, and Wilkins" appeared which discusses
in detail certain features of the electron-phonon-
Coulomb system. We will accordingly lay more stress
on those aspects of the problem which they did not
treat.

The result of our investigation is of course that the
electron-lattice system can be regarded as a set of quasi-

s p. Nozihres, Theory of Irtteroetirtg Fermi Systems (W. A. Benja-
min and Company Inc. , New York, 1963).'J. R. SchrieGer, Szcperconductieity (W. A. Benjamin and
Company Inc., New York, 1964).' J. Bardeen, L. Cooper, and J. SchrieBer, Phys. Rev. 108,
1175 (1957).

8R. E. Prange and L. P. Kadanoft, Phys. Rev. 134, A566
(1964)—referred to hereafter as PK.

9 T. Holstein, Ann. Phys. (N. Y.) 29, 410 (1964).
'0 A. J. Leggett, Phys. Rev. 140, A1869 (1965)."J.J. Quinn and R. A. Ferrell, Phys. Rev. 112, 812 (1958).
~ S. D. Silverstein, Phys. Rev. 130, 1703 (1963); 128, 631

(1962); Ph.D. thesis, University of Illinois (unpublished)."D. Simkin, Ph.D. thesis, University of Illinois (unpublished).
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(1966),
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particles (electrons and phonons) whose interactions
can be taken into account in the self-consistent-field
approximation. In other words, the Landau-Fermi
liquid theory applies in the generalized form discussed
in PK.'

The novel aspect of the study lies in the details of the
result which reveal exactly how the phonon and
Coulomb contributions to the effective mass and quasi-
particle interactions combine.

Unfortunately for the theorist, very little has been
done experimentally to separate the contribution from

phonon interaction and Coulomb interactions, and in

fact, it conspires that little can be done by present
methods to investigate experimentally the interaction
of the quasiparticles. Even so, our theory can be re-

garded as replacing or justifying the theoretical treat-
ments of a vast array of experimental results.

Aside from the complete classification of the correla-
tion phenomena in the simple metals, the present con-

tribution consists of two results.
The erst is a classihcation of the renormalizations,

both of matrix elements and mass. In particular, the
mass renormalization is most naturally regarded as
multiplicative, i.e.,

Here m, is the mass when all phonon eA'ects are ne-

glected, and Z is the electron-phonon-interaction

(EPI) renormalization factor, taking precisely the same

form as when Coulomb interactions (CI) are neglected,
but with renormalized parameters.

The second result relates the quasiparticle interaction
function C (kk') to its values in the absence of EPI, and
in the absence of Coulomb forces but with (renor-

malized) phonons. This result is not so uncomplicated,
generally involving an integral equation, but in the
case most often encountered, all phonon effects can be
shown to drop out of the result. It allows a knowledge

of the phonon properties gained, say, from super-

conducting tunneling theory, to be combined with
observed values of C (kk') to give the contribution of the
Coulomb interaction alone.

The plan of the paper is as follows. In Sec. II we

discuss the graphical analysis which allows us to discard
all but a small subset of Feynman diagrams. The Feyn-
man diagrams determine the structure of the self-energy
functions. The basic result is that the electron self-

energy can be split into two parts, one of which is the
self-energy in the absence of phonons and the other of

which has the form of the electron self-energy arising

from KPI with additional renormalizations coming from

the CI. The contribution which mixes the two turns

out to be negligible. In Sec. III we derive the Landau-
Soltzmann transport equation. In Sec. IV we discuss

the scattering function which determines the depend-

ence of quasiparticle energy on the state of the system
and discuss the properties of this function correspond-

ing to the Landau relationship between the scattering
function and the effective mass. In Sec. V we work out
the predictions of the theory in some cases and list
the results in other cases. In the remainder of Sec. I
we review the basic approximations which are made in
the theory

The usual derivation of the Landau theory in the
absence of phonons is based on the smallness of the
rate of decay of a quasiparticle near the Fermi surface
into quasiparticle-quasihole pairs. This smallness is a
consequence of the small amount of phase space avail-
able for these pairs. It is known that the decay rate
should be proportional to s&'/p where ~ is the energy
relative to the Fermi energy and p is the chemical
potential (or the Fermi energy). The theory is thus
restricted to excitation energies, frequencies, and tem-
peratures which are considerably less than 1 eV. In the
justification of the Fermi liquid theory in the presence
of phonons, the smallness of the decay rate cannot in
general be invoked as relatively close to the Fermi
surface the width of a quasiparticle state of definite
momentum is comparable to its energy. It was shown,
however, in PK, that it is possible to redefine a quasi-
particle state as a state of definite energy but indefinite
momentum. All of the functions of the theory are rela-
tively insensitive to the momentum value and conse-
quently the blurring of the momentum plays no im-
portant role. The difference between the two variables
can be seen by noting that the typical phonon energies
are of the order of the Debye energy coD, which is two
to three orders of magnitude less than the Fermi energy
p, whereas typical phonon momenta are comparable
with the electronic momentum. The analysis is based
on an extension of Migdal's discussion which neglects
contributions of the order of con/p and is presumably
exact to that order. LActually, the theory to be pre-
sented requires generalization if the external frequency
is allowed to become comparable with the Debye
frequency. We will omit a discussion of this generaliza-
tion here, in view of the fact that no experiment has
been done in this frequency range. )

Another well-known idea which we shall utilize
throughout is the causality relation according to which
the self-energy obeys a dispersion relation,

where Z and P/2 are, respectively, the real and imagi-
nary parts of the self-energy. This relation shows that
the rapidly varying part of the self-energy as a function
of its energy variable is associated with a rapidly varying
imaginary part of the decay rate of the quasiparticles.
This in turn means that the part of the self-energy
coming from the Coulomb interactions is slowly varying
as a function of the frequency variable, since its imagi-
nary part close to the Fermi surface is small and weakly
varying.
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FIG. 1.Graphical representation of the integral equation for the
polarization propagator. (A) Light dashed and wavy lines represent
bare phonon and Coulomb interactions. (B) Shaded bubble
represents the irreducible polarization part, the first terms of
which are shown. (C) Heavy lines represent renormalized phonon
and Coulomb propagators.

