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We investigate the scattering of conduction electrons by magnetic impurities for arbitrary exchange and
normal interaction using Nagaoka's self-consistent-field approach. The corresponding self-consistent equa-
tions are solved by iteration in the limit of high and low temperatures. One finds for an extended exchange
interaction a series of Suhl-Abrikosov resonances corresponding to different partial waves, which determine
the scattering at low temperatures. A part of these resonances is affected by the normal interaction. In the
special case of a b-function exchange interaction corresponding to a single resonance, the exchange component
of the resistivity goes to zero as T —+ 0. For temperatures high compared to the temperature where the first
resonance becomes possible, we find generalizations for Kondo's expressions for the resistivity and thermo-
power. However, the exchange and normal interactions no longer give independent contributions to the
resistivity. One finds for a suf5ciently large normal interaction a resistivity minimum for ferromagnetic
exchange coupling.

I. INTRODUCTION

'HE Grst consistent explanation for the anomalous
temperature dependence of the resistivity p(T)

and for the giant thermoelectric power S(T) observed
in some metals containing a small concentration of
magnetic impurities at low temperatures has been
given by Kondo. '2 He showed that the spin-Qip or
virtual spin-Qip scattering of a conduction-electron spin
by a, localized impurity spin, calculated in third order
in the exchange coupling, gives rise to a term propor-
tional to lnT in the resistivity. He also showed that one
obtains the correct order of magnitude for the thermo-
power if one includes terms of the order VJ' in the
perturbation series, where V and J correspond to the
normal and exchange interaction, respectively.

In the meantime the scattering of the conduction
electrons by a small concentration of magnetic im-
purities at low temperatures has been investigated by
several authors. ~" Abrikosov' used the Geld-theoretic
perturbation technique of summing up the most
divergent terms within each order of the (contact)
exchange interaction J. This summation results for
antiferromagnetic coupling (J&0) in the replacement
of Kondo's singularity in the transition probability by
a scattering resonance corresponding to a maximum in
the exchange part p,„(T) of the resistivity at a tem-
perature T,. The resistivity p,„(T) goes to zero as
(lnT) s as T~ 0 for both signs of the exchange inter-
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action J. Very similar results have been obtained by
Suhl, 4 using nonperturbative scattering theory and
solving the corresponding nonlinear integral equations
for one-particle intermediate states. However, there
appeared for T&T, and J&0 inadmissible complex
poles in the spin-Qip scattering amplitude. By making
a proper analytic continuation in temperature, Suhl
and Wong' found a solution free from such di6iculties,
leading to a 6nite exchange resistivity p, (T) as T-+ 0
without any resonance behavior. They also found, in
contradiction to Abrikosov, that the resistivities due to
the exchange interaction J and normal interaction V do
not simply add. The coupling between exchange and
nonexchange scattering turned out to be essential for
the removal of the spurious poles.

These results do not seem to be in agreement with
results obtained by Nagaoka, ' who used a truncated
set of self-consistent Green's-function equations.
Nagaoka suggested for T& T, and J&0 a quasibound
state around the impurity spin and found a maximum
of p, (T) at T=O. In this paper we reinvestigate his
self-consistent equations. We generalize them for
arbitrary exchange and normal interaction, and solve
them by iteration for both signs of the exchange inter-
action in the limit of high and low temperatures. We
Gnd in contrast to Nagaoka, for a contact exchange
interaction J&0 and for a weak normal interaction
(corresponding to the resistivity p„), Abrikosov's
resonance and p= p„+p, (T) with p, (T) -+ 0 as (lnT) '
as T~ 0. The same asymptotic behavior holds for
ferromagnetic exchange coupling (J)0).

In the case of an extended exchange interaction
J» &0 (which is assumed to depend only on the wave-
vector difference

~
k—k'

~ ) a series of resonances appear
below critical temperatures T,, &, deGned by

J(tg, 0,,T)=t1, (&)

where J~ is the l component in the expansion of J~~. into
Legendre polynomials, and
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Here, S is the number of atoms in the crystal, f, the
Fermi distribution function, e, the one-electron energy,
and P means principle part. All these resonances
contribute at sufficiently low temperatures to p,„(T),
since Eq. (1) with g(O, T) ~lnT can be fulfilled for
arbitrary small components J&. The behavior of the
resistivity p, (T) at low temperatures is then deter-
mined by the 1 dependence of J& or by the range and
form of the exchange interaction. However, we should
like to emphasize that for T«T, , ~ we could solve the
self-consistent equations only for energies co«co, & and
co))or, , ~, where co, , ~ corresponds to T, , ~, and no simple
solution seems to exist near co, , E. Therefore, we cannot
exclude the possible existence of inadmissible poles in
the self energy of the electron Green's function near
co, , &, similar to those found by Suhl. 4

We include in our calculations the normal interaction
V between conduction electrons and magnetic im-
purities to arbitrary order. This is important since many
systems exhibiting a resistivity minimum show also a
resonance in the normal scattering explained first by
Friedel. " In agreement with Ref. 5, it turns out th'at
the resistivities p„and p, for strong normal scattering
do not simply add, as suggested by Abrikosov. '

In Sec. II the self-consistent equations are derived
for arbitrary exchange and normal interactions. The
basic approximation involved is the factorization of
terms in the second Green's-function equation of
motion, and we make no attempt to justify it. In
Secs. III and IV we solve the self-consistent equations
by iteration in the limits T))T,, & and T«T, , &, and
derive expressions for the resistivity and for the
thermoelectric power.

