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We investigate the scattering of conduction electrons by magnetic impurities for arbitrary exchange and
normal interaction using Nagaoka’s self-consistent-field approach. The corresponding self-consistent equa-
tions are solved by iteration in the limit of high and low temperatures. One finds for an extended exchange
interaction a series of Suhl-Abrikosov resonances corresponding to different partial waves, which determine
the scattering at low temperatures. A part of these resonances is affected by the normal interaction. In the
special case of a 8-function exchange interaction corresponding to a single resonance, the exchange component
of the resistivity goes to zero as T' — 0. For temperatures high compared to the temperature where the first
resonance becomes possible, we find generalizations for Kondo’s expressions for the resistivity and thermo-
power. However, the exchange and normal interactions no longer give independent contributions to the
resistivity. One finds for a sufficiently large normal interaction a resistivity minimum for ferromagnetic

exchange coupling.

I. INTRODUCTION

HE first consistent explanation for the anomalous
temperature dependence of the resistivity p(7)
and for the giant thermoelectric power S(7°) observed
in some metals containing a small concentration of
magnetic impurities at low temperatures has been
given by Kondo.** He showed that the spin-flip or
virtual spin-flip scattering of a conduction-electron spin
by a localized impurity spin, calculated in third order
in the exchange coupling, gives rise to a term propor-
tional to In7 in the resistivity. He also showed that one
obtains the correct order of magnitude for the thermo-
power if one includes terms of the order VJ? in the
perturbation series, where ¥ and J correspond to the
normal and exchange interaction, respectively.

In the meantime the scattering of the conduction
electrons by a small concentration of magnetic im-
purities at low temperatures has been investigated by
several authors.®! Abrikosov® used the field-theoretic
perturbation technique of summing up the most
divergent terms within each order of the (contact)
exchange interaction J. This summation results for
antiferromagnetic coupling (J<O0) in the replacement
of Kondo’s singularity in the transition probability by
a scattering resonance corresponding to a maximum in
the exchange part pex(7T") of the resistivity at a tem-
perature T'.. The resistivity pex(7) goes to zero as
(InT)~2 as T — 0 for both signs of the exchange inter-
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action J. Very similar results have been obtained by
Suhl,* using nonperturbative scattering theory and
solving the corresponding nonlinear integral equations
for one-particle intermediate states. However, there
appeared for T<T. and J<O0 inadmissible complex
poles in the spin-flip scattering amplitude. By making
a proper analytic continuation in temperature, Suhl
and Wong® found a solution free from such difficulties,
leading to a finite exchange resistivity pex(7") as T— 0
without any resonance behavior. They also found, in
contradiction to Abrikosov, that the resistivities due to
the exchange interaction J and normal interaction ¥ do
not simply add. The coupling between exchange and
nonexchange scattering turned out to be essential for
the removal of the spurious poles.

These results do not seem to be in agreement with
results obtained by Nagaoka,® who used a truncated
set of self-consistent Green’s-function equations.
Nagaoka suggested for T<T', and J<O0 a quasibound
state around the impurity spin and found a maximum
of pex(T) at T=0. In this paper we reinvestigate his
self-consistent equations. We generalize them for
arbitrary exchange and normal interaction, and solve
them by iteration for both signs of the exchange inter-
action in the limit of high and low temperatures. We
find in contrast to Nagaoka, for a contact exchange
interaction J<O0 and for a weak normal interaction
(corresponding to the resistivity p,), Abrikosov’s
resonance and p=p,+ pex(T") With pex(T) — 0 as (InT)2
as T— 0. The same asymptotic behavior holds for
ferromagnetic exchange coupling (J>0).

In the case of an extended exchange interaction
Jw<O (which is assumed to depend only on the wave-
vector difference |k—k’|) a series of resonances appear
below critical temperatures T,;, defined by

Jlg(O:Tc.l)': 1 ’ (1)

where J is the J component in the expansion of J; into
Legendre polynomials, and
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Here, IV is the number of atoms in the crystal, f, the
Fermi distribution function, ¢, the one-electron energy,
and P means principle part. All these resonances
contribute at sufficiently low temperatures to pex(7),
since Eq. (1) with g(0,7)«=InT can be fulfilled for
arbitrary small components J;. The behavior of the
resistivity pex(7) at low temperatures is then deter-
mined by the / dependence of J; or by the range and
form of the exchange interaction. However, we should
like to emphasize that for 7<KT,,; we could solve the
self-consistent equations only for energies w<w,,; and
w>w,,1, where w,,; corresponds to 7',;, and no simple
solution seems to exist near w,,;. Therefore, we cannot
exclude the possible existence of inadmissible poles in
the self energy of the electron Green’s function near
w,,1, similar to those found by Suhl.*

We include in our calculations the normal interaction
V between conduction electrons and magnetic im-
purities to arbitrary order. This is important since many
systems exhibiting a resistivity minimum show also a
resonance in the normal scattering explained first by
Friedel.2 In agreement with Ref. 5, it turns out that
the resistivities p, and pex for strong normal scattering
do not simply add, as suggested by Abrikosov.?