Unfortunately, this paper is by no means self-
contained. It relies heavily on the work reported in
Refs. 3, 8, and 16.A good knowledge of thefield theoretic
methods as discussed, for example, in Ref. 4 is also
essential. We shall however, attempt to indicate by
plausibility arguments enough to refresh the memory
of those readers who are already familiar with the
background material. Complete details can be found in
the unpublished thesis of A. Sachs.

II. GRAPHICAL ANALYSIS

In this section, we discuss the graphical structure of
the electron seIf-energy as well as the structure of the
polarization or phonon self-energy. For this purpose we
can use the graphical analysis for the equilibrium state
as the numerical estimates are not aGected by the small
deviations from equilibrium considered. ' Furthermore,
the result of the analysis is to give the functional
dependence of the self-energy on the distribution of
quasiparticles. The distributions in turn are determined
not by graphs but by solving a boundary condition
equation which turns out to be the I.andau-Boltzmann
equation. " We take as the fundamental Hamiltonian

qkCk2 Ck2+ Q V k k4k24kC3k 424kC22C2k C32k2442
k, o krak p3tsk4

+P 40q, k 43qk Gqk+~ Vkl k2 [+q(klk2}k+Oq(k2kl}k ]o t ~ oar

XCk„.tCk... (3)

which contains electron-annihilation and creation
operators, bare phonon operators, and the Coulomb
interaction. It is convenient to suppress the spin and
polarization indices 0- and ), and to regard the unique
phonon momentum, q=q(k&k2) as given by k2 —k2.
This is done to avoid opening the Pandora's box of
subscripts and does not represent an approximation.

According to the usual considerations, one calls the
sum of all graphs beginning and ending with a bare
phonon or unscreened Coulomb line the full polarization
propagator or generalized dielectric function. The

~' L. P. Kadanoft and G. Baym, QNantem Statistical Mechanics
(W. A. Benjamin and Company, Inc., New York, 1963).
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It is clear that the expression (4), when iterated, repre-
sents the sum of graphs beginning and ending with a
bare phonon line [D'(q&0)] or bare Coulomb line
[U(q)], and containing an arbitrarily long chain of
bubbles interspersed with D' and V's, each of which has
a value given by the irreducible polarization part
II(qa&). (See Fig. 1.) We have assumed for simplicity
in notation, that the propagator is scalar, depending on
the momentum and energy transferred by the polariza-
tion process. As discussed by Migdal, ' the major con-
tribution to the irreducible polarization part 0 comes
from electron states far from the Fermi surface (when
appreciable momentum q is involved) and consequently,
phonons play no part in determining it. For small
frequencies II will be Dearly real.

The property of II mentioned is discussed in detail in
Ref. 3 and in PK when Coulomb forces are, absent. It
is based on the smallness of the phase space for possible
decay products (mainly particle-hole pairs) of energy 40

and momentum q, for small co and appreciable q. The
CI cannot increase this phase space unless some unfor-
seen effect results in a low-frequency collective excita-
tion strongly coupled to the polarization disturbances.
The induced anharmonic coupling as well as the direct
anharmonic terms omitted from the Hamiltonian are
small and will be neglected, although lattice anhar-
monicity can play a significant role, and must be in-
cluded if the theory is to account for experiments
covering a wide temperature range.

In view of the near reality of II, which by the dis-
persion relation implies that it is a smooth function of
frequency, we can assert that there will be a pole in
D(q42) at some frequency of ionic magnitude. This
frequency is interpreted as the renormalized, observable
phonon frequency, co ~. The residue at the pole we denote
by 2coq v&(q)2, dehning the new electron-phonon coupling
constant, (but still not the fully renormalized coupling
parameter which includes all of the proper vertex
corrections).

As an example, in the approximation that the ion-ion
coupling is purely Coulombic in origin and with longi-
tudinal phonons only, we have

42rZekiq 33 ) 212 2 42re2 402

I "(v) I'=
q2 2M02) q2

(6)

polarization propagator including its coupling param-
eters to electrons is thus

D(q~) = [V(q)+D'(q~)][&+&(q~)D(q~)]
=(&—[V(q)+D'(q, ~)]&(q ))-'

X [V(q)+D'(q~)], (4)

where II is the irreducible polarization part and D' is
the bare phonon propagator
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where M0 is the ionic plasma frequency, (4s ~(Ze)'/M)'i~,
and e, Z, and M are the ionic density, valence, and mass,
respectively. This gives for the polarization propagator

4me2

D(qM) = M~
2

4''
i

1— II M' —Mo

q'

4X'e
Gag1+, (7)

q'(1—(%re'/q') II) M' —M, '

so that the new coupling is

with

4me2 co~2

»~»(q)'= —,
a' ~(qM.)

M~ =MD /6(qMq) =M0
kre2

1— II(q,M,) . (9)
2

g

We call Nlelltlfy 6(qM) as tile llsllal electronic dlelectrlc
constant. In the general case, one can include the trans-
verse modes as well as the longitudinal and the polariza-
tion propagator becomes a matrix which has poles cor-
responding to the three or more types of phonons, as
well as singularities associated with the propagation of
light and plasma osciQations. '7 The pole terms can be
separated out. The residues give the corresponding
couphng constants. The residual term is the ordinary
dielectric function (if we drop from consideration the
transverse electromagnetic modes which contribute
relativistic corrections except at long wavelengths).
Actually one must be somewhat more careful and retain
the imaginary part of the polarization part which is not
usually very important, but which contains the phonon-
drag eGects. Thus we separate the total polarization
propagator into a part, the phonon propagator, whose
absorptive part is large only at low frequencies ((Mll)
and a part which is large at higher frequencies (&)Mll).
The latter describes the propagation of electronic
polarizations.

