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Paramagnetic Susceytibility in the UsSi Tyye of Comyounds
in the Normal State
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Tight-binding calculations, applied to a linear-chain model, give a rough description of the d-band struc-
ture of the V3Si type of compounds, with very high peaks in the density of states. The Fermi level should
fall in one of these peaks. This leads to a large and strongly temperature-dependent Pauli susceptibility.
The orbital Van Vleck susceptibility is discussed with respect to the position of the Fermi level in the
d band.
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FIG. 1.Temperature dependence of the measured susceptibility
in V3Si. The full line shows the measured total susceptibility x.
The dashed line shows the calculated d-electron Pauli suscepti-
bihty p~(1'), without exchange.
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INTRODUCTION
' 'N the V3Si type of compounds which have a high
~ ~ superconducting transition temperature T„the para-
magnetic susceptibility and the Knight shift exhibit an
unusually strong temperature dependence. ' Figures 1
and 2 show the experimental results for V3Si. The sus-
ceptibility X decreases very quickly as the temperature
increases. However, at room temperature, its value re-
mains fairly high. For the vanadium nuclei the Knight
shift ky has a positive value and it increases with in-
creasing temperature. More recently, in VSSi Gossard'
discovered the effect, on the nuclear-magnetic-resonance
properties, of the low-temperature structural transfor-
mation earlier observed by Baterman and Barrett. ' The
temperature T, at which this tranformation begins, is
higher by several degrees than the superconducting
transition temperature T,. The structural transforma-
tion therefore occurs in the mortal state. The stable
phase is cubic at T& T and tetragonal at T& T . The
distortion amplitude ~ is about 10 ' to 2.10 ' times the
lattice parameter. The volume of the unit cell remains
constant during the transformation. At temperature
lying between T, and T, Gossard observed a splitting
in the NMR spectrum of the V" nuclei.

Here we want to show that these experimental results
can be understood with a simple model. 4 In this paper
we shall compute the Pauli and Van Vleck susceptibili-
ties in the cubic phase. In a second paper we shall apply
our results to calculate the Knight shift in the two
phases.

Fro. 2. Temperature
dependence of the meas-
ured Knight shift in
VSSi.
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' J. Labbe and J. Friedel, J. Phys. Radium 27, 153 (1966).
5 F. J. Morin and J. P. Maita, Phys. Rev. 129, 115 (1963).' J. E. Kunzler, J. P. Maita, H. J. Levinstein, and E. J. Ryder

Phys. Rev. 143, 390 (1966).' J. Bonnerot (to be published).
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1. SIMPLE MODEL FOR BAND STRUCTURE
IN CUBIC PHASE

In the cubic phase, the crystal has the P-tungsten, or
A-15, structure (Fig. 3). The vanadium atoms form an

array of dense linear chains running in the [100],[010j,
and [001$ directions. The silicon atoms form a body-
centered cubic lattice. In the Hartree approximation, we

use a narrow d-band system analyzed in tight bind-

ing and a broad conduction s band. In this ap-
proach, the crystal can be considered, for the d e1ectrols,
as an assembly of one-dimensional crystals. The cohe-
sion of the whole lattice is due to the tridimensional
s electrons of the transitional and nontransitional atoms.
The density of state e(E), resulting from this structure,
is shown in Fig. 4. There are three d sub-bands. In this
crude model, the value of e(E) is infinite at the toro edges
of a d sub-band. The d-band density of states is the
superposition of the contributions from all the linear
chains, so that there is a very large degeneracy for the
d band.

Speci6c-heat measurements~7 show that the VSX
compounds, with high superconducting transition tem-

perature T„have unusually large values of the elec-

tronic specific heat, leading to very large densities of
states e(Ei ) at the Fermi level. The Fermi level should

therefore be placed on one of the peaks of the Fig. 4.
For instance, in VSSi, the valency of V atoms makes it
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Fro. 3. The A-15
crystal structure: The
spheres represent vana-
dium atoms; the Si
atoms would be at the
corners and at the cen-
ter of the cube.

ties of the physical parameters, such as distortion, shear
modulus, and so on. These discontinuities may be so
small that even a very small dispersion in the values of
T, due to crystal inhomogeneities, is sufhcient to mask
them. In fact, experimentally, the transformation does
not exhibit the specific-heat peak characteristic of a
second-order phase transition.