In Sec. II the self-consistent equations are derived
for arbitrary exchange and normal interactions. The
basic approximation involved is the factorization of
terms in the second Green’s-function equation of
motion, and we make no attempt to justify it. In
Secs. IIT and IV we solve the self-consistent equations
by iteration in the limits 7>>7T,,; and 7<7,,; and
derive expressions for the resistivity and for the
thermoelectric power.

II. SELF-CONSISTENT EQUATIONS
A. Derivation

We consider a system consisting of independent con-
duction electrons scattered by a small concentration ¢
of noninteracting impurities with a localized magnetic
moment. The spin-dependent interaction is described
by the usual exchange term which is proportional to the
product S-S, of the impurity-spin S and of the
conduction-electron-spin S..

We can restrict ourselves in the limit ¢— 0 to the
scattering by a single impurity. The corresponding
Hamiltonian is'?

H=Y ecrsTcrst N1 Viwcrsicws
ks

kk’s

- (ZN)_I Z ]kk’[(ckTTCk'T_CINTCIc'l)Sz

Py
+eetfersS_FcrtertSi], (3)
where Vi and Jiir are the matrix elements for normal

2 J, Friedel, Nuovo Cimento Suppl. 7, 287 (1958).
18T, Kasuya, Progr. Theoret. Phys. (Kyoto) 16, 45 (1956).
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and exchange interactions, respectively, cxs and cx" are
annihilation and creation operators for a conduction
electron with wave vector %2 and 2z component of spin s,
and S;, .S1 are components of the impurity spin operator.

Following Nagaoka (henceforth referred to as N) we
define a retarded time-dependent single-particle Green’s
function! for s=s'=1 (note that our notation differs
slightly from N),

Guw ()= —5([ert (9,017 (0) 1) O (1) . (4)

The average is taken over a grand-canonical ensemble
and O (?) is the step function. The equation of motion
for the Fourier transform

0

Giw (0)= e 1G oy (£)dt ©)

is given by (we set #=1)
(0= €&)Grir (@) — N3 VieGar ()
q

+@CN) X Tkl gpr (@) =8kxr . (6)

Here we introduced the Fourier transform of a second
Green’s function :

T ()=—1
X{[LCerr OS=(O)+cs (DS-(),er1(0) 1O @), (7)

which obeys the equation of motion

(w—e)Thir (@) =N (Vig—3T 1) T aw ()
+ Q2N)IS(S+1) X TrGar (w)+ (2N) Z:, Jqa

X (—{cxrcgrteqsS_| cutt)+{crrcqsTcg 1Sy | crrt®)
F{cricatTce1S—| crtty— {erscqtcg 15— | crrtt)
— 2<6kwqﬂcq:1Sz , ) =0. (8)

We used the notation (4 | B) for the Fourier transform
of the quantity

—i«[4(),B(0)1)0()
and we used the spin commutators
[SeSsl-==£Ss, [SpS-1-=25.. )

Following N we decompose now the higher-order
Green’s functions into products of one-particle Green’s
functions and the thermal average of the remaining
operators, taking into account particle conservation
and conservation of total spin; for instance

(crrcqtteqsS_|crtt)=(crrcat){eqsS_| cr1™)
+{catleg1S_Yert[ewtt).  (10)

4D, N. Zubarev, Usp. Fiz. Nauk. 71, 71 (1960) [English
transl.: Soviet Phys.—Uspekhi 3, 320 (1960)].
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In the absence of a magnetic field all thermal averages
are independent of the direction of the impurity spin in
space:

(S2)=(S;)=(S-)=0, (11)

(exttert)=(crters), (12)
{extter1S_Yy={criter1S4)

=2Uepttew1Sa)=—2(crfcrsSz).  (13)

From Egs. (9) to (13) follows the second equation of
motion :

(@—€)Tkir (@)= N7 2 Vil g (@)
q
+ (ZN)_I z (anq—akq)]qq'rqlk/ (w)
qq’

— (2N) 3 [mgg—S(S+1)0ke V 4G (@) =0, (14)

with
(15)

(16)

The thermal average (BA) of two arbitrary Fermi
operators is connected with the corresponding Green’s
function (4 | B) by* (u is the chemical potential, k5 the
Boltzmann constant)

Nk = (Ck’ﬁcld) s

My = 3(Ckl TTCHS_> .

0

(BIA)=—1r‘1/ dw f(w) Im(4|B),

—0

fl)=(efem+1)71, g=(ksT)*,  (17)

and therefore
Npr = —71'_1/ dwf(w) ImGrrr (w) , (18)
Mg = —ZW_I/w dwf(w) ImI‘kkr (O)) . (19)

Equations (6), (14), (18), and (19) form a complete
set of self-consistent equations. They are linear besides
Eq. (14) which is nonlinear due to the truncation of the
hierarchy of Green’s functions.