In the simple example worked out in the preceding
paragraph, this separation corresponds to

4' 4me2

D(qM) = + ~ (1o)
q' e(qM, ) M' —Mo'/e(qM) q'e(qM)

The 6rst term is the renormalized phonon propagation
and the second term is the usual expression for the
Coulomb interaction as modiied by didectric polariza-
tion. It is sometimes necessary to retain the frequency
dependence and thus the damping in the phonon
propagator, as we have done. '

Ke have neglected a term

4me2

Ng

g 6(gM) 6(gM&) M —
M&

I7 See, J.%.Garland, Phys. Rev. Letters 11, N14 (1963};Phys.
Rev. 153, 460 (1967}.

which could, if desired, be added to the high-frequency
Coulomb contribution, but which in fact is very small
in comparison with the terms retained, being a factor
of order M,'/p' smaller.

We consequently can reinterpret the usual graphs in
terms of the renormalized phonon propagators and dec-
tronic polarization propagation LFig. 1(c)j, provided we
omit all graphs which would contribute to a polarization
part. The latter must of course be omitted in order to
avoid counting the polarization twice. Thus, in our
example, a wavy line on a graph corresponds to the 6rst
term of (10) and a dotted line corresponds to the second
term.

With this understanding we undertake an analysis
of the electronic self-energy in the presence of the
Coulomb forces and phonon interactions. We 6rst
describe the result. The result is that the irst term in the
real part of the self-energy which we denote Z, is just
the self-energy in the absence of phonons. It has the
properties used in the theories of Landau-Fermi liquid,
namely, its corresponding imaginary part Lsee Eq. (2)j
is small near the Fermi surface, i.e., for iE—pi(&p, .
Indeed for practically all cases it is negligible in compari-
son with the imaginary part of the phonon-induced
term and in fact, except possibly in some of the transi-
tion metals (to which our theory does not apply if the
d bands are too narrow) this imaginary part has never
been observed. No particular restriction is placed on
the magnitude of the real part. Because of the smallness
of the imaginary part at the Fermi energy, we may use
the dispersion relation to prove that near the Fermi
energy Z.(II,E) can be expanded in powers of the
energy, i.e.,

z.(I z) =z, (il,o)+zz, '(l,o),

where Z,' is negative and of order unity and can be
taken as independent of the magnitude of the kinetic
energy for the same reasons that the phonon contribu-
tion can be regarded as independent of this quantity. '
)We measure all electron energies from the chemical
potential p,. The second term of (11) is thus small for
the important values of E, but its derivative with
respect to energy is not.j The other contribution to the
real part of the sdf-energy we denote by Z~. This term
has the attributes described in PK, that is, its corre-
sponding imaginary part is relatively large and changes
rapidly with energy near the Fermi energy thus giving
rise, via the dispersion relation, to a sharp energy de-
pendence of the real part, The magnitude of the real
part is by comparison with Z, very small and it is only
by virtue of its rapid variation with energy that it takes
on importance. The momentum dependence is not pro-
nounced on the other hand, so that the momentum
can be evaluated at the Fermi surface. Thus, although
formally the self-energy depends on four variables, it
can be split into terms in which one of the dependences
is extremely weak and can be omitted. Another im-
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FIG. 2. Typical graphs contributing to the electron self-energy.

portant attribute of this result is that there is no term
which deviates in form from a phonon-like term or a
Coulomb-type term.

The proof of these assertions is based on assumptions
about the self -energy which are true in all orders of
perturbation theory and thus must be regarded as
arguments in favor of the resulting theory rather than
rigorous proofs. There seems to be no insurmountable
difliculty in extending the argument to include the break-
down of perturbation theory associated with supercon-
ductivity. )This extension has been carried out by W.
McMillan (private communication). ]

We first consider a graph containing a (renormalized)
phonon line. Because the electron-phonon coupling is
very weak, special conditions are required to render a
graph with phonon lines important. Usually it is stated
that the dimensionless electron-phonon coupling param-
eter is comparable with unity and this is true as that
parameter is conventionally dehned. Actually of course
the coupling which we introduced earlier has dimensions.
In comparing the electron-phonon coupling in solids
with the electron-electron interactions arising from the
Coulomb forces, it may be helpful to normalize the two
couplings in the same way.

It has long been recognized that the dimensionless

parameter characterizing the strength of the Coulomb
interactions is r,= (9~/4)'"me'/k p, which is not small

at metallic densities. Roughly speaking, each additional
Coulomb line appearing in a graph carries with it a
factor r, .

In the most dificult situation to analyze, such as the
graphs of Fig. 2(c) or Fig. 4(a), the addition of an extra
CI line introduces a factor e'/q'e(qa&), where q is the
momentum carried by the line and co is its energy. There
will be two additional energy denominators and an
integration over q and ~ must be performed. The volume

over which the q integration is important is comparable
with the Fermi surface or Brillouin-zone volume, V~.
The energy range over which the frequency integration
is important is comparable with the Fermi energy p,
and typically the energy denominators are of the order
of Fermi energies. Thus we have the estimate for the
contribution of the CI line, (e'/ky')(Vs/p) ~r.. Thus,

by assuming that the scale of momenta is given by the

Fermi momentum and of energy by the Fermi energy,
we have arrived at the usual estimate.