2. FINE SAND STRUCTURE ASSOCIATED
WITH DISTORTION

Using this d-band model, we discussed in Ref. 4 the
stability of the cubic structure with respect to a uniform

distortion. It was shown that a tetragonal distortion
could make the energy decrease, when the Fermi level

was sufBciently close to a peak. In such a distortion, the
degeneracy is partly lifted, each peak splitting into two

peaks (Fig. 5). In VsSi, the stable phase, at absolute

zero, is tetragonal with a lengthening of the unit cell

in the [100] direction. The chains running in this di-

rection are stretched. On these chains, the d bands be-
come narrower. In the two other directions the chains
contract and the d bands become wider. The peak, on
which the Fermi level lies in the cubic phase, splits into
a [100]peak and a doubly degenerate [010]and [001]
peak (Fig. 6). It can be shown that, in the stable state,
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Fre. 4. Density of states in the cubic phase,
calculated in tight binding.

the Fermi level E'I lies between the bottoms E ~ and

E ~ of these two peaks. We shall see that a rough esti-

mate, using the numerically known values of the param-
eters in VBSi, leads to E ~

—E'p 3.10 ' eV. This rather
6ne structure is very sensitive to the temperature. By
an increase in the temperature, from absolute zero to
about 20'K, the occupancy of the states of the [100]
sub-band (Fig. 6) becomes appreciable. This leads to a
decrease in the stability of the tetragonal phase. Calcula-

tions give the right order of magnitude for the ternpera-

ture T of the structural transformation. The general
features of the variation of the distortion e with the tem-

perature, below T, are found in fairly good agreement
with experiments. In our model, the transformation is

found to be Grst order, but with only small discontinui-

s J. Labbe and J. Friedel, J. Phys. Radiu~ 2?, 303 (1966);

reasonable to assume the Fermi level to be on the third

peak from the left, i.e., the narrowest sub-band to be
nearly empty.

3. CHOICE OF NUMERICAL VALUES OF
PARAMETERS IN V8Si

The actual value of the density of states n(E&) at
Fermi level in VSSi is diKcult to estimate because of the
electron-phonon enhancement already discussed by
Clogston. ' On the other hand, we made a mistake in our
Ref. 8.

n(E) ' 0lo

JleV

E'F . 1 eV.

FrG. 5. Density of states in the tetragonal phase.
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n, (E) Fro. 6. Fermi-level posi-
tion in the tetragonal phase
of V3Si.
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9 A. M. Clogston, Phys. Rev. 136, 8 (1964).

We had attributed to the tetragonal phase the value
resulting from the low-temperature specific-heat meas-
urements of Morin and Maita. ' More recent measure-
ments" show that this value holds for the cubic phase.
As an upper limit, we shall use the value n(Er) 10 eV '
per vanadium atom and for the two spin directiols, in the
cubic phase.

Now, the Slater coefficient q, which determines. the
radial dependence of the d atomic wave functions, is
given by Kq. (II, 14) in Ref. 8. We find g 0.27 A '. On
the other hand, Eq. (II, 13) in Ref. 8 imposes severe
limitations on the choice of the sub-band width 2~ E ~.

We find 7.2 eV(2 I E~~ (9.6 eV. But, if we want to be
in the case b of our discussion in Ref. .4 (i.e., where the
cubic phase is unstable at OeK, and not metastable),
)E )

must satisfy 7.9 eV(2)E ((9;6 eV. In our cal-
culations we have chosen the width 2

~
E t =9 eV. The

number Q of electrons in the nearly empty d sub-band
is thus Q 16/s'~E~~N(Er) 0.036 electrons per vana-
dium atom, against 4 available states per vanadium
atom.
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Using the above numerical values of the parameters,
computer calculations described in Ref. 8 give us a struc-
tural transformation temperature T ~23.2 K. The cal-
culated variation of the distortion amplitude e with the
temperature is shown in Fig. 7. The discontinuity in e at
T is only SX10 ', i.e., about 20 times smaller than the
value at O'K. These results are in better agreement with
experimental data' than those found with our first
choice of the parameters values in Ref. 8.