II. SELF-CONSISTENT EQUATIONS

A. Derivation

We consider a system consisting of independent con-
duction electrons scattered by a small concentration c
of noninteracting impurities with a localized magnetic
moment. The spin-dependent interaction is described
by the usual exchange term which is proportional to the
product S ~ S, of the impurity-spin S and of the
conduction-electron-spin S,.

We can restrict ourselves in the limit c~0 to the
scattering by a single impurity. The corresponding
Hamiltonian is'3

H=Q sscs, tck.+&V ' Q Vss.cs,tcs.,
ks kk'8

—(2&) ' Z Jss P(csttcs t csstcs t)S. —

+ csttcs. gS +csgtcs. tS~), (3)

where Vkk. and Jkk are the matrix elements for normal

"J.Friedel, Nuovo Cimento Suppl. 7, 287 (1958)."T.Kasuya, Progr. Theoret. Phys. (Kyoto) 16, 45 (1956).

Gss (~)= e*"'Gss. (t)dt

is given by (we set 6= 1)

(n —ss)Gss (n) —& 'Q Vs,G,s (~)

+(2&) 'P Js,I',s (~)=As' (6)

Here we introduced the Fourier transform of a second
Green's function:

I'ss (1)= —z

X(L(c.t(1)S*(~)+c.~(~)S-(~)),c t'(0) j+)o(~), (7)

which obeys the equation of motion

( —,„)r,„,( )—X- Z (V„——,J„)r,„,( )

+(2E) 'S(S+1)Q J Gs, (as&)+(2X) 'Q J„
X(—(c tc,ttc, .&S ~cs.tt)+(cstc, etc tS+~cs tt)

+(c sc,t c, tS ic t )—(c qc,etc, gS ic tt)

—2(cstc, etc, .tS, ~cs.tt))=0. (8)

We used the notation (A ~
8) for the Fourier transform

of the quantity

-'(EA(~),&(0)j.)o. (~)

and we used the spin commutators

O'. S+3-=+S+ P'+ S-3-=2S'

Following N we decompose now the higher-order
Green's functions into products of one-particle Green's
functions and the thermal average of the remaining
operators, taking into account particle conservation
and conservation of total spin; for instance

(c tc,ttc, .&S ~cs tt)=(cstc, tt)(c,.qS ~cs tt)
+(c ttc .~S )("tl"t') (10)

"D. N. Zubarev, Usp. Fiz. Nauk. 71, 71 (1960) /English
transl. : Soviet Phys. —Uspekhi 3, 320 (1960)g.

and exchange interactions, respectively, ck, and ck,~ are
annihilation and creation operators for a conduction
electron with wave vector k and 2' component of spin s,
and S„S+are components of the impurity spin operator.

Following Nagaoka (henceforth referred to as N) we
de6ne a retarded time-dependent single-particle Green's
function's for s=s'= 1' (note that our notation differs
slightly from N),

G„.(~)= —t'(Pc. t(t),c..tt(0)j+)0(&). (4)

The average is taken over a grand-canonical ensemble
and 0'(t) is the step function. The equation of motion
for the Fourier transform
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In the absence of a magnetic 6eld all thermal averages
are independent of the direction of the impurity spin in
space:

(s.&= (s+)= (s-}=0
(At A t) = (A) &'k )),

(11)

(12)

(&d
—ek)1'kk (&d)

—N Z Vkp «k (&d)

&AttA )S )=(A)tA t&+)
= 2(AttA t&.)= —2(Alt&:k kS.}. (13)

From Eqs. (9) to (13) follows the second equation of
mo tloIl:

with the retarded Green's function for free electrons

Gk&o) (&d)
—

(&d e +t't))—
t)
—0 (22)

The t matrix for the scattering by a single impurity is
dehncd by"

tklk=(k
~

V~k&+))
~ (23)

where ~k&+') satisfies the Schrodinger equation for a
single-electron

~

k&+))=
~
k)+ (o)—k+itf) 'V~ k&+)}, (24)

(with
~
k) the incoming plane wave, k the single-particle

Hamiltonian). Using Eq. (23) and the completeness of
the functions

~ k), we find

+ (2N) ' 2 (2mke &km) Je—e I'" (&d) 4k = Vkk +N ' Z Vk,G, &') (&d))', k (25)

—(2N) ' Z Ltttk. —S(S+1)&kelJQ'Ga k (&d) =o, (14) Equation (21) may now be written as

Gkk "'(&d)=Gk" (&d)bkk'+N 'Gk" (&d)4k Gk "(&d) (26)
tkkk =&A ttAt),

twkk 3&A tt——AkS ). (16)
We insert now Eq. (20) into {6) and make use of
Eqs. (21) and (22):

The thermal average (BA} of two arbitrary Fermi
operators is connected with the corresponding Green's
function (2

~
B) by" (p is the chemical potential, k)) the

Soltzmann constant)

Gkk, &I)(&d)—N —IGk&0) Q V G .&1)(&d)

= —(2N) 'Gk" Q Jk,I',k. (a)). (27)

(Bid)= —tr '
&f&d f(&d) Im(a

~
B),

and therefore

do)f(&d) ImGkk. (&d),

f{&d)=(e"""'+1) ', P=(kr)&) ',

This can be simpli6cd by iteration with the right-hand.
side of the equation as the inhomogeneous term. We
obtain a sulTl of tcI'Dls which may bc cxplcsscd by thc
E-matrix Eq. (25):

G .&')(o)) = —(2N) 'G &0)(&d)

XQ (Jk~+N I Q tk~ G&)
& ) (&d)J&) q)I qk {&d) (28)

&f&df(&d) Imi'kk. (&d) .
ol lntloduclng the effective cxchmlgc lIltclactlon

Jk'"= Jkk. +N 'P tk,G, &') (&d)-J,k. , (29)

Equations (6), (14), (18), and (19) form a complete
set of self-consistent equations. They are hncar besides

Eq. (14) which is nonlinear due to the truncation of the
hier archy of Green's functions.