The same type of argument can be made in analyzing
the contribution of a phonon line. In this case there will
be a factor,

~ v(q) ~'co,/(&o' —co~'); integrations over q
and co, and two additional energy denominators. The
frequency integral contributes a factor or&. The energy
denominators are of the form LE&a&—8(p —q)], where
8(p—q) is the energy of the rest of the graph. In the
simplest cases 8(p—q) is just e, '. Since &o and E are
small (&"o) the size of the energy denominator is
determined by 8(p—q). For most of the q's in the Bril-
louin zone, 8(p —q) will be comparable with the Fermi
energy. Thus we have the estimate for the over-all
factor associated with the phonon line

~ v(g) ~'Vs/p'
~&a~/p&&r, . If b(p —q) is the energy of a more or less
complicated array of particle-hole pairs and CI lines,
it will typically be at least as large as p. If it is simply
e~ ~ (or a renormalized version thereof) there will be a
thin shell of q values such that e~ ~&era. The volume of
this shell is of order Vz"p/p. Generally, only one of the
two energy denominators can be made small in this
way.

Thus a region of small volume in momentum space
contributes equally with the bulk of the momentum
values because of the small energy denominators. The
small region is of primary importance however, because
it has a rapid variation with energy. This can easily be
seen by considering a derivative with respect to K The
derivative in eGect squares the energy denominator.
Dt has to be remarked that it is not enough to have
small energy denominators. They must also be pre-
dominantly of one sign. The Fermi factors which come
into the graphs cause e~, to be predominantly greater
(or less) than zero. As a result for ~~, near the Fermi
surface, this condition is fu161led. If in more complicated
situations 8(p—q) vanishes away from the Fermi sur-
face, the positive and negative contributions from the
small energy denominators cancel and no anomalously
large contribution results. ]

The rapid variation with energy compensates for the
over-all smallness of the phonon contribution, since
derivatives of the self-energy enter into the renormaliza-
tion factors. Thus, only a very restricted type of graph
containing phonon lines can be of importance. There is
no such argument for the Coulomb contributions and in
general a large class of graphs must be taken into
account.

FIG. 3. Graphs contributing to irreducible vertex corrections.
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FIG. 4. Higher-order graphs for the electron self-energy.

Following Migdal we will study particular graphs,
keeping in mind the possibility of making the energy
denominator small and correspondingly restricting the
region of the momentum sums. As only the graphs with
both phonon and Coulomb lines offer any problem we

begin with the simplest. These are of four types as
seen in Fig. 2. In A, we have a phonon self-energy in-
sertion into a graph which contributes to the Coulomb
self-energy, Zg. In 8, a Coulomb self-energy corrects the
graph which is most important in the self-energy Z~.
Graph C can be regarded either as a phonon correction
to a Coulomb vertex or as a Coulomb correction to a
phonon vertex. Since the order of magnitude of the
graph is at best co~, it must be regarded as a contribu-
tion to Z~, and we must look for that part of the con-
tribution which has a strong energy dependence. This
can be achieved by considering that part of the mo-
mentum integrations with values of p—g near the Fermi
surface. Type D represents the conversion of a Coulomb
line into a phonon line and must, by the considerations
of the first part of this section, be omitted since it
represents a correction to the polarization propagator-.

In the calculation of the third contribution, the inter-
mediate energy variable will be close to the external
energy Ebecause the phonon carries a low energy. Thus
it is sufhcient, in calculating the contribution, to obtain
the vertex correction on-the-energy-shell and to replace
the bare electron-phonon matrix element by a renormal-
ized one. $0f course it is quite true that the Coulomb
vertex corrections can contribute to the imaginary part
of the self-energy. This contribution will be similar to
other CI contributions, which are completely negligible
in comparison w'ith the phonon contributions, at low
frequencies, and can in consequence be ignored. 7 Any
higher-order Coulomb corrections to graphs with one
phonon line fall into the categories: (a) The phonon line
can be regarded as renormalizing the propagators in a
graph of fundamentally Coulomb type; (b) the Coulomb
corrections renormalize the propagators in a phonon
type of graph; (c) they can renormalize the electron-
phonon matrix element by replacing the electron-
phonon vertex by the sum of all graphs of the type given
in Fig. 3, or (d), the corrections are negligible.

It remains to show that graphs like Fig. 4(A) do not
make a significant contribution. In this figure, it is
clear that the contribution cannot be cast into one of
the preceding permitted categories, (a)—(c). Because of
its complexity, we do not carry out a formal analysis
here. We content ourselves with pointing out that the

Coulomb lines carry a high energy, and thus one cannot
escape large-energy denominators without really serious
limitation on the regions of integration. The presence of
the phonon line thus renders the graph impotent.
Alternatively, we may think of the Coulomb effect
as being practically instantaneous. A "time-ordered"

graph then shows that the decay through this process
involves a particle-hole —pair creation, the very process
which lacks the phase space to give a significant Coulomb
damping at low energy. Thus, by the dispersion relation,
there cannot be a strong energy dependence. Since the
order of magnitude of the graph is small because of the
phonon line, it can be neglected. The graph of Fig. 4(B)
which can be relegated to the permitted category (c) is
important because the momentum p —

q can be taken
close to the Fermi surface. These points have been
verified by explicit calculation of low-order graphs.

This completes our discussion of the graphs containing
one phonon line. Graphs containing more than one
phonon can be handled if the phonons just renormalize
internal propagators. Even in this case, however, it is not
necessary to keep such graphs. ' The graphs containing
"crossed" phonon lines can be ignored on the basis of
the considerations of Migdal's paper, "or equivalently
by an energy-denominator analysis. The point is that
it is not possible to have enough small-energy denomi-
nators in the case of crossed phonon lines to compensate
for the smallness of the

~ v(q) ~

'. We thus have the result
that the only graphs containing phonon lines which need
be retained are those in which the phonon contribution
to the fundamental electron-phonon self-energy is
renormalized by proper Coulomb vertex corrections and
internal self-energy corrections.