Here, we may notice that we find, for the Slater co-
efFicient q, a numerical value much smaller than in the
free vanadium atom (where it is about 1 A ') and also
probably smaller than in pure vanadium metal. This
means that the d atomic wave functions are more ex-
tended in space in V3Si than in vanadium metal. This
can be uriderstood from the fact that, in a linear chain
in V3Si, the distance between two neighboring vanadium
atoms is smaller than in pure metal (2.36A against
2.63 A). Indeed, the rather large value, which we find for
the d sub-band width 2

~

E ~, is consistent with the in-

crease in overlapping which must result from atomic
wave functions more extended in space. But we must
keep in mind that the tight-binding approach is all the
more rough as overlapping is stronger.
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Fro. '/. Calculated distortion amplitude e, as a
function of the temperature.

E of the sub-band. As usual in transition elements, we
must take into account the exchange enhancement.
Thus the Pauli susceptibility is given by the formula'

(3)

Here J arises from exchange interactions, p, is the Bohr
magneton, and, as shown in Appendix A, N(T) is given
by

4. PARAMAGNETIC SUSCEPTIBILITY IN
CUBIC PHASE f'( E)n( E) dE, (3')

Kith our assumption that the Fermi level lies on a
d-band peak in the density of states, we can neglect the
s-electrons contribution to n(Ep). Thus the paramag-
netic susceptibility is made of two main contributions.
On the one hand, a large Pauli susceptibility xq(T),
strongly decreasing with increasing temperature, is ex-
pected from the d states lying close to the Fermi level.
On the other hand, the d-band structure, made of
neighboring and partly occupied sub-bands, leads to a
large orbital susceptibility Xo, nearly independent of the
temperature. If we neglect the diamagnetic contribu-
tion, the whole susceptibility can be written

x=xp+x~(T).

A. Pauli SusceytibiHty, Calculated in
our Model, for V3Si

In this calculation we shall neglect all the contribu-
tions to the density of states, except the one provided
by the nearly empty d sub-band (Fig. 4). The neglected
contributions (s band and others d sub-band) only give
rise to small and weakly temperature-dependent terms
in the Pauli susceptibility. In our approximation, as we
have shown in Ref. 4, we must use the expression of the
density of states

where Z is a normalization constant (for a d,„,,~ „~ sub-
band we have Z=4 electronic states per vanadium
atom). In VpSi, the Fermi level is very near the bottom

where f'(E) is the derivative with respect to E of the
Fermi function f(E)=(1+vis s»~"r) '. Of course, the
Fermi level E~ is a function of the temperature. %e
shall neglect the electronic transfer towards the s band
and the other d sub-bands. At a given temperature T, we
must therefore calculate Ep by writing the number of
electrons in the sub-band to be a constant. This gives

e(E)f(E)dE= Q. (4)

Using the numerical values of Sec. 3, we have, at ab-
solute zero, for VpSi, Ep(0) —E 18.10 eV. A critical
value of T is Tp suchtlist kTp=Ei (0)—E . Here, we
have T~~21 K. In Appendix B we give the usual ex-
pansion of Ii'n(T), for small temperatures, in (T/Tp)'.
But it would be valid only for T«TO, i.e., very close to
absolute zero, in the superconducting state, where the
pairing makes Xq(T) vanish. In Appendix C we give an
expansion of p'N(T), for large temperatures, in Tp/T,
and we show that it is valid for T& 100'K. Here we are
interested in all the values of T in the normal state, in-
cluding T of the same order as Tp E~ and xq(T) m. ust
therefore be computed numerically using Eqs. (4), (3)
and (3'). Figure 1 shows the calculated temperature
variations of p'N(T). If we assume that J keeps a rea-
sonable value, we see that, between 50 and 400'K, our