B. Effective Exchange Interaction

We can simplify Eqs. (6) and (14) by introducing
the t matrix for normal scattering. The matrix elements

can be expressed. in terms of the phase shifts for the
normal scattering which we assume to be known. We
write

Gkk (&d) =Gkk ")(&d)+Gkk "'(&d)

whclc Gkk~& ) (&d) satisfie 'thc cquatloll fol' Jkk~ —=0.

1
Gkk~ (&d)

—~k '
(&d) 2 Vk G k (&d)

g

=Gk') (&d)&)kk~ p (21)

G- "'( )=-(2N)-'G. &')( ) Z J.;"I','( ). (3o)

The effective exchange interaction J~~ "' is complex
even in Born approximation for the normal scattering
(t» = Vkk real). We will show that it is the imaginary
part of J~~

'" which causes part of the giant thermo-
power. In this sense both explanations of Kondo for the
giant thermopower {compare the second. footnote in
Ref. 2, p. 373) are equivalent. However, the Green's
function Gkk &" (&d) Eq. (30) is coupled to I'kk &I

(&d),

which also depends on the normal scattering. We will

see later that it is impossible to absorb the normal
scattering entirely into an effective exchange
interaction.

'5 V. Ambegaokar, in Astrophysics end the Many-Body Iproblem,
edited by E. N. Parker, J. S. Goldstein, A. A. Maradudin, and
V. Ambegaokar (W. A. Benjamin, Inc. , New York, 1963)', pp.
321, 381.
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Equation (14) for the Green's function I'kk (a)) can with
be iterated in a similar way. We write it in the form

I' ( )—1V 'G ('&(o)) Q V,I", .(a))

F(~)= p(")Gk" (~)d", (38)

=Gk" (~)nkk (~), (31)

n .( ) = —(2Ã) ' Q (2n„,—l)„,)J„.i', „( )

+(2$)—'P (m, —S(S+1)I&„,)J„.G, ( ), (32)

I g (6k,(0)=X

We define in a similar way

p(k)1 g(6, 6k,o))dk. (39)

and obtain

I'kk (~)=Gk" (~)

X [nkk. (~)+1lt-' g tk,G, ('& (~)n,k (~)]. (33)

Gg(lk)(d)=17 p(6)Gg(6)&gk)o))dC)

ng (k'k) =$ p(t')ng (Ek, 6)d P. ,

(4o)

(41)

C. Partial Waves
mg(kk)=$ p(6)mg(fk 6)dr. (42)

The scattering of conduction electrons by a single
impurity depends only on the product k k' of the
wave vectors of the incoming and scattered waves.
We expand, therefore, all quantities into Legendre
polynomials Fg (cosO~kk ):

Gkk (a)) =G(k k' o))

cg(")=— p(")G."(~) (ng (")—s)« (43)

7 ( )= p(")G."( )Lm (")—S(S+1)]d ' (44)

Jkk. ——Q (2t+I)Jg(gk, ek.)Fg(cosOkk. ),
0

(34b)
I'g(kk, kk. ,a)) = (21V)-gGk&'& (a))

X5 g ([mg (ek) —S(S+I)+ trig ((0)]Cg(ek, (0)

-[2«(,k)-1+2tggg(~)]1'g(. k..~)}. (45)and similar expressions for I'kk (o)), tkk, Jkk "',nkk, mkk .
Replacing the sums by integrals

[Note that nk, and mk, are integrated over the second.

=p ( 2t+1)G g( kk, kk. , o))Fg(c os ~Okk), (34a) variable, whereas I'~k (a)) and G,k (a)) are integrated
over the first ones.] We obtain with these definitions
for the coefficients of I'kk (a)):

S ' p -+ (4)r)
—' dQk p(ek)dkk,

For Vkk =0, Jg'"=Jg= Jot)go, and S=-'„Eqs. (37) and.

(45) correspond to Eqs. (2.8) and (2.14) of Nagaoka.
For free electrons

and using the relation nkk "=fkt')kk (46)

(2/+1)p ( O ) 4 p Ip (O )Ip a)a(O )
and with Pg(0)= 1 for all /

Jg" Jg[1+F(a))tg], ——

Gg(~k, ~k )~) =Gg "& (~k, ~k,o&)

(36)

—(2Ã) 'G "(o))Jg'"I'g(kk. ,a)), (37)

between the spherical harmonics I'g (O~, (g)) and the
Legendre polynomials, we can easily perform all angle
integrations in Eqs. (29), (30), (32), and (33). All

integrals over the energy e, contain free-electron Green's
functions G, ('& ((0) which have a sharp peak at k, =(0.
We therefore replace tg(ek, e,), Jg'"(ek Eg), and Jg(6k, 6,)
by tg(ek, (0), etc. Since gk ——kk and since the Green's
funCtiOnS Gkk (a)) and I'kk. ((0) COntain alSO free eleCtrOn
Green's functions Gk('& (a)), we replace tg (kk, o)) by tg(a))

etc. and anally drop the argument e.
We obtain from Eqs. (20), (29), and (30)

o&& &(,, „)= ( ) 'f)&a)&)!)poa(acocO-a)a, a(a4))

ng" (~k) =2 nkk "Fg(cosekk )= fg, )

and similarly for the Green's function for normal
scattering only

Cg('& (6k a)) = Gk('& (a))[1+F(a))tg]. (49)