III. THE LANDAU-BOLTZMANN EQUATIONS

In this section we concentrate on obtaining the trans-
port equation in the form originally suggested by
Landau. The procedure is very close to that used in
PK. We focus attention on the electron-distribution
function g&(k,E,rt) and restrict consideration to the case
in which the time variation is slow in comparison with
typical lattice times. This restriction is necessary if we
are to obtain the usual diBerential transport equations,
but can be removed. The more general equations are a
renormalized version of the di8erential-difference equa-
tions first obtained by Holstein. ' According to Kadanoff
and Baym, '~ the function g& which represents the distri-
bution of electrons of momentum k, energy E in the
space-time region around r, t satisfies the equation

$E 6g—Z(k, r, t), g&7+(Z, R—eg7=Z g
—Z~g&. (12)

-The generalized Poisson brackets are de6ned and the
functions Z~ and Z are related to the self-energy in the
way discussed by Kadanoff and Baym."As discussed in
PK, g& in thermal equilibrium has the form A (kE)f(E)
where A is strongly peaked in the variable e~. For the
small deviations away from the thermal equilibrium
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which we are considering, A remains large only when eI,

is near er (for E small). The width of this peak is about
I' in magnitude which is no larger than the Debye fre-
quency. As we consider only the usual case in which all
the important state functions are slowly varying in the
variable k, the function A can be safely approximated
by a 8 function as far as the ei, integration is concerned.
Consequently, we follow PK in integrating Eq. (12)
with respect to eI, while keeping E 6xed. We deviate
slightly from PK in defining the distribution of quasi-
particles of energy E and momentum direction k, (or of
position on the Fermi surface) by

( aZ) dew

f(k, Ert) =~ 1+
~

g&(k,E,rt).
ae(,) 2~

(13)

Unlike the simple case discussed in PK the integral
J'de(, A is not 2s but rather 2s[1+(BZ/8~(,)] '. This
factor is in principle dependent on space and time to the
extent that the electrons deviate from equilibrium. We
shall see later that there is no need to take this depend-
ence into account. The linearized equation for f becomes

~f , ~f Bf
(&..c+&y, c) + (1—&.,s'—&y,z')—+ (~(,(+&.,(')—

BIt Bt Br

Furthermore, e is related to the physical currents,
charge, density, etc., in the standard way, for example

d'k
J(r,t) = —e g m(k, r,t) V,E(,.

(2s)'

A complete and formal proof of this latter point is quite
nontrivial but we do not regard it as worthwhile to
work out this exercise here in view of the arguments
presented in PK.We shall not trouble ourselves with the
presentation of the derivation of the phonon transport
equation and merely remark that the same considera-
tions encountered in PK ensue here. Thus, except for the
collision terms which we still have to discuss, the trans-
port equations have the announced form and nearly
all of the lore connected with their solutions in particular
cases of interest can be taken over verbatim.

IV. THE EFFECTIVE MASS RELATI05'S

In this section we continue with the analysis of the
dependence of the quasiparticle energy on space and
time or more precisely on the distribution of quasi-
particles. On the one hand, we can follow Landau' and
assert that

Z[(r; rr(rr)] 8 "+frL(=(rk')llrr((r'rt), (,19&
(2s)'

We have introduced the notation Z,~, etc., to signify
partial derivation with respect to t. We defer the discus-
sion of the collision term. The crucial approximations
made in obtaining this equation are, 6rst, the self-energy
functions have a weak dependence on k, second, the
imaginary part of the self-energy remains small in com-
parison with the Fermi energy (although not necessarily
smail compared with the energy kT, Mn, and E) and of
course, the linearization approximation. We now intro-
duce a 6ctitious kinetic energy variable e~f in place of
the true energy E by the implicit relation

~ ~=E Z, (~ r, k,E,rt) —Z&(k,E,r,t), —(15)

and de6ne the distribution in the new "momentum"
space by n(kt, r,t) where kr has the same relationship
to k, e(, as k does to k, e(,. Here

e(kr, r, t) =f(kr, E(kr,r, t)r, t) (16)

and E(kr, r, t) solves (15) for given e(,f. These momentum
variables can be regarded simply as momenta even
though they have partially lost the signi6cance of being
Fourier transforms of space variables. We will also in
the future neglect to write the "f"on the momentum.
The distribution function is accordingly governed by the
Landau-Boltzmann equation

Bs Bs BS BN—+V(,E(,—(V,E(,)—=-
Bt Br Bk Bt .,ii.

which is the de6ning relation for the fundamental scat-
tering function C (kk'), where be is the deviation of the
distribution function from the equilibrium distribution
tso 1/Ld'~"'——+1j. On the other hand, we would like
to know the relationship of this function to the cor-
responding functions which would be obtained in the
absence of phonon interactions or in the absence of
Coulomb interactions. These simpler functions have
been studied and relationships are known for them,
giving the eGective mass of the electrons in terms of
integrals over the scattering function. We can write
the gradient of the energy in terms of the self-energy
function as

V,(,= (e,(,+Z„„)/(1—Z, ,s), (23)

and the electron-phonon renormalization factor is

V„E=V, (Z,+Kg)/L1 —Z, ,s—Z~,s],
where the notation Z„, signi6es a partial derivative
evaluated in the equilibrium situation and the relation-
ship (14) is satisaed. We also note that the velocity is
given by

Vg ——V(E('——(~,(,+Z, ,(,)/{1—&.,s—&~,~) . (21)