'0 A. M. Clogston, V. Jaccarino, and Y. Yafet, Phys. Rev. 134,
A650 (1964).
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bands (Fig. 4). The Bloch function for a state g, of wave
vector k, of the Nth sub-band (e=1, 2, 3), can be written

Im, g,k) = (r ~a) ~ikv a

~ ~ el
~/

Em --=." »:
I

occupied states

Fxo. 8. The d-band structure
of a linear chain in E versus k
diagram. where f„,,(r—va) is a d atomic wave function, centered

on the vth atom in the chain and normalized to unity.
The energy E„(k) of a state of the nth sub-band is a
sinusoidal function of the wave number k. It is given by

0 k, kzks Q

results are in fairly good agreement with experiment. It
would be interesting to do very careful measurements
between T and 500K. At room temperature, IJ, 'n(T) is

about seven times smaller than at T, and its residual
value is only (at 300~K) 1, 1.10 4 emu mole '. Experi-
mentally, the whole susceptibility at room temperature
is about 8.1M emu mole —'. Thus, on the assumption of

Eq. (1),an upper limit for the orbital contribution Xo is
about 6.10 ' emu mole '. In fact, because of the nearly
temperature-independent contributions from the s band
and the other d sub-bands to the Pauli susceptibility,
Xp is probably smaller than this value.

It is very easy to show that all the results of this sec-
tion would be the same for a nearly full d sub-band.
Indeed, we see from (2) that n(E) is a symmetrical
function of E. When Q becomes Z—Q in (4), EJ be-
comes E&, and X—remains unchanged by (3), as can
be seen from the well-known properties of the Fermi
function.

B. Calculation of Orbital Paramagnetic Susceptibility
in our Model

Kubo has shown how to apply Van Vleck's second-
order perturbation to the orbital paramagnetic suscepti-
bility in metals. "The susceptibility Xp found in this way
is of the order of y'jh, where p is the Bohr magneton
and 6 is the mean separation of the energy levels con-
nected by the orbital angular momentum. Thus, it is
clear that only narrow bands (in our case, the d band)
will give rise to an appreciable orbital contribution. On
the other hand, because 6 is of the order of 1 eV, Xp will

be nearly temperature-independent.
In the most general case of a metal with a tridimen-

sional narrow band structure, this theory leads to
rather tedious calculations. But, in our model, we may
simply add the d-band contributions from all the linear
chains of vanadium atoms. For a linear chain, the orbi-
tal susceptibility is a very anisotropic tensor. But for
the whole crystal, in the cubic phase, Xp is isotropic. In
the following, we shall neglect the spin-orbit coupling.

I et us consider a linear chain of a large number S of
vanadium atoms, with an interatomic distance a. In
tight binding, the d band is made of 3 degenerate sub-

"R.Kubo and Y. Obata, J. Phys. Soc. Japan 11, 547 (1956).

E (k)=E &"' coska, (E &"&(0). (6)

In Fig. 8 we have plotted the energy as a function of k
for the 3 sub-bands.

Now, calling Os the axis of the chain, we apply a mag-
netic field H. The contribution to the magnetic free en-

ergy due to the orbital susceptibility is

1&~gk IH I
I
~ g'k)

I

'
ZZ

E„(k)—E„,(k)

where f(E) is the Fermi function. The orbital suscepti-
bility of the chain is therefore a 2-rank symmetrical
tensor X p defined by

Il = ——,
' P X pP Pp, (n,P= x,y,s),

ap

with

&egk IL.In'g'k)&e'g'k
I
Ip I ngk)

x-s=21' Z Z Z
e(n' g, g' k E.(k) -E;(k)

and, from (5),
X{f1E (k)j—fl E (k)]), (9)

1
&~gk IL-I ~ g'»= —2 8-u(r —~a) IL-I

gf ee'

Xf„;(r v' ))ae" '"' "— (10).
In tight binding, we can neglect all the terms with v& v'.