Multiplying Eqs. (37) and (45) by Ep(Pk) and inte-
grating over eI, we obtain

&g (kk, a))=Gk" (a))[I+F(a))tg]

,'JgeggF(a—))P—g(ek,a)). (50)

I'g(",~)=Jg"I 27g(~)Gg(~k, ~) gg(~)i'g(~k—~)] (51)
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We solve Eqs. (50) and (51) for Gc(ee,ce) and 1'c(e(.,co)

and insert these into (37) and (45):

&(P (2t+1)Pc(cosOke )
lM

X (&c'")'C1+F (~)tclvc(~)

XC1+&"'g ( )+-'(~ "')'F( )v ( )r' (52)

1'» (~)= (2&) 'G. ('&(~)G~ ('&(~)

XP (2t+1)&c(cose» )Jc"'

coupled in the partial waves l. Ke expect to 6nd a
series of "critical" temperatures T,, c defined by Eq. (1)
which may be affected by the normal interaction. The
normal scattering cannot entirely be absorbed. into the
effective exchange interaction in Eqs. (54) and. (55).

The scattering by the normal potential may be
expressed in terms of phase shifts g~. From the deinition
(23) follows (f». is the scattering amplitude, Q~c the
atom volume, m the electron mass)

t„,, = —(2ns)-'4s(Dye) '(2ck) '

&&+ (2t+1)(e2c« 1)P—c(cosO'» ). (59)

X{C~c(e„) S(S+1)+tive(ce)){1+pie«gc(c0)} We res"r ct ourselves in the fo~owmg to energ es ~ near
the Fermi energy e& and assume Csee Eq. {38)j—C~c(")——',+«gc(~) &A'"vc(~) }

XC1+~ "g ( )+-.'(~ ")'F( )v( )j-'. (53)
F(ce)= —Arp, (60)

The functions ecc(ee) and AS&(ee) and the corresponding
Green's functions Gc(ee,ce) and f'c(ee, ce) have to be
determined self-consistently. We find from Eqs. (52)
and (53)

Gc(ee,ct&)=X p(e)Gi(ee, e,co)dc=0((ee, ct&)

with p=—p(ce) =p(e& ). This corresponds to the assump-
tions that (a) the Fermi surface is in the middle of the
conduction band; (b) the density of states p{e) is
symmetric around the Fermi surface; and (c) the
density of states changes little near &p. We 6nd in this
approximation with (Qgc) '=k& '/3s' and p=eee&. ' for
monovalent metals

=G."(~)C1+F(~)tcjC1+~c'"gc(~)j
&&C1+~ gc(~)c+ (~c')c'F(~)vc(~) j ' (54)

rc(ee, ce)=Np(—e)l"c(ee, e,ro)de=-,'Ge'& (c0}Jc'c(F(ce)

or

&C1+A"gc(~)+-'(~c"')'F(~)»(~)3 '

&&{Crrcc(ee)—S(S+1)+tive(ce)j
XC1+~c' gc(&)j

—C@c(ee)—k+tcgc(~) 3~c'"vc(~)}

r ( c~e)= ', Cc(e,,~)&P'(ce)-{nzc(e&) S(S+1)+tn«—(&)
—C~c(")—k+tcgc(~) j

X C1+J'c"'gc(~)j 'J 'v c(~)c} (56)

P (co)tc= tc ,' (e"~c —1)——. ——
D. Re1axation Time

(a) Normal Scatteriwg

The relaxation time for normal scattering of conduc-
tion electrons by E; statistically distributed impurities
may be calculated either from the imaginary part of the
self-energy Q(e& (e&,ce) of the Green's function G»((o (c0),
OI' from the $ IQa'trlx

(2r-) '= —1mB"& ("~)
—=X Im{CG»c"(ce)$-' —Gg, "(ce) '}

= —C IIQ/lt;It,

= —&'lmCG. ('&(~) 'Ge ("{~)—G ('&(~} '3

(62)
The self-consistency conditions corresponding to Eqs.
(18) and (19) are

dcef {ce) ImGc(e, c0),Nc(e)= —s '

mg(e&= 2~ 'f I j( &
—cm('r(era&. (2r.) '=cs g tt» ('t&(e&(,—ee.)

where we used Eq. (26). Both expressions are identical
if higher-order terms in the impurity concentration
c=Ec/E are neglected. This may be seen by expressing
CG»(e&(ceQ '—Ge('&(c0) ' in terms of t» and G&«&(ce).

Using the optical theorem, " one obtains the usual
result

(58)

Equations (54) and (55), (57) and (58) generalize

Eqs. (2.24} to (2.27) of N. They are completely de-
=c(sp) 'P (2t+1) sin'»c. (63)
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(b) Exchaege aed Normal Scatterieg

One finds from the self-energy of the Green's function
Gq1. (co), to order c,

r—
'(&o) = 2N—; ImLG1, 1'1(~) 'Gag(&o) —Gs" (~) ']

XL1+J1e"g$(~)+—'(J1e")'F(GD)y1(N)] '}. (64)

We could not 6nd a general expression for the transport
relaxation time v&„which is actually needed for trans-
port properties. In order to calculate rt,, one has to
know the matrix T». for the total scattering. For the
relaxation time 7. one needs to know only ImT». How-
ever, rt,, can be found in special cases from r, using

l
Tgg

l (1—cos0~1,1,.)dQ

"&L(2l+1) I T11'
l

(l+1)(T—1T1+1*+T1+1T1*)], (65)

where we expanded T». into Legendre polynomials.
Since the first term is proportional to v ', and, since the
second term has to be synunetric in l. and l+1, one can
guess the second. term in simple cases.