Let us rewrite this as

V(,——V,(,Z(k),

where the velocity V,& is that in the absence of EPI
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defined by
Z(k) i = 1—Z @/(1—Z @)

In the isotropic case we have in equilibrium that

(24)
is just the same as that given in PK with the density
of states and coupling constants renormalized by the
Coulomb interaction. Thus the real part of the self-

energy is given by

~c&6k

ck &pk

1—Z, ,g
(25) Z„(k,E)=

dE' d'S'
I
p„(kk') I'

„(2s)' IV.p, I

where ~,k is the velocity in the absence of any interac-
tions. Thus the velocity or eGective mass is renormalized
in steps by multiplicative factors. Let us introduce the
renormalized phonon self-energy by

z, (k,E)= z, (k,E).
1.—Z, @

(26)

dZ' d2S'

I
v, (kp, kp')

I
'f(k p E',r, t)

(2~)' IV" el

x(s(E—E'+,)L1+ilr(«) j
+~(E—E'—~~)&(—«)) (29)

In this final expression we have the coupling constant
completely renormalized by the Coulomb interactions

I "(k'k~ ) I'=
I ~2( ~k~ ) I C» .~(k~)l

xl:1—z. (k )r' (3o)

An alternative way of writing the differential is

d'S/I V.g~ I
=dQIE, (kp) (2n.)'/4x,

To see that this is a natural definition we consider the
expression for Z&. From PK we have

1
z,(E)=

4—Z, ,g

xlz. (E')+z, (E')]/(E-E'). (2't)

In this expression Zq&(E) is for example,

dE'd'k'
Zq (kE) =2~

I
p2(kk') I'g (k', E',rt)

(2~)8

x l&(E—E'+~.)I:1+&(«)j
+~(E—E'—~~)&(—«)) (2g)

We have called N(«) the distribution of phonons, &o~ the
renormalized phonon frequency, and v2(kk') the elec-
tron-phonon coupling including proper vertex correc-
tions, so that the Coulomb corrections have as we have
discussed earlier entered to the extent of renormalizing
these functions. We may perform the ek integration, and
we find

~=E.g+ Z, (ex,0)+E,„Z„s. (33)

We may explicitly solve this to find

26)g

Xf(k', E',r, t) . (32)
(E—E')'—(o,'

LAs discussed in PK, it is sometimes convenient
to go a step farther and make the replacements
E' +E(k'—,rt), f +e, —Zz„~ Zg, Zl pI'Z' +I ur I-',

IZV.q~l~ I V~l, d'SdE/I V~ I~ d'k. Then zr is expressed
in terms of parameters renormalized by both Coulomb
and phonon contributions. Since the collision terms are
given in terms of Z~ and Z~, one is enabled to express
Bn/Btl. ,u exactly as it is expressed in PK with the
modification that the EPI matrix elements, etc., are
renormalized by both KPI and CI effects. The result can
be described as having the form of the Born approxima-
tion for phonon emission and absorption with renormal-
ized parameters. A similar result holds for scattering
from static imperfections. The electron-electron (CI)
scattering term is negligible. ]

The Coulomb corrections to the quantities appearing
in the expression for Z„can in principle depend upon the
deviation of the distribution function from equilibrium
but we can easily see that this dependence is much
weaker than that given by the r, t dependence of f
First of all, the space time dependence of the coupling
v2(kk ) is negligible since the importance intermediate
states for the irreducible vertex corrections are far
from the Fermi surface where the distribution func-
tion is frozen by the exclusion principle. Even beyond
this we can see that the explicit dependences arising
from the factors 1+Z...„and 1—Z, ,s can be neglected.
This comes about because we can make the estimate
(8z, , ,/he) (1/e). Since Z~ has the magnitude ~n we
Gnd that this leads to a contribution to the scattering
function of the order of &on/p less than that given by
varying f(k,E). The variation with respect to f(k,E)
gives a relatively large contribution since it makes the
energy denominator in (32) necessarily small.

We now return to an examination of the defining
equation for the kinetic energy. Let us denote by E,k
the solution of the problem in the absence of phonon
sects which we may obtain by dropping the term Z~
from Eq. (15). In other words

where X.(kz) is the density of states in angle and
energy at the Fermi surface of the electrons under the
influence of the Coulomb interaction. Expression (29)

~a+Z. (~s,o)
cjt:

1—Z, ,g
(34)
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Furthermore, the energy E~ is given by the solution of

(35)EE=E.E+&y(EE),

as may be con6rmed directly. Thus we have succeeded
in expressing these relations as a result of two steps, the
6rst being the solution of the problem in the absence of
phonons and the second resulting from the additional
phonon interactions. The remaining task is to find the
dependence of the distribution function on phonons.
Since we are considering the situation in which we

integrate first over the kinetic energy variables, the
natural dependence of the energy will be on the func-
tion f rather than on the momentum space dependent
distribution function n. This means that we may expand
the function E. according to

d2S' dZ'
~z,= c,o h,z,1',z' ~ 1'z'

~V. ~
(2~)E

n()+ bn= fp(E(k, EE,n()))+ bf(kE(k, eE,np) r, t)

The problem then is to relate the changes in the distribu-
tion function bf to the change in bn. In general this rela-

tion will depend on the effect of the phonons, since the
fictitious momentum depends upon the true energy in a
way which involves the phonon contribution. We ob-
tain the desired relationship by taking the variational
derivative of the de6ning equation

Using (40), we find that the angular momentum com-

ponents of the scattering function are

4 g$
——C./'/(1 —SEC gt']. (42)

In these terms the effective mass relationship of
Landau is

1—X,C,i'
(43)