The k dependence then disappears from (10).Moreover,
because of the periodicity, the remaining terms in (10)
do not depend on v, and we get

&~gk IL-I~ g'k) =(4-.IL-I~i- "),
where f„,is the d atomic wave function of the state g
of the nth sub-band, centered at the site v=0. Finally,

xas=2P 2 Z 8' ul~ If 'u')&0' 'u'1414' u)
n&n' g, g'

Eu I' fl E (k)j—fl E„(k)]
dk. (11)

0 E (k)-E (k)

According to the conventions of Fig. 8, the values 1, 2,
and 3 of n respectively correspond to the sub-bands
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d, ~ „4,„, d„d„„and da, ~ „~. The degeneracies of these
sub-bands are of spin and orbital origin. Thus the index

g can take four values for @=1 or 2, and two values for
tg= 3. The matrix elements in (11)are easy to calculate.
The operators L only connect states with the same spin
orientation. The component L, is diagonal and does not
contribute. The components L, and L„only connect
states for which the magnetic quantum numbers diBer
by +1.We use the fact that the f, in (11)are normal-
ized to unity. DetaBed calculations are given in Appen-
dix D. The Gnal result, for the orbital susceptibility of
a linear chain in the Os or I 0011 direction, is"

A 0 0
(X p)oot ——0 A. 0

.0 0 0.

FIG. 10. Variations of
the orbital susceptibil-
ity x0 with the position
of Eg in the d band.

a) 21m, & 31',

b)2jh, = 3P,q

c)21k, &3th,

E EsEs Eill tgI

~ EsEsE
lgj W

with
ea ' fl Eg(k)j—fl Et(k)1g= X~~=Xyy= 2p 4 dk

o Et(k) —Eg(k)

+6
' fl:Eg(k)j—fLEg(k) j

dk . (13)
Eg(k) —Eg(k)

For the chains running in the two other directions, we
have, by analogy with (12),

A. 0 0 '0 0 0
()(~p)oto= 0 0 0 and (X p)too= 0 A. 0

.0 0 A. .0 0 A. .
We see from (12) that, when a magnetic field is applied,
the olbltal magnetic moment induced lQ a linear chalrl
of vanadium atoms is orthogonal to the chain. But all
the chains of the crystal geometrically add their mo-
ments and the resultant is parallel to the Geld. So the
orbital susceptibility Xo of the crystal is isotropic:

Xo=(X p)got+(X p)ohio+(X p)goo=2A.

At absolute zero, the Fermi function f(E) is equal to
1 for E&E~ and to 0 for E&Ep. Let k~, k2, k3 be the
values of k at the Fermi level EJ, respectively, in the
3 d sub-bands (Fig. 8). We want to give here a result
valid when EI is anywhere in the band. Thus we must
consider all the cases, k~&k2&k3, k2&k~&k3, . We
shall use the notations sup(ktkg) and inf(ktkg), respec-

ss @os s EQEgE
tel LU.s I ~

tively, for the largest and the smallest of kl and k2. From
(6) and (13) we ftnd

Xa
0= 2A, =4p, ' 4

sup (kykg) dk

with
3m by

(tan(ksu/2)+1) (tan(k&a/2) —1)
Ej=ln (16)

(tan(kga/2) —1)(tan(k, u/2)+ 1)

(tan(kgu/2)+1)(tan(kga/2) —1)
Zo= ln (1&)

(tan(kgu/2) —1)(tan (kga/2)+1)

In these equations, k~, k2, and k3 are related to the Fermi
level EJ by

E~=E (")cosk„e, I=i, 2, 3

' r(g, gg) l(E ('& —E ('&)coskul

sup (kgkg)

+6 (14)
tar(gggg) I(E ' —E ( )coskul

We shall put E„()—E~(»=b, , E (»—E &»=b,
performing the integrations in (14), we get

Fro 9. The iR&i
anti l~gl variations
with the position of
E~ in the fg band.