III. ITERATION AT HIGH TEMPERATURES

We expect that the self-consistent Eqs. (54) to (58)
with the definitions (43) and (44) can be iterated at
sufFiciently high temperatures, starting from free elec-
trons, since the expansion parameter

l
J1'"ler ' is of

the order of 10 ' or smaller. It turns out that there
exists a second. parameter, g(co, T) ReJ1'", with g(co, T)
de6ned by Eq. (2), which has to be small enough to
allow an iteration. This limits the temperature range to
T&T„where T, is the highest critical temperature T„l
and may depend on the normal interaction. The fol-
lowing expressions hold for arbitrary normal scattering.

(a) Bore Approximatioe

To lowest order in J1e" one has m1(e~) =0 and. there-
fore from Eqs. (44) and (60)

(b) Koedo's A pproximatioe

In order to find r(cu) ' to order
l
J1'"l', we calculate

y1(~) to order J1'", and g1(&o) without exchange inter-
action. From Eq. (54) follows

G1(e~,~) =G~"(~)(1+t1),

and from Eq. (57) with t1= t1'+it1"

e1(e~) =f~(1+t1') g~(~p) 't—1",
~m f((g)

gjo=P I d60
&

(71)

(72)

where we cut off the integral gI, at the band limits
a& =0 and a& = e . The integral g1, reduces to g (eq, T) given

by Eq. (2) only if p(e) =const for 0&e&e and p(e)=0
otherwise. We use this approximation in the following
for all integrals containing the Green's function G~1'1 (&v)

with cv=cp. We find in the limits eI, ——ep, T —+ 0, and
CIA + 6@~ T=0~

g(e, ,T)=p lnkoT/e, ,

g (ey,0)=p 111
l ey —e p l

/e1P )

(73a,b)

respectively. From Eq. (43) follows

g ( )= g( )(1+t ) PLf( )(1+«) ] (74)

Equation (67) reduces for 1t1&&1 to the result obtained
from usual perturbation theory. The lowest-order mixed,
term of normal and exchange interactions is propor-
tional to (J1V1)'. The second term in Eq. (67) becomes
negative for sufficiently strong normal scattering.
However, the total relaxation time will always be
positive.

We find the transport relaxation time by identifying
ltgl'+~S(S+1)JpRe(1+t~)' with lT1l'. It follows
with Eq. (65):

—1 —11 —&& —2&tr,B &tr, n ~7 tn & 0

P f (2l+1)JP cos'1t1(1—4 sin'rt1)
l

—(l+1)J1J1+i[cos'1t1cos'1t1~1(cos2rt1+cos2rt1+1)

——', (cos'1t1+cos'rt1+1) sin2rt1 sin2rt1+1]}. (69)

y1 =i7rpS(S+1). (66)
We neglected for co= ep the integral

We insert Eq. (66) into (64) and neglect all terms of
higher order than (J1'")'. We find in Born approxima-
tiop in the exchange scattering

z'=rr„ 1+~c~pS(S+1)g(21+1)J1 Re(1+t1)'

Ii(o))=
ga

p(e.)«a=p
gI

P des, (75)
0 CO

—Ill 0

slIlce Il(co er) = Il (cr 0)), ol sillce

= r 1+r 1JO 2 g (2l+1)J12 cos4rt1
I ( )=p' f(e')P

GO
—6

X (1—4 sin'1t1), (67)

r '= 2cxpS (S+1)Jo'—— (68)
p2



is zero if one extends the limits of the e integration
to ~oo.

The Green's function I'g(ei, cv) has to be calculated to
order Jg'". We fgnd from Eqs. (56), (58), (70), (66),
and (44),

I'g(eg„go)= ,'itrp-S(S+1) Jg(1+t I)'G '&(co), (76)

ttig(eg) = —S(S+1)JILRe(1+tg)'gl
+ttpfg, Im(1+kg)'j, (77)

yg((u) =itrpS(S+1)$1+Jgg(ot)(1+tg*)'
+tgp Jgf(gd) Im(1+tg)'j. (78)

It follows from Eqs. (64), (60), (74), (78), and (68) to
order J»

rt, I(g0)=rg, ,gg '+r 'Jo 'g {(2l+1)Jggcosetgg

(e) Resistioity

The conductivity for independent electrons which
are scattered elastically by isotropic defects is given
byte (n is the electron density)

glf(g0)
rgt(co) «.

dM
(80)

We assume first that the inverse relaxation time r~„g '
(which IIlcludes normal scRttellllg) ls lR1'ge compared
to the strongly energy-dependent inverse relaxation
time rg„,~ I(g0)=rg, '(go) —rg, ,gg '. We Can then negleCt
higher-order terms in the expansion of rg, ,gg/r„, ,„and
6nd the total impurity resistivity

XPg(&0) cos2tgg trpf(cu—) sin2tggg

—(l+1)JgJ I+I cosStgg cos tgg+IEJg costgg cos(2tgg —tgg+I)

+Jg~l costgg+I cos(2ttgg. l—ttg) j
XL2g( ) (~+a+)—pf( )

'
(n+n )j) (79)