B. Effective Exchange Interaction

We can simplify Egs. (6) and (14) by introducing
the ¢ matrix for normal scattering. The matrix elements
t can be expressed in terms of the phase shifts for the
normal scattering which we assume to be known. We
write

G (w) =Gy ©® (w)+Glck' ® (w) , (20)
where G @ (w) satisfies the equation for Jx»=0.
1
G @ (@) —NGk © (@) 2 VigGar @ (@)
q
=G ()0, (21)
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with the retarded Green’s function for free electrons
Gy (w)= (w—etin), (22)

The ¢ matrix for the scattering by a single impurity is
defined by'®

7=0,..

te= (k| V]k®), (23)

where |£) satisfies the Schrodinger equation for a
single-electron

[k D)= |k)+ (0—h+in) V| D), (24)
(with | &) the incoming plane wave, % the single-particle
Hamiltonian). Using Eq. (23) and the completeness of
the functions | k), we find

bewr = Viw +N_l E quGq(o) (‘*’)tqk' . (25)
q

Equation (21) may now be written as
G @ (0) =G ()81 + NG @ ()b Gr @ (w) . (26)

We insert now Eq. (20) into (6) and make use of
Egs. (21) and (22):

Gkkl @ (w)—N_le (@ Z ququ'(l) (w)
q
=—(2N)Gr@ X Tk Law (). (27)
q

This can be simplified by iteration with the right-hand
side of the equation as the inhomogeneous term. We
obtain a sum of terms which may be expressed by the
t-matrix Eq. (25):

Giw @ (@) =— 2N)7G ()
X2 (Jrgt+N1 > trg Gy © (@) ¢ T g (@) (28)
q a’

or, introducing the effective exchange interaction

Joott=T N 15dGa@ ()T g (29)
q

G D (@)=— 2N)71G @ (0) T T3 (). (30)

The effective exchange interaction Jype°f is complex
even in Born approximation for the normal scattering
(txxr= Vi real). We will show that it is the imaginary
part of J°f which causes part of the giant thermo-
power. In this sense both explanations of Kondo for the
giant thermopower (compare the second footnote in
Ref. 2, p. 373) are equivalent. However, the Green’s
function G ® (w) Eq. (30) is coupled to Tpw® (),
which also depends on the normal scattering. We will
see later that it is impossible to absorb the normal
scattering entirely into an effective exchange
interaction.

18V, Ambegaokar, in Astrophysics and the Many-Body Problem,
edited by E. N. Parker, J. S. Goldstein, A. A. Maradudin, and

V. Ambegaokar (W. A. Benjamin, Inc., New York, 1963), pp.
321, 381.
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Equation (14) for the Green’s function I'y (w) can
be iterated in a similar way. We write it in the form

Tiwr (‘*’) —N71G, @ (w) 22 Vil arr (“’)
q

=G @ (@Warw (@), (31)
app () =—(2N)™ Z, (21rq— k)T 40 T ()
+QN) X (mrg—S(S+1)8ka) 00 G (@), (32)

aq’
and obtain

T (@) =G (w)
X Loerr (@) F N 144G (@)agr (@) 1. (33)

C. Partial Waves

The scattering of conduction electrons by a single
impurity depends only on the product k-k’ of the
wave vectors of the incoming and scattered waves.
We expand, therefore, all quantities into Legendre
polynomials P;(cos®p) :

G () =G (kK )

=3 (2U+1)Gi(er,e,0) PolcosOui),  (34a)
1=0

chk' =Z (2l+ 1)]z(ek,€kl)Pl(COS®kkl) 5 (34b)
=0

and similar expressions for I'yxr (@), fekry J err®t, B, M.
Replacing the sums by integrals

Nt % — (4m)! / % /; ) pler)der, (3%5)

and using the relation
214 1)Pi(cosOrr) =41 X Vi (O, 08) Vim™* (O, 01r)

between the spherical harmonics Y (0,¢) and the
Legendre polynomials, we can easily perform all angle
integrations in Egs. (29), (30), (32), and (33). All
integrals over the energy e, contain free-electron Green’s
functions G, (w) which have a sharp peak at e¢;=ow.
We therefore replace #;(ex,eq), J £ (ex,€q), and Ji(ex,eq)
by #(ex,w), etc. Since e,=e and since the Green’s
functions G (@) and Ty (w) contain also free electron
Green’s functions G, (w), we replace #;(ex,w) by #i(w)
etc. and finally drop the argument .
We obtain from Egs. (20), (29), and (30)

Jet=J[1+F )], (36)
Gi((er,er,0) =G @ (ery€x,00)
— 2N)1G@ ()T Ty (e ), (37)
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with

Flo)= f p(e)G® @), 38)
Fz(ek,w)EN/ p(e)I‘z(e,ek,w)de. (39)

We define in a similar way
G’z(ek,w)EN/ ()G i(e,er,0)de, (40)
f(e)=N / p(milene)de, (1)
pie)=N / p(mlendde, 2)
g1()= / (G (@) (e — e, (43)

i) = / p(e)G o (@)Iia(e)—S(S+1)deq.  (44)

[Note that 7, and m;, are integrated over the second
variable, whereas T'gw(w) and Ggw(w) are integrated
over the first ones.] We obtain with these definitions
for the coefficients of T'xi (w):

T'i(exyex,0) = (2N)1G1 ()
X T i{ [t (ex) =S (S+1)+rv1() JGi(ew )

—[27:(ex) — 14-2t1g1(w) JT01(enr )} . (45)

For Vi =0, Jpett=J1=J 1, and S=3%, Egs. (37) and

(45) correspond to Egs. (2.8) and (2.14) of Nagaoka.