Turning now to the effect of phonons we must 6nd
the contribution of Z„ to the scattering function. This
can be done by taking the variation of equation (35).
We thus reduce the problem to the computation of the
variation bZ„/bn. Once again we see that according to
(32) Z, is most easily expressed in terms of the f
function and as we have noted before only the explicit
dependence is of importance. We thus find that bZ~/bf
in this case is explicitly available in terms of phonon
frequencies and coupling constants. Note that this
function is rapidly varying in its energy variables and
is independent of temperature (since we have ignored,
for the sake of simplicity, lattice anharmonicity).
Introducing the notation

may introduce the standard angular momentum
decomposition.

c (k—k') =&c'2(
(
k ~, )

k' () (2l+1)P)(coseE), ) . (41)

Bf bE(z, E„n)
bn(k')dr',

BE g=@( ) bn(k )
(37)

2(E, i 2, (kk') i'
c,&(kk') =

(E),—EE )'—E2,'
(44)

where

Thus, we find
dr =d't't/(2~)'.

2forE()r rr, )r, r) fr) (2 )'ll(k —)r='')

(3g)

C „(kk') =Z(k))C.'(kk')+C, '(kk') jZ(k'), (45)

we 6nd that the scattering function of Landau can be
expressed as

@()r)r ) @ ()r)r )+'f=2' ().rk )'( —."
BE,")

HEI g Eo
C(kk') bn(k'). (39) XC(k"k')dr", (46)

In this expression C (kk') is the complete scattering func-
tion of Landau. If phonons are completely ignored the
relation is that for Coulomb interaction alone, and we

can denote the scattering function by C, (kk') which

satis6es the equation

Bfp
C, (kk') =C,'(kk') — C,'(kk") C,(k",k")dr". (40)

gg/I

Since in the case of Coulomb interactions the scattering
functions are slowly varying in their arguments we may
replace Bf()//BE by —b(EE tE) to sufficient appr—oxima-
tion. In the isotropic situation the scattering function
depends only on the difference of momentum and wc

Z(k) =
1—Z~, @

(47)

where a factor of Z(k') appears in the conversion of
energy variable to momentum variables in the integra-
tion. This is an integral equation which can be solved

explicitly at sufliciently low temperatures in the iso-

tropic case since the derivative may be approximated by
a 8 function. At higher temperatures, because of the
strong energy variation of Z(k), C ~ and. consequently
of C „, the equation is not solvable explicitly. Just as in

PK, we can determine the renormalization factor Z(k)
which converts the intermediate mass m, into the ef-
fective mass ()n~ from. the scattering function C)2, (kk').
Since Z(k) is equal to



TRANSPORT PHENOM F NA IN SI M PLE M ETALS

we can use the explicit expression for 4„' to find

Z(k) '=1+ d01,. B 0
dE'E, '4 s'(kE, k'E') — . (48)

kr BE'

An alternative expression which is sometimes useful is
to write the equation for Z(k) in terms of C ~, the solu-
tion of (45) with 4,' put to zero. The result is, in the
isotropic case, at low temperature,

(m~/m, )= (1/Z) =1+X*4„s——1+%,C „so. (49)

We have denoted by E* the observable and fully re-
normalized density of electron states. Note that the
isotropic average l= 0 enters the expression, rather than
the l=1 contribution. Thus we have exhibited the ex-
pression for the scattering function of Landau in terms
of more elementary expressions and have found an
integral equation which can be solved. The equations
connecting the effective mass with the scattering func-
tion are replaced by Eqs. (43) and (49) which unfortun-
ately are not in terms of the final scattering function C.
To that extent the formalism has lost a simple
relationship.

J.M. Luttinger and J.C. Ward, Phys. Rev. 118, 1417 (1960).
'~ T. M. Rice, Ann. Phys. (N. Y.) 31, 100 (1965).

V. PROPERTIES OF THE METALLIC
FERMI LIQUID

With the aid of the theory just developed it is possible
to find systematically the CI and EPI corrections to
any calculation of the low-frequency properties of a
metallic electron-phonon system. In nearly all individual
instances the results are well-known. We divide the
corrections up into a number of categories.

A. Corrections to Fermi surface shape: No KPI
effects, but possible CI effects."No change of Fermi
surface volume. "Same Fermi surface is determined by
every experiment.

B. Corrections to phonon dispersion: No EPI effects
(in the sense of Sec. II) but CI effects. Same phonon
dispersion in every experiment.

C. Corrections to EPI matrix elements. These are
fully corrected by CI with both wavefunction,
(1—Z, ,z) ', and proper vertex renormalizations. There
is also an KPI wave-function renormalization which
generally cancels out in the static limit against the mass
renormalization.

D. Corrections to other electron matrix elements. "
The same remarks apply here as in case C. It should be
noted that certain relationships which hold in treating
independent electrons in the Born approximation do not
hold after CI renormalization. For example, the matrix
elements do not cancel out of the Korringa ratio after
renormalization. (However, estimates of the proper
vertex correction" indicate it is approximately in-

dependent of momentum transfer; which result reintro-
duces the simplifications. )

E. Corrections to electron mass. CI introduces cor-
rections (usually believed to be numerically smalP')
and EPI causes additional multiplicative effect. If the
mass is a tensor, the KPI renormalization multiplies
the whole tensor by a scalar (which can be dependent
on position on Fermi surface, and distance from the
surface). This EPI mass renormalization is equal to the
EPI wave-function renormalization. This fact causes
the EPI corrections to cancel from all mobilities, i.e.,

m* m*(N*(Ef) [
M*

~

') m, (X,
~
M,

~

') m.

A general argument showing that KPI effects disappear
from quasi-steady-state transport coefFicients was given
in PK.

Note that cov* is affected by EPI, whereas Vp*r~ is
not. Thus, mean-free-time effects have to be dis-
tinguished from mean-free-path effects in this sense.