Equation (79) reduces for tgg=0, Jg=2gggoJK, e, and.
p=43eo ' to Kondo'sg Eq. (17) with the number of con-
duction electrons per atom @=1.The second term in
Eq. (79) was found by expressing all quantities in
terms of Jgegg and comparing with Eq. (65).

are temperature-independent and will be neglected.
If r~, ,,„and v&, ,~ are the same order of magnitude, one
obtains correction terms which correspond to deviations
from Matthiessen's rule. The first correction term is
proportional to

g'(~) ( df-/«)« g(~)( &—fl«)«, (83)

and has been estimated to be small. ~ Hence we obtain

p'=pgg+p&o i&a ln(lgggT/eg)

Xg {(2l+1)Jgg cos'tgg cos2tgg

—(l+ 1)JIJg+I COS tgg COS tg I+I COS (tgg+ tgg+I)

XLJI costgg cos(2tgg —tgg+I)

(d) Therttgopogoer

The thermopower is given by" (e&0)

The correction to the lnT term due to normal scattering
is in lowest order proportional to V»'J»'. For suf6ciently
strong normal scattering (approximately tgg)gr/4 for
the most important scattering phases) the lnT term
changes its sign. One finds in this case a resistivity
minimum for ferromagtgetic exchange interaction

(Jg)0). In all cases the normal scattering reduces the
temperature-dependent resistivity term. A resonance
in the d scattering due to the normal interaction in-

Quences the resistivity minimum only, if the component

J2 is not too small. The corresponding part of the
reciprocal transport relaxation time vanishes if the
I'esoIlallce ls Rt tlM Fer1111 surface (tgi=tl'/2) correspond-

ing to a maximum in the normal scattering. These
results are in contrast to Abrikosov's, ' who found no

change in the temperature-dependent resistivity due

to normal scattering.

~f(M)
rtr. en (~)

dM
(81) J'(go —eo)r„-(a&)o'p(ggtf/ «) «

S(T)=(eT) ' (86)
«.(~)~p(df'/«)«

where p~ is the resistivity in Born approximation for
th'e exchange scattering. The integral with g(o&) has
been calculated by Kondo. ' The terms proportional to

f(g0) (gtf/«) «= —-', (82)"¹F. Mott and H. Jones, The Theory of the I'roperties of
Metals and A/buoys I',Dover Publications, inc. , New York, 1958),
p. 305.

We neglect contributions due to the energy dependence
of the density of states p, electron velocity v, and of J»
and t», since they are all small compared to the contri-
bution arising from the term proportional to f(&v) in

rg, 1(cu). Furthermore, we can neglect in the relaxation
time terms proportional to g(cv), since g(o&—eg;) is an
even function. Expanding again r&, I(g0) in powers of

r&, ,gg/rg. ..„and neglecting all deviations from
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Matthiessen's rule, vie 6nd with

kg p~
S{2)= grpJs P {(21+1)Jg cos rig sln2rgg

2~ ptot

(1+1)JIJg+I cos rjg cos 'kg+I sin(rgg+ggg+I)

XLJg cosggg cos(2gtg —kg+I)

+Jg+I cosrgg+I cos(2'kg+I —
ggg)$) . (88)

We include in the total resistivity pg.g=p;+ps, the
term pp due to the lattice vibrations. This is again
correct in the approximation in which the resistivities
add. The dependence of the thermopower Eq. (88) on
the temperature and on the impurity concentration is
then of the form

Usgng Eqs. (90) we solve Eqs. (56) and (58) with
yg=yg'+iong" self-consistently (the term proportional
yg'(og) is of higher order):

I'g(es, gd) = —-', g'grp JIGsto& (og) {nag(es) —S(S+1)
+ pJ (f -l)C ( )—S(S+1)]& (91)

mg (es) =S(S+1)(1—$1—Jggs

—(~pJg)'fs(f~ —s)j ') (92)

yg" (~)=grpS(S+1){1—Jgg(o)
—(~pJg)'f(~)Lf(~) —s3) ' (93)

Equations (91) to (93) are correct to order JP. We will

prove later that they hold also to order LJgg(go)1 ', if
Jgg(og, T)))1, corresponding to very low temperatures.
The real part yg'(og) is also of order Jgs, but it enters
into the expression for the relaxation time only to order
Jg'. %e obtain to order J~4

(e) Terms of Order Jg'

We calculate the next iteration step (order Jg4 in the
relaxation time) only for kg=0. The Green's function
Cg(es, og) can be replaced in order Jg by the free Green's
function

Gg(es, ge) =Go" (~),

rgg(es) =f~,

(90R)

e(~)= Z(~) s~pLf(~)—sj — (90c)—

"D.K. C. MacDonald, %.B.Pearson, and I. M. Templeton,
Proc. Roy. Soc. (London) A266, 16j. (1962}.

S(&)=Sop'(p'+pr) '. (89)

Equation (89) Is wlthln about 30% 111 Rgl'ee111eII't with
experimental results of MacDonald et ul. '~ for 0.0022-
0.02 at. % Fe in Au and at temperatures where the
plateau in the thermopower is already reached (and at
higher temperatures), when one 6ts Ss and uses
pgg=7. 3 ggQ cm/at. %. The decrease of S(T) at lower
temperatures was explained by Kondo' by the inter-
action of the impurity spin with internal magnetic fields.