For free electrons
(46)

W © = fibpnr

and with P;(0)=1 for all /
7, (ek,ek:)= (%)“I/dﬂnkkl (°)P¢(COS®]¢];I) , (47)

ﬁl(o) (ek)=z Nxkr (O)PI(C()S@kk’):fk} (48)
kl

and similarly for the Green’s function for normal
scattering only

Gi® (&)= Gi (0)[1+F (0)t1]. (49)

Multiplying Eqs. (37) and (45) by Np(ex) and inte-
grating over ¢, we obtain

G1(er,0) =G (w)[14F (w)t:]
—%Jf“F(w)l"; (ek,w) .

. (50)
Ty(eryw) =T £ [3v1(w) G (ery0) — g1(w) Te(er,0) 1

(51)
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We solve Eqgs. (50) and (51) for Gi(ex,w) and T'i(exw)
and insert these into (37) and (45):

G (©) =G @ (@) — (4N) 7Gx ()G © ()
Xi (2l+1)Pl(COS®kk/)
=0

X (T2 [1+F (@)t Jyi(w)
X147 #ftgi(w)+3 (T #102F (w)yi(w) 17,
T ()= 2N)™1G, @ (0) G © (w)

(52)

X3 (2041)Pi(cosOu )T "
1=0

X[ (ex) — S (S+ 1) +trvi(w) JA+T 2 g1 (w))
— [Fier) — 5+ tiga(w) V*yi(w) }
X[14-T#figi(w) 4+ (J)2F (@)ya(w) I

The functions #;(e;) and #7%:(e;) and the corresponding
Green’s functions Gi(ex,w) and Ti(e,w) have to be
determined self-consistently. We find from Egs. (52)
and (53)

(53)

Gierw)= N/ p()Gi(er, e,w)de= G (er,w)
0

=G () [14+F (@)t 14T g1 (w) ]

X[+T g (@) +1 (T F (@ri() I (54)

and

fz(ek,w)EN/ p (T 1(er,6,0)de=3G1© (w)J #F ()
0

X [14T o1 () +5 (Jo1)?F (w)va(w) I
X{ [t (&) — S (S+1)+tryi(w) ]
X[1+J#tgi(w) ]

—[(e) —3+0gi(@) Vettyi(w)}  (55)
or
Ti(er,0)= %Gz(ek,w)]pF(w) {1 (ex)— S (S+1)+tryi(w)
— () —3+tigi(w) ]
X [A+T g (w) T ey (w) } -

The self-consistency conditions corresponding to Egs.
(18) and (19) are

(56)

0

7ii(e)= —7r"1/ do f(w) ImGi(ew), &)
()= —Zr‘/ dwf(w) ImT(ew). (58)

Equations (54) and (55), (57) and (58) generalize
Egs. (2.24) to (2.27) of N. They are completely de-
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coupled in the partial waves /. We expect to find a
series of “critical” temperatures T',; defined by Eq. (1)
which may be affected by the normal interaction. The
normal scattering cannot entirely be absorbed into the
effective exchange interaction in Egs. (54) and (55).

The scattering by the normal potential may be
expressed in terms of phase shifts #;. From the definition
(23) follows (frr is the scattering amplitude, Q4. the
atom volume, m the electron mass)

brr = — (2m)~ Y (Qa.) 1 (20k) 1

X3 (2+1)(21—1)Py(cosOms).  (59)

1=0

We restrict ourselves in the following to energies w near
the Fermi energy er and assume [see Eq. (38)]

F(w)=—1mp, (60)
with p=p(w)=~p(er). This corresponds to the assump-
tions that (a) the Fermi surface is in the middle of the
conduction band; (b) the density of states p(e) is
symmetric around the Fermi surface; and (c) the
density of states changes little near er. We find in this
approximation with (Q4¢)'=£kp?/372 and p=32¢F! for
monovalent metals

F(w)hE iz=%(€2’."— 1) . (61)

D. Relaxation Time
(@) Normal Scattering

The relaxation time for normal scattering of conduc-
tion electrons by N; statistically distributed impurities
may be calculated either from the imaginary part of the
self-energy >~ © (ex,w) of the Green’s function G (),
or from the ¢ matrix':

(27,)71=—Im 3O (ex,w)
=N; Im{[Gr @ () ] — G (w)™}
= —¢ Imfy
= —N; Im[G+® (&) ~2G1x® (0) — G2 (w)~1],
(62)

where we used Eq. (26). Both expressions are identical
if higher-order terms in the impurity concentration
¢=N,/N are neglected. This may be seen by expressing
[Gr:® () =G (w)~! in terms of # and G (w).
Using the optical theorem,!® one obtains the usual
result

(27'7;)—1: cr Z ’ trxe I 26(51';_ ek,)
kl

= c(7rp)_l Zz (ZH- 1) sin2m. (63)
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(b) Exchange and Normal Scattering

One finds from the self-energy of the Green’s function
G (w), to order ¢,

1 (0)) =— 2N1 Im[Gk (0) (O))_szk (O)) —'Gk (0) (w)“lj
=7 e D (D) I (9 (14+m(o)

X[A+T g (@) +3 () F (@)v(@) I} (64)

We could not find a general expression for the transport
relaxation time 74, which is actually needed for trans-
port properties. In order to calculate 7¢ one has to
know the matrix Ty for the total scattering. For the
relaxation time 7 one needs to know only Im7. How-
ever, 74 can be found in special cases from 7, using

Ttr_lcc/lTkk:l2(1—COS®kkr)dQ

“ZI C@H1)|Ty?
— (D) (T Ty 4T TH) ],

where we expanded Tk into Legendre polynomials.
Since the first term is proportional to 771, and since the
second term has to be symmetric in Z and /41, one can
guess the second term in simple cases.