IR,I andIRg

IE -„-E
QJ

(Butwemusttakek =OwhenEg&E (") andk =rr/u
when Eg) —E„("&).

The variations of IEtl and I&gl with Eg are plotted
in,:.Fig. 9. Figure 10 show the corresponding variations
of X(l, for different cases depending on the values of pa-
rameters. The X~ variations are symmetrical with re-
spect to the middle of the d band. "

When Ep increases from the bottom E (') of the
band, I Rgl very quicldy increases from zero, with an
inGnite slope at the beginning. This fact comes from the"Henceforward, E will be the total number of vanadium atoms

contained in all the chains of the crystal parallel to one direction;
thus the total number of vanadium atoms in the whole crystal
will be 8E.

"We have neglected the differences, always small in tight
binding, between the energies at thf. middle of the three d sub-
bands.
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vanishing slope of Ea(k) at the band edge (Fig. 8), lead-
ing to an infinite density of states (Fig. 4). SoEI has just
to be slightly above the bottom of the d band, for a non-
negligible number of electrons to contribute to Xo. When
Ep gets to the edge E (') of the second sub-band, two
antagonistic phenomena occur. On the one hand, IEII
starts to contribute vs.th an infinite slope. On the other
hand, I Em I starts to decrease with an infinite slope too,
because the 61ling of the second sub-band makes the
Eg(k) ~E2(k) contributions vanish for k &k2. For
2/AI)3/I4, the increasing of IXII is the strongest, and
dXO/dE~ ——+ ~ at E~ E I2I. I——t can be shown that in
this case, Xo increases in the whole interval from E (')

to E~&II. For 2/LLI(3/LL2, the decreasing of
I Rm I

» the
strongest, and dXO/dEI =—~ at EF E&2I.——In this
case Xo may or may not have a minimum in the interval
from E (') to E ('), according to the values of param-
eters. For 2/AI ——3/3, 2, there is no discontinuity of the
slope dX,/dEI at EI E&'&, a——nd Xo increases up to
Ep=E ('). When Ep passes above the edge E (') of the
third sub-band, IXII and IRml both decrease, up to the
middle of the band. This decrease of Xo when the Fermi
level approaches the middle of the band is not immedi-

ately obvious. Indeed, in this case, the separation of the
energy levels, in the denominators in (14), becomes
smaller. But the intervals of integration& I km

—kil and

Ika —k2I, become smaller too. Therefore, if the contri-
bution from one electron becomes stronger, the number
of contributing electrons is reduced. The calculation of
the derivative shows that Xo is in fact decreasing.

For the same reason, Xo keeps a 6nite value, and re-
mains continous, when E~ goes through the intersection
kiu=k~a=k~a=Ir/2 of the sub-bands (Fig. 8). It can
easily bc shown that, at such a point

I RI I
=1n(E~I'I/E~I") and I R2 I

= ln(E~I'I/E~I'&) .

More generally, it is shown in Appendix E that, when

Ep is very close to the intersection of two sub-bands, the
corresponding contribution to Xo varies only slowly with
Ep if the second derivatives d'E/dk', of the two sub-
bands at the intersection, are small. Furthermore, the
value of Xo when Eg is just at the intersection is a simple
function of the slopes dE/dk of the two sub-bands. In
our case, the sub-band intersections are at the middle of
the band (Fig. 8) and the second derivatives d'E/dk'
vanish. Thus, when E~ is in the middle part of the band,
Xo is nearly constant as Ep varies, and its value is given

by

respect to kT. Thus Xo is nearly temperature independ-
ent. This ls thc case fol the VSSl type of compoUQds in
which n(Ep) is very large and thus EI is very close to
a sub-band edge.

But when Ep is in the middle part of the hand, near
the sub-band intersections, the separation of the energy
levels contributing to Xo is smaH, Thus an increase in
the temperature makes the occupancies of these levels
become less unsymmetrical. The result is a decrease in
the numerators in (13) and thus in Xo.