The mass renormalization is also related to the scat-
tering function, the results of which will be discussed
below.

Finally, by raising the temperature, "" the fre-
quency, " or the magnetic field, 23 it is in principle
possible to observe changes in the KPI contribution to
the mass. So far such experiments have not been found
feasible, and so all mass determinations lead to the same
me (in which the phonon corrections are usually quite
significant). In these proposed experiments, there is no
dependence on C.

F. Corrections arising from the Landau scattering
function, C. These corrections are by far the most
evasive. AzbeP4'5 has given a discussion analysing the
difriculties encountered in attempting an experimental
determination of the function. The main problem is
that at low frequencies there is no correction, whereas
at higher frequency the skin depth becomes so small
that the distribution function is changed only for a
small fraction of the electrons in an effective band, "
which limits the contribution of the scattering function.

Ke discuss several cases. The 6rst is that of the
susceptibility or Be/Bp, which determines the screening
length. In this case CI effects remain, but EPI effects
cancel out. Although quite simple arguments sufFice to
obtain this result, "it may be of interest to demonstrate
the calculation within the framework of our formalism.

2 T. Krebs, Phys. Letters 6, 31 (1963).
2' R. E. Prange and S. Maitra, University of Maryland Tech-

nical Report, 1965 (unpublished).
~ H. Scher and T. Holstein, Phys. Rev. 148, 598 (1966).~ M. Fowler and R. E. Prange, Physics 1, 3151 (1965).
24M. Ya. Azbel, Zh. Eksperim. i Teor. Fiz. 39, 113g (1960)

t English transl. : Soviet Phys. —JETP 12, 793 i1961lg.» A. Ya. Blank and V. L. Falko, Zh. Eksperim. i Teor. Fiz.
48, 742 (1965l LEnglish transl. : Soviet Phys. —JETP 21, 490
(1965)g."C. Herring, in Magnetism, edited by G. T. Rado and H. Suhl
iAcademic Press Inc., New York, 1966), Vol. IIb.
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dsSI Bk, I.
(2z)'

(52)

Thus we Gnd that the shift in chemical potential is

We obtain the equation

IBkr I
1

C (krkp. ) (54)
l~sl I

~.
l

~u (2~)'

We now notice that the solution to this equation is

Z(k) / Z(k') dsS' ic,P(kk') I, (55)
IV~ I

(2~)'&

which follows by substitution and use of Kq. (46).
Therefore we see that Bk&/Bp is given by an expression
independent of the phonon interactions and Be/Biz is
given by the symmetrical expression

1 Bs

2 Bp

1 d'S

(2rr)'
I V~. l

d2Sd2S'

(2 )' l~"I

Xc.p(kk'), (56)

where the Grst term is the density of states in the
absence of phonons.

We note that the similar argument for the spin sus-
ceptibility depends on the EPI being diagonal in spin,
which may not be an adequate approximation in the
heavier metals.

Other methods which may lead to information about
the C function require somehow getting electromagnetic
signals to penetrate at high frequencies to avoid the
"effective zone" result mentioned earlier. Let us con-

We calculate here the quantity BN/Biz which gives
the change of density with chemical potential. The case
of the spin susceptibility is very similar. According to
Landau, ' Bl/Bp, is, in the isotropic case,

(Brs/Biz) =2N*/[1+N*C p) . (50)

Inserting the solutions for the scattering function we
obtain

(Be/B1r) =2N /(1+N C' p) (51)

which has been simpli6ed by using expressions (45),
(46), and (49). Thus it is seen that Brz/Bp is independent
of phonon effects. It is possible to extend this calculation
to the anisotropic case. Let us assume that the chemical
potential changes and the Fermi surface is shifted at
each point by Skag normal to the surface. Then we have

sider the Gedanken experiment of cyclotron resonance in
a spatially constant Geld, which is of interest because it
presents a case in which CI effects ought to cancel out
in the absence of lattice effects. A simple analysis shows
that the resonance frequency is pp, eL1+NeC»j where
pp, e is eH/haec as would be measured in the Azbel-
Kaner'~ situation. The expression can be rewritten as

rp„,= (eH/mc)L1+(m, N, /m)(campo
—C„rs)) '. (57)

We see that it is by virtue of the EPI interaction that
there remain some Coulomb effects.

The more realistic case of cyclotron resonance in the
Gait" geometry has been considered by Platzman and
Jacobs" who find that no very simple result is to be
expected.

Recently, Walsh and Platzman' have found a region
of magnetic Geld and frequency for which a metal is
partially transparent, thus allowing a new type of mode
to propagate. The dispersion relation of this mode
depends on C. The analysis of the mode may lead to the
partial determination of C in certain cases. Even more
recently, Schultz and Dunifer" have observed penetrat-
ing waves which are believed to be spin waves, existing
by virtue of a spin-dependent part of C. This experiment
provides the best evidence so far available for the
existence of C.

Thus in summary, we have found that the Landau-
Fermi liquid theory holds for the electron phonon
system in the presence of Coulomb interactions. Certain
relations between the scattering function, effective mass,
and wave-function renormalizations exist which allow
simpliGcations in special cases. The effect of the phonons
can be explicitly disentangled if the renormalized phonon
spectrum and EPI couplings are known. The whole
theory remains valid even at temperatures comparable
with the Debye temperature, but in this case the Landau
function C has signiGcant dependence on the magnitudes
of its arguments, as well as on their directions. Phonon
renormalization effects cancel out completely in many
instances, including nearly all experiments feasible near
the Debye temperature. The renormalizations arising
from the CI are not so prone to cancellation, so that
nearly all conceivable experiments at frequencies below
hhe optical, depend on the same Coulomb renormalized
matrix elements, which can then be regarded as the
fundamental parameters of the material.
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