(65)

III. ITERATION AT HIGH TEMPERATURES

We expect that the self-consistent Egs. (54) to (58)
with the definitions (43) and (44) can be iterated at
sufficiently high temperatures, starting from free elec-
trons, since the expansion parameter |Jf|es! is of
the order of 107! or smaller. It turns out that there
exists a second parameter, g(w,7) ReJ !, with g(w,T)
defined by Eq. (2), which has to be small enough to
allow an iteration. This limits the temperature range to
T<T., where T, is the highest critical temperature T',;
and may depend on the normal interaction. The fol-
lowing expressions hold for arbitrary normal scattering.

(a) Born Approximation

To lowest order in Jt one has 7;(ex) =0 and there-
fore from Eqgs. (44) and (60)

yi=1mpS(S+1). (66)

We insert Eq. (66) into (64) and neglect all terms of
higher order than (J)2. We find in Born approxima-
tion in the exchange scattering

5= 14 dempS (S+1)T (241)7 2 Re(1+4)°
l

=1 Y U2 Y, (2041)J 2 costy,
1
X (1—4 sin2y,),
Tm 1=1cmpS(S+1)J 2.

(67)
(68)
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Equation (67) reduces for 7;<<1 to the result obtained
from usual perturbation theory. The lowest-order mixed
term of normal and exchange interactions is propor-
tional to (J;V7)2. The second term in Eq. (67) becomes
negative for sufficiently strong normal scattering.
However, the total relaxation time will always be
positive.

We find the transport relaxation time by identifying
|4]243S(S+1)J2 Re(1+4)® with |T:]% It follows
with Eq. (65):

"'tr,B—1 = Ttr,n_l'l' Tm-lJO—2

> {QI41)T 2 cos*ni(1—4 siny,)
l

— (4 1)J J 1y1[ cos?y; cos?niy1(cos2n;+cos2niy1)
— 3 (cos?pi+cos?nuy 1) sin2n; sin2nz 1]} (69)

(6) Kondo’s Approximation

In order to find 7(w)™! to order |Jgf|3, we calculate
vi(w) to order J#, and g;(w) without exchange inter-
action. From Eq. (54) follows

Gilerw) =G () (1+4), (70)
and from Eq. (57) with &,=14/+i#/”
()= fr(1+4") — g (mp) 4", (71)
gk’—‘p/ ) P i dw, (72)
o w—e

where we cut off the integral g at the band limits
w=0 and w= e». The integral g; reduces to g(e,T) given
by Eq. (2) only if p(e)=const for 0<e< e, and p(e)=0
otherwise. We use this approximation in the following
for all integrals containing the Green’s function G;© (w)
with w=~ep. We find in the limits e=er, 7— 0, and
€x — €p, T= 0,

g(eF’T)=p lnkBT/eF,

(73a,b)
g(er,0)=pIn|ex—er|/er,
respectively. From Eq. (43) follows
gi(w)=—g(w) 1+8*) —imp[ f() 1+8)—3]. (74)
We neglected for w= er the integral
© gk mo gk
Il(w)E/ P p(ek)dek%p/ P der,, (75)
0 wW— €k 0 wW— €k

since I;(w—er)= —I1(er—w), or since

m pem 1 ( 1 1
——p f I b Jiete
o Jo w—e\w—e e—¢
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is zero if one extends the limits of the e integration
to £=x.

The Green’s function I';(e,w) has to be calculated to
order Jr". We find from Egs. (56), (58), (70), (66),
and (44),

Ti(er,0) = 2impS (S+1)T (14 £)°G @ (w) , (76)
Aia(er) = —S (S+1)T[Re(1+1)%g
+mpfi In(14-2)],  (77)
vi(w) =1mpS (S+1)[14T1g (w) (1+1*)?
+rpJ1f () Im(14-£)2].  (78)

It follows from Egs. (64), (60), (74), (78), and (68) to
order J;?

T (W)= Toe, 5 T T2 2 { (204 1)J 13 cosy,
l

X [2g(w) cos2ng—mpf(w) sin2n;]
— (H-1)J J 141 cosy; cos®yupa[J 1 cosny cos(2n— i)
+J 141 cosnuya cos (Znua—mi) ]

X[2g(w) cos (mtn1) —mpf(w)sin(nitnu1) 1} -

Equation (79) reduces for 7;=0, Ji=2810/Kondo and
p=%2er! to Kondo’s! Eq. (17) with the number of con-
duction electrons per atom z=1. The second term in
Eq. (79) was found by expressing all quantities in
terms of J#f and comparing with Eq. (65).