FinaHy, we give a rough numerical estimation of Xo

in U3Si. In Sec. 3 we saw that the major features of.the
structural transformation were understood in our model,
by assuming E (') —4.5 CV for the narrowest d sub-
band. This sub-band must be considered as nearly
empty. From the measured value of n(Ey), we get
kqa~2. 8.10 ' rad. For the widths of the others sub-
bands, wc alc rcduccd to hypothcsls. But we have scen
thaf the interatomic distances, in a linear chain of
vanadium atoms, is unusually small in all these com-
pounds and that the d-atomic @rave functions are
strongly extended in space. Thus, the overlapping of
two of these wave functions, centered on two neighbor-
ing vanadium atoms in a chain, is perhaps not so sensi-
tive to their orientation with respect to the axis of the
chain. So the widths of the three sub-bands may be not
very diferent. For instance, we shall assume that

0.5 eV and 6~~1 eV. Ke are in the case a of Fig.
10. From the relations (18), we find k2a~0. 45 rad and
038~0.72 rad. This glvcs us El=0.44, Eg=0.34 and
finally X~~2.3 emu mole '. This result must only be
considered as an order of magnitude, It can explain at
least roughly the high-temperature susceptibility of
Flg. i.

To conclude this section, we shall say that our very
rough model leads to:

(1) a large orbital paramagnetism, nearly tempera-
ture independent, when the Fermi level is far from the
middle of the d band and (2) a small orbital paramag-
netism, strongly decreasing as temperature increases,
when the Fermi level is near the middle of the d band.

APPE5'DIX A

In this Appendix we shall not consider exchange en-

hancement. The usual formula for the susceptibility
would give us

(19) f(E)n'(E) dE, (A1)

The influence of the temperature, resulting from (13),
very much depends on the position of the Fermi level

Eg (Fig. 8).
7Vhen EJ is far from the middle part of the band,

where the sub-bands intersect, the separation of the
energy levels which contribute to Xo is very large with

where n'(E) is--the derivative with respect to E of the
density of states n(E). But, in our case, n(E) is given by
the expression (2), and the formula (A1) is divergent at
the bottom E of the sub-band. In fact, (Ai) is not
valid in our case, because the di8erence n(E+pB)
—n(E pH), where H is the m—agnetic field, cannot be
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expanded arith respect to pB, near the singularity in
N(E), at E=E . Thus, we shall derive the formula (3')
in the following @ray: When the magnetic 6eM is applied,
the magnetic moment is given by

in (82) is positive. In fact, in VsSi, To 21 K and (82)
vrould be vaM only for very small temperatures, in the
superconducting state. It therefore has no physical
meaning.

APPENDIX C

f(E)ret (E)dE IJ,
—

+here me have introduced

In the case vrhere T&&TO, let us search the tempera-
ture values for @which the electrons in the sub-band be-

{A2) gin to behave as a Boltzmann gas. Such a behavior is
obtained when the Fermi level EJ goes away, far below
the bottom E of the sub-band, as shorn on Fig. II,

pet(E) =e(E+IeH), for spina parallel to H;

rtg(E) =N(E pH) f—or spins antiparallel to H.

Taking, as new variable, E1——E+pH in the first integral,
and E2=8—p,B in the second integral, vm find

FIo. i&. Position
of the Fermi level in
the cubic phase fol
high temperatures.

II(E)

t

EF

kT

f(E1 AH) re(E—1)dE1 p, —

This simply gives

the difference E —E~ becoming much larger than
kr. In this case (Ep E)/her —is negative with an ab-
solute value much larger than unity, and ere have

'+& )~( ') ' exp(Ep —E )/kr&&1. So the Fermi function can be
expanded as

{f(E IeH) f(E+—IeH) )—n(E)dE.
(Ep Q( E—p —&

(A3) f(E)= expl Euri E Iri
Ep- (Ep—A

+exp 3 (—)o ' expl p I (C1)
kT ur i

The Fermi function f(E) having no singularity for
T&0 K, we can expand the difference in (A3), and we
get

m= —2p, 'II f'(E)1(E)dE.
Thus Eq. (4), which determines the Fermi level, can be

(A4) written

If we count N{E) for the two spin directions, the factor
2 disappears from (A4), ancl we get the formula (3').
Of course, in a case where N(E) would have no singu-
larity, the formula (3') could be deduced from (A1) by
integrating by parts.