In the Born, approximation for normal scattering
{rgo= —7rpI') and «r Jg=Jo&go, Eq. (88) reduces to
Kondo's' result except for a factor —-', . Kondo erro-
neously neglected. a term in his expansion t the next
term in the expansion Eq. {2)of Ref. 2) which contains
a product of two 8 functions and therefore contributes
an additional term of the order VJ03 to the thermo-
power. This term is of the correct order of magnitude
to account for the discrepancy. The thermopower
Eq (88) is n.egative, if the most important components
Jg&0, and if the normal interaction is attractive with
rgg&a./2. It changes its sign if ggg&gr/2 for the most
important scattering phases, compared to rig&gr/4 for
the change in sign of the resistivity term.

J 2

X (94)
L1—Jgg(~) 7+4 (~pJI)'LS(S+1)—2f(~)+13

Equation (94) holds (besides the factor f(ge) ——,
' j in all

powers of Jgg(og) if we keep in each order only the
leading terms and neglect (a) all terms proportional
f(og) —s ) (b) Rll correctgons argsgng from 'rg (go)q and
use (c) in all orders the free-electron Green's function
(90)."One obtains in this approximation for Jg&0 a
series of resonances of the Suhl-Abrikosov type below
critical temperatures T, , g, defgned by Eqs. (1)and (73):

kggT, ,g=er exp(Jgp) '. (93)

At least part of the normal interaction can be included

by replacing Jg by ReJg'gg= Jg(1+tg'). This shifts T,, g

to the temperature

kggT~, g =sr exp(Jgp cos rgg)

which is always lower than T,,). The neglected terms,
however, are not small near T,,~~, and we expect in this
temperature range strong deviations from Eq. (94).

The Ieslstlvl'ty calculated fl'oIII Eq. (94) to order Jg
contains terms proportional to (1nkggT/er)'. The
thermopower Ss in Eq. (89) remains constant. One
finds, however, to order J~' terms proportional to
g{gd)f{og) in the relaxation time, which give rise to a
temperature dependent thermopower Ss(T).

Ke consider now the temperature range T&&T,,~~ for
the partial wave L, corresponding to

i
ReJg"gg(og, T) i))1, (97)

"Assumption (a) corresponds in the perturbation expansion
of TI,I,a to neglecting all energy conserving processes involving
intermediate states. Assumption (c) corresponds to the Hneariza-
tion of the equation of motion (14).The neglected terms to order
gg are proportional to pjgt.Jgg(ru)g" ' or smaller.



with go= og . The electron Green's function (54) is un-
a8ected by the exchange scattering, if in addition
to Eq. (97)

Ik(J "g')'Ig(~h (g~) I&&I Jg"'gg(~) I (98)

holds. We will show that Eqs. (97) and (98) are con-
sistent with the full set of self-consistent equations (54)
to (58) with (43) and (44). The erst set of equations
has with Kq. (98) the solution (70) to {72).We insert
this into I'g(oo, go), Eq. (56). The terms trrg{go) cancel in
I"g{oo,go) in the limit (97). Since (yg'(I) («(yg" (go)

~
(as

will be proved), we find

I'g(oo, go) = 21ig—rpJgGog» {og){glg(oo) 5(5—+1)
+2Sotg"LS(go) (1+tg*)]-'Lglg(go) —5(5+1)1). (99)

We obtain in order (Jggo) '

( )=5(5+1){1+CJ~ {1+t ){1+t )j '&,

where approximately

Pg —— tg" Im(1—+/g)2(1+tg')-'l 1+tgI 2-
= —-', (sin2ggg)2 cos—21gg. (101)

Th1s ls In contrast to the h&gh-temperature hmlt where
glg(oo) 1 0. We find

71( )=—2 P5(5+1)LJgg( )(1+tg')(1+%)j '
XL1+'(:)-I,(-)«-)j. (102)

The sum over the inverse relaxation times og g(go),

Kq. (104), is limited for a given temperature by the
condition T&&T,, », where T,, » corresponds to the
smallest component Jg which satisles Eq. (97). Besides
this sum contributions ~ ' from resonances with T,, »

comparable or smaller than T enter into 2 i(go). The
normal potential sects only the 6rst few partial waves,
and, we will neglect the corresponding change in the
resistivity in the following. All components 2 g g(go) are
in the limit (106) independent of Jg and, give then the
same contributions to the total relaxation time.

We obtain with Eq. (65) the transport relaxation
time

«.-1(~,T)=«..='+~='I Joe(~ T)3 '
»

Q (2l+1)—2Q (l+1) +2. 1

» 0

=«„.'+r 'tgJoe-(~, T)j-'
X (t+1)+ -'. (107)

The second, sum is restricted to l—1 corresponding to
J»+~=0. We 6nd the resistivity

p (T)=p +p (Jopln&ggTIoz) 'Lt(T)+1j+go(T),
T«To, t & (108)

The integral

p (o)gto ~ do
=p P (103)

(~—o)g(o) o (~—o)a(o)

where p corresponds to v. Next we calculate the resis-
tivity go(T, ,t+ ) for the temperatures T=T., tg.„,
22=1, 2, 3 ~ ~ . Condition (97) reduces for these tem-
peratures with Jt+„g(O,T„t+ )=1 to

"df I g(go)
=0

dgo g(go)
(105)

We assume for the next iteration step t»=0 and
neglect terms proportional to I 1(go). The calculation
is then completely analogous to Sec. III(e). We find
to ord.er LJgg(go))-2

J»2
rg g{og)=2. 'Jo ' (106)

Li —Jgg(go)1 +collstX Jg

where the constant is of the order (grgo)25{5+1) and
can be calculated, exactly only in the next order for the
relaxation time.