(79)

(¢) Resistivity

The conductivity for independent electrons which
are scattered elastically by isotropic defects is given
by'® (n is the electron density)

ﬂ62 o0
g=——— /. n,(w)
m Jo

We assume first that the inverse relaxation time 757!
(which includes normal scattering) is large compared
to the strongly energy-dependent inverse relaxation
time Tir,an H(w)= 74 () — 74,571 We can then neglect
higher-order terms in the expansion of 7ir,8/7tr,an and
find the total impurity resistivity

af(w)
o dw. (80)

m. e af(w)
Pi=pB——— Ttr,an_l(w)
ne? 0 w

dw, (81)

where pp is the resistivity in Born approximation for
the ‘exchange scattering. The integral with g(w) has
been calculated by Kondo.! The terms proportional to

/ F@)(@f/dedo=—3 (82)

16 N. F. Mott and H. Jones, The Theory of the Properiies of
M e;(a),lss and Alloys (Dover Publications, Inc., New York, 1958),
p. 305.
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are temperature-independent and will be neglected.
If 74r,0n and 7,3 are the same order of magnitude, one
obtains correction terms which correspond to deviations
from Matthiessen’s rule. The first correction term is
proportional to

/:O g*(w) (_df/d‘*’)d“’“[/wg(w)(-—df/dw)dw:r, (83)

0

and has been estimated to be small.” Hence we obtain

pi=pa+pmS B er In(ksT/er)

XX {(214-1)T 2 costy, cos2m

1=0
— (14 1)T o 141 cosPn; cosPpiia cos(mitnir1)
X[J1 cosnz cos(Zm—nz41)

+J 141 cosnuy cos(2np—m) 1},  (84)

Pm="1/NE T . (85)
The correction to the InT" term due to normal scattering
is in lowest order proportional to V277, For sufficiently
strong normal scattering (approximately n;>w/4 for
the most important scattering phases) the InT term
changes its sign. One finds in this case a resistivity
minimum for ferromagnetic exchange interaction
(J:>0). In all cases the normal scattering reduces the
temperature-dependent resistivity term. A resonance
in the d scattering due to the normal interaction in-
fluences the resistivity minimum only, if the component
J: is not too small. The corresponding part of the
reciprocal transport relaxation time vanishes if the
resonance is at the Fermi surface (na=/2) correspond-
ing to a maximum in the normal scattering. These
results are in contrast to Abrikosov’s,® who found no
change in the temperature-dependent resistivity due
to normal scattering.

(d) Thermopower
The thermopower is given by'® (¢<0)

S (0— €r) 7e: ()% (d f/dw)des
S(T)= (1) . (86)
=D S ()2 (df/dw)dw (

We neglect contributions due to the energy dependence
of the density of states p, electron velocity v, and of J;
and ¢, since they are all small compared to the contri-
bution arising from the term proportional to f(w) in
761 (w). Furthermore, we can neglect in the relaxation
time terms proportional to g(w), since g(w—er) is an
even function. Expanding again 7, (w) in powers of
74,8/ Tiw,an  and neglecting all  deviations from




620

Matthiessen’s rule, we find with

f (o en) f@) @f/d)=3ksT,  (87)

kB Pm
S(T)=———mpJ 52 3 {(2+1)J ? cos’y; sin2n;
€ Ptot l

— (IH-1)J T 141 cosPn; cosPprya sin (ni+nip)
X [J1 cosny cos(2ni—n141)

+J 141 cosnuyr cos(2nipa—m) I} . (88)
We include in the total resistivity pit=pi+pr, the
term pr due to the lattice vibrations. This is again
correct in the approximation in which the resistivities
add. The dependence of the thermopower Eq. (88) on
the temperature and on the impurity concentration is
then of the form

S(T)=Sopi(ostpr)".

Equation (89) is within about 309, in agreement with
experimental results of MacDonald et al.'” for 0.0022~
0.02 at. 9, Fe in Au and at temperatures where the
plateau in the thermopower is already reached (and at
higher temperatures), when one fits So and uses
p="1.3 uQ cm/at. %,. The decrease of S(7) at lower
temperatures was explained by Kondo? by the inter-
action of the impurity spin with internal magnetic fields.

In the Born approximation for normal scattering
(mo=—mpV) and for J,;=J¢di0, Eq. (88) reduces to
Kondo’s? result except for a factor —3. Kondo erro-
neously neglected a term in his expansion [the next
term in the expansion Eq. (2) of Ref. 2] which contains
a product of two & functions and therefore contributes
an additional term of the order VJ¢ to the thermo-
power. This term is of the correct order of magnitude
to account for the discrepancy. The thermopower
Eq. (88) is negative, if the most important components
J1<0, and if the normal interaction is attractive with
m<m/2. It changes its sign if #;>m/2 for the most
important scattering phases, compared to 7;>w/4 for
the change in sign of the resistivity term.

(89)

(e) Terms of Order Ji*

We calculate the next iteration step (order J#in the
relaxation time) only for #=0. The Green’s function
Gi(er,w) can be replaced in order J; by the free Green’s
function

Gl(ekyw) =G© (w) ) (908,)
fu(ex)= fr, (90b)
gi(w)=—g(w)—imp[ f(w)—3]. (90c)

17 D. K. C. MacDonald, W. B. Pearson, and I. M. Templeton,
Proc. Roy. Soc. (London) A266, 161 (1962).
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Using Eqgs. (90) we solve Egs. (56) and (58) with
Yi=+/+14y/” self-consistently (the term proportional
v’ (w) is of higher order):

fl(ek,w) = -—%iver,Gk@ (w) {Wiz(ék) —S(S+1)