For T«To, the formula (3'), expanded by a well-
knovrn method "give us

n(T) rsLEp(0)1

ss re" I )s
X 1+———

I
(kr)' . {B1)

6 I si Qp —Qp(Q)

Making use of expression (2) for n(E), and. taking into
account that Ep(0)—E is small with respect to

I
E I,

%'e 6nd

e(T) NtEp(0)){1+—;,s'(T/To)' ) . (82)

Contrary to the free-electron case, the corrective term

' N. F. Mott and H. Jones, The Theory oi the Properties of
Metals awd A/loys (Oxford University Press, London, 1900},p. 186.

00 EJ —E y
Q (—)~t exp p I

s(E)
n-» kl'

(
Xexpl —p ~dE= Q. (C2)Ir i

In fact, the N(E) values very far above the bottom E
of the sub-band are of little account, and ere may re-
place the expression (2) by

rs(E)=(~/~)(2IE-I) "'(E—E-) '"
where the upper limit of the integrals in (C2) are re-
placed by infinity. So the gamma function I'(—', ) appears
111 (C2), wlllch becoIIles

(Zz —E) (Zz —
Z)e~l I

—2»sexpl 2
Jr i E Ir

(Ep—E)
+3 '"eel 3 I" (—)

( Ep E) 2 (To)'('—
Xexpl p I" =

I

—
I

(C4)Ir i ~Eri
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APPENDIX EThe Eq. (C4) determines the Fermi level. For T))To,
it can be solved by approximations. We get

Ep—E 2 fTo) ~ /2) ~ (To)
Let E; be the energy at the intersection k~c=kgu=r~

of two sub-bands Eq(k) and Eo(k). When Ep is close to
(CS) E; (Fig. 12), we can use the expansions

The Pauli susceptibility can be expanded in the same
way. We 6nd

Z (Ep E)—
n(T)~ e»

(2~kT IE.I)&

(Ep—E )
&& 1—2'I' expl

kT ]
+3'" expl 2

kT )

&&OINI M M 0I0to

FxG. 12. Case when Ey
is close to the intersec-
tion of two sub-bands.

Eg(k) =Eg+Ag(ka —rg)+By(ka —rg)'+ ~

Eo(k) =E;+A o(ke—rg)+ Bo(ku —rg) '+
We shall suppose that A~&A2 and A~A2&0. From

(14), the corresponding contribution to Xo is propor-

(
&&expl p I

. (C6)
kT )

h,ah@ r,

Inserting (CS) into (C6), we obtain

(2~'9''r'"
~(T)-

kT Ew) E T)
(C7)

tional to the integral

sup(o&oo) g(k+)

; fo y ) IEi(k) —Eo(k) I

'

APPENDIX D

We shall use the notation + and —for the two spin
states. The nonvanishing inter-sub-band matrix ele-
ments only are

(d„.+ I
I.„Id.„.y) = 1, —

(d*"—IL. I d*'—)= —1

«"+ IL.ld"-."+)=—»
(d„, —IL„Id. „)= 1, — —
«"+ ILol do"-"+&=~
(d„, —IL,„ldo, , —&=VX.

with kq and ko given by E~(k~) =Eo(ko) =Ep. In the two
situations, Ep&E; and Ep&E;, we find

t%I=
I

—+—
I

Ag —Ao Ao AyAoEAy Ao~

&((Ep —E~)+0(Ep —E;)o.

%e see that I, as a function of Ep, is continuous at
8~=8;, as well as its derivatives.

In our case rq=m/2, we have Aq ———E~&'&, Ao
=—E &'&, By=0, B2=0. Thus, the variation of I near
the intersection vanishes at the erst order in E~—E;.