vanishes for go=op and arbitrary T, since I g(go —og;)
= —I g(og —go). Therefore Eq. (98) holds for go suffi-
ciently near to ep, and the solution is consistent. The
l component of the inverse relaxation time is

r —1 (( )—r -1+r -1J -og (~)-2

X L1—4 sinoggg —tang((4 cosogg 1
—1)g (go)

X (~g ) 'I-g(~) j{1+Pg) ' {104)

The term proportional to I g(go) vanishes for tg=0 and
does not contribute to the resistivity since

J1/J t+~))1, l&l, (109)

.,(T., )=..+..{JiJ.) l+.;. . (110)

The second term tends to zero as l ~ , if J» vanishes
faster than / '~'. This is much less stringent than
condition (109).There remains the resistivity p;.g at the
resonance L. We cannot determine p;, », since we cannot
solve the self-consistent Eq. (54) to (58) at T=T,, g.

However, all approximations indicate that the scattering
at T„» is also independent of J» and, therefore p;, » is
ind, ependent of /.

The resistivity tg(T) oscillates corresponding to the
temperatures T,,», where the di8erent resonances
become eEective. However, for a more extend. ed ex-
change interaction, the contributions from the diferent
resonances overlap, and the oscillations will be smeared.

where we considered only partial waves unaffected by
normal scattering.

We consider only the case l= 3 and, e= I, correspond, -
ing to a very short-range-exchange interaction. The
resistivity p(T) then contains only contributions froxn

partial waves l&l+1. Since Jt+~g(O, T„t+g)&&1, the
contributions from resonances l&l+1 are again small.
We obtain
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out. At very low temperatures the resonances lie very
near to each other, and one will observe a temperature-
independent resistivity in which the normal and
exchange parts simply add, .

V. CONCLUS1ONS

We studied the scattering by a single magnetic im-

purity using the self-consistent 6eld, Inethod, 6rst
applied to the present problem by Nagaoka. ' Our basic
approximation is the factorization of two-particle
Green's functions in the equation of motion for the
Green's function Fee (pp), Eq. (8). We also made simpli-

fying assumptions concerning the density of states of
the conduction band. . We solved the self-consistent
equations of motion for ferromagnetic and antiferro-
magnetic exchange interaction and for T&PT, ~ and
T((T, , r with T„)defined by Eq. (1).

Our result at high temperatures [Eqs. (84) and (88)]
generalizes Kondo's'' expressions for the resistivity
p;(T) and thermopower S(T) for arbitrary normal and
exchange interaction. The normal scattering always
red.uces the anomalous scattering due to the exchange
interaction. The resonance in the normal scattering
phase q2 affects only the component 1=2 of the exchange
scattering. We expect therefore a sizeable correlation
between the large impurity resistivity caused by the
resonance of p2 and the resistivity minimum only if the
component

~
Js~ is large. A connection between the

parameters Jq~. and. the position and, width of the im-

purity d state, has been discussed recently by SchriefIer
and Wol6."

Our result at low temperatures [Eqs. (104), (106),
and (108)j is completely different from Nagaoka'ss
solution. We found, for both signs of a 8-function ex-
change interaction Jp (corresponding to a single partial
wave k=0) vanishing exchange scattering and,

p. (T)~ (inkaT/es) 'as T ——+0, in contradiction to
Eqs. (5.8) and (5.10) of N. Nagaoka discusses only the
case Jp(0. He assumes nzp(a&) to be singular for T=0
and pp = ep, and, J'p Regs(rp, T)= 1 for a = ep, and T(T, p

[Eqs. (4.1) and (4.2) in Ref. 6j, and shows this to be

'P J. R. SchrieBer and P. A. Wo18, Phys. Rev. 149, 491 (1966).

consistent for m=ep. However, the energy range in
which this solution hold, s remains unclear. Both cond, i-
tions disagree with our solution rSp(es) S(S+1) and.

Regs(ep, T)= —g(es, T)= —p ill(kriT/ep) as T~ 0 alld
for ii=0 [Eqs. (90c) and (92)$. The assumption of a
singularity in the thermal average nzp(es), which is
related to the correlation between the conduction
electrons and, the impurity spin, seems to us rather un-

physical. We could, not find any instability in the
relaxation time in the considered temperature range,
which would, suggest a phase transition. In analogy to
a normal-scattering resonance the conduction electrons
are most disturbed at T= T, 0. Sufhciently far o6 the
resonance they can be treated as unperturbed in the
self-consistent Eqs. (54) to (58). This corresponds to
the linearization of the equation of motion (14) for
Fps (&p). The 6rst corrections to the free-electron Green's
function enter into the inverse relaxation time Eq. (64)
to order [Jpg(&o, T)g' for T))T,p, and to order

[Jpg(rp, T)7 fol T((T~,p and (o= ep.
In the case of an extended exchange interaction, we

obtained a resonance for each partial wave l [Eq. (106)].
The corresponding temperatures T,, ~ converge to zero
very fast for increasing l. The distances between the
resonances depend, on the 1 depend. ence of the com-
ponents J~. The resonances overlap only slightly if
J~/J~i))1. The relaxation time is determined in this
case mostly by the nearest resonance. The resistivity
due to the exchange interaction oscillates as a function
of T and tends to a 6nite value as T—+ 0. This behavior
changes, however, if one takes into account the effect of
an internal magnetic 6eld on the scattering. The mag-
netic field causes Zeeman splitting of the impurity spin
levels. The spin Qip freezes out, and the resonances of
partial waves with large l are suppressed.
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