+imp (i~ 5 (0)—S(S+1)T}, (1)

wer) =S (S+1){1—[1—T.g
— @l ) fi(fi—3)T7}, (92)

v (@) =mpS (S+1){1—Tg(w)
— (w1 f)[f () =31} (93)

Equations (91) to (93) are correct to order J2. We will
prove later that they hold also to order [Jig(w) ]2, if
Jig(w,T)>1, corresponding to very low temperatures.
The real part v;'(w) is also of order J2, but it enters
into the expression for the relaxation time only to order
Ji5. We obtain to order J;*

7 Hw) =T 2 Zz (214-1)
X 7
[1—J2g(w) P43 (mpT LS (S+1)—2f(@)+1]

Equation (94) holds [besides the factor f(w)—%] in all
powers of Jig(w) if we keep in each order only the
leading terms and neglect (a) all terms proportional
fw)—4%, (b) all corrections arising from v/ (w), and
use (c) in all orders the free-electron Green’s function
(90).18 One obtains in this approximation for ;<0 a
series of resonances of the Suhl-Abrikosov type below
critical temperatures T',;, defined by Egs. (1) and (73):

(95)

At least part of the normal interaction can be included
by replacing J; by ReJp#ff=J,(14¢/). This shifts T,
to the temperature

(94)

kpT.i=¢p exp(Jip)~t.

(96)

which is always lower than T',;. The neglected terms,
however, are not small near T'.,;*, and we expect in this
temperature range strong deviations from Eq. (94).
The resistivity calculated from Eq. (94) to order J*
contains terms proportional to (InkszZ/er)®. The
thermopower So in Eq. (89) remains constant. One
finds, however, to order J;,® terms proportional to
g(w)f(w) in the relaxation time, which give rise to a
temperature dependent thermopower So(7).

ksT.,i*=ep exp(Jp cos?y)™?,
Y

IV. ITERATION AT LOW TEMPERATURES

We consider now the temperature range 7<T%,* for
the partial wave /, corresponding to

|ReJ #tig (0, T)|>>1, 97)

18 Assumption (a) corresponds in the perturbation expansion
of T to neglecting all energy conserving processes involving
intermediate states. Assumption (c) corresponds to the lineariza-
tion of the equation of motion (14). The neglected terms to order
# are proportional to pJi[J1g(w)]" or smaller.
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with w=ep. The electron Green’s function (54) is un-
affected by the exchange scattering, if in addition
to Eq. (97)

[F ()P (0)yi(w) [ [Tt (w) | (98)

holds. We will show that Eqs. (97) and (98) are con-
sistent with the full set of self-consistent equations (54)
to (58) with (43) and (44). The first set of equations
has with Eq. (98) the solution (70) to (72). We insert
this into T';(ex,w), Eq. (56). The terms fry;(w) cancel in
T'i(er,w) in the limit (97). Since |y (w)|<K|v/"(@)| (as
will be proved), we find

Ti(eryw) = — 3imp 1Gr @ (o) {771 () — S (S+1)

+igit!"[g(@) A+ T (@) =S (S+1)1} . (99)
We obtain in order (Jigx)™
(er) =S (S+D{1+[Tge(14+8) 1+89T7}, (100)
where approximately
Bi=—1" Im(A+&)2(A4+&) 1442
= —1(sin29;)? cos™?;. (101)

This is in contrast to the high-temperature limit where
#i1(er) — 0. We find

vi(w)=—1mpS (S+1)[J1g () (1+8) (1+6) I

X[14i(mp) U 1(w)g(w)]. (102)
The integral
(e)de em de
Ia(w)= P— (103
/ 050"y Temgs 4

vanishes for w=¢r and arbitrary T, since I_j(w—er)
=—1I_;(er—w). Therefore Eq. (98) holds for w suffi-
ciently near to er, and the solution is consistent. The
! component of the inverse relaxation time is

77N w) =T, i 7w U g ()2
X[1—4 sin?y;— tann; (4 cos™p—1)g(w)
X (wp) M a(w)](A1+B)".  (104)

The term proportional to I_;(w) vanishes for ;=0 and
does not contribute to the resistivity since

°°d_fI—1(w)=
0 do gw)

(105)

We assume for the next iteration step #=0 and
neglect terms proportional to I_;(w). The calculation
is then completely analogous to Sec. I1II(e). We find
to order [Jig(w) ]

J2
7N W) =Tw ,

[1—J1g(w) P+ const X J 2

where the constant is of the order (mp)2S(S+1) and
can be calculated exactly only in the next order for the
relaxation time.

(106)
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The sum over the inverse relaxation times 77 (w),
Eq. (104), is limited for a given temperature by the
condition 7<T,i, where T, corresponds to the
smallest component J; which satisfies Eq. (97). Besides
this sum contributions 7! from resonances with 7,
comparable or smaller than T enter into 7~(w). The
normal potential effects only the first few partial waves,
and we will neglect the corresponding change in the
re51st1v1ty in the following. All components 7 ~(w) are
in the limit (106) independent of J; and give then the
same contributions to the total relaxation time.

We obtain with Eq. (65) the transport relaxation
time

1w [Joglo, 1) I

Ttr (w T)_‘Ttr,
[z’ @41)— 22 (l+1)]+-—1
=0

=Tir,n -+ ”'m-l[J (4 (‘*’, T)]—z
X (1471,

The second sum is restricted to I—1 corresponding to
Ji41=0. We find the resistivity

pi(T)=pntpm(Jop InkpT/er)2[I(T)+1]+5(T),
ILT,,,

107)

(108)

where 5 corresponds to 7. Next we calculate the resis-
tivity p(T.,i+n) for the temperatures 7'=T, i,
n=1,2,3---. Condition (97) reduces for these tem-
peratures with Ji;g(0,7 %, is)=1 to

Ji/Tu>1, I<I, (109)
where we considered only partial waves unaffected by
normal scattering.

We consider only the case /=1 and #=1, correspond-
ing to a very short-range-exchange interaction. The
resistivity p(7) then contains only contributions from
partial waves />1+1. Since Jiyn118(0,7,1:1)K1, the
contributions from resonances />I+1 are again small.
We obtain

Pi(Tc.l) =Pn+Pm(Jl/jo)2l+p.',z .

The second term tends to zero as I — oo, if J; vanishes
faster than /722, This is much less stringent than
condition (109). There remains the resistivity p;,; at the
resonance /. We cannot determine p;,;, since we cannot
solve the self-consistent Eq. (54) to (58) at T=T,,.
However, all approximations indicate that the scattering
at T, is also independent of J; and therefore p;,; is
independent of /.

The resistivity p(7") oscillates corresponding to the
temperatures 7T, where the different resonances
become effective. However, for a more extended ex-
change interaction, the contributions from the different
resonances overlap, and the oscillations will be smeared

(110)
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out. At very low temperatures the resonances lie very
near to each other, and one will observe a temperature-
independent resistivity in which the normal and
exchange parts simply add.

V. CONCLUSIONS

We studied the scattering by a single magnetic im-
purity using the self-consistent field method first
applied to the present problem by Nagaoka.5 Our basic
approximation is the factorization of two-particle
Green’s functions in the equation of motion for the
Green’s function I'xi (@), Eq. (8). We also made simpli-
fying assumptions concerning the density of states of
the conduction band. We solved the self-consistent
equations of motion for ferromagnetic and antiferro-
magnetic exchange interaction and for. 7>>T.,; and
TLT,, with T,,; defined by Eq. (1).

Our result at high temperatures [Eqgs. (84) and (88)]
generalizes Kondo’s'? expressions for the resistivity
p:(T) and thermopower S(7) for arbitrary normal and
exchange interaction. The normal scattering always
reduces the anomalous scattering due to the exchange
interaction. The resonance in the normal scattering
phase 7. affects only the component /=2 of the exchange
scattering. We expect therefore a sizeable correlation
between the large impurity resistivity caused by the
resonance of 7 and the resistivity minimum only if the
component |J2| is large. A connection between the
parameters Jr and the position and width of the im-
purity d state, has been discussed recently by Schrieffer
and Wolff.*®

Our result at low temperatures [Egs. (104), (106),
and (108)] is completely different from Nagaoka’s®
solution. We found for both signs of a é-function ex-
change interaction Jo (corresponding to a single partial
wave [/=0) vanishing exchange scattering and
pex(T) « (InkpT/er)2 as T — 0, in contradiction to
Egs. (5.8) and (5.10) of N. Nagaoka discusses only the
case Jo<0. He assumes #79(w) to be singular for 77=0
and w=er, and Jo Rego(w,7)=1 for w=¢p, and T<T,0
[Egs. (4.1) and (4.2) in Ref. 6], and shows this to be

1 J, R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).
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consistent for w=ep. However, the energy range in
which this solution holds remains unclear. Both condi-
tions disagree with our solution #o(ex)~S(S+1) and
Rego(er,T)=—g(er,T)=—p In(ksT/er) as T— 0 and
for t;=0 [Eqgs. (90c) and (92)]. The assumption of a
singularity in the thermal average #io(ex), which is
related to the correlation between the conduction
electrons and the impurity spin, seems to us rather un-
physical. We could not find any instability in the
relaxation time in the considered temperature range,
which would suggest a phase transition. In analogy to
a normal-scattering resonance the conduction electrons
are most disturbed at 7'=1T,,¢. Sufficiently far off the
resonance they can be treated as unperturbed in the
self-consistent Egs. (54) to (58). This corresponds to
the linearization of the equation of motion (14) for
T (). The first corrections to the free-electron Green’s
function enter into the inverse relaxation time Eq. (64)
to order [Jog(w,7)]® for T>>T.o, and to order
[Jog(w,T) T for T<KT,,0 and w=ep.

In the case of an extended exchange interaction, we
obtained a resonance for each partial wave / [Eq. (106)].
The corresponding temperatures 7'.,; converge to zero
very fast for increasing /. The distances between the
resonances depend on the ! dependence of the com-
ponents J;. The resonances overlap only slightly if
Ji/J1>1. The relaxation time is determined in this
case mostly by the nearest resonance. The resistivity
due to the exchange interaction oscillates as a function
of T and tends to a finite value as T'— 0. This behavior
changes, however, if one takes into account the effect of
an internal magnetic field on the scattering. The mag-
netic field causes Zeeman splitting of the impurity spin
levels. The spin flip freezes out, and the resonances of
partial waves with large / are suppressed.
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