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netic ordering near 14 K. The entropy associated
with our observed peak. in C„at 13.3 K is strikingly
close to the value —,R ln2, which is dificult to dismiss
as purely coincidental. Between 2.5 and 10 K C~ T
is fairly well obeyed. It is suggested that the rhombo-
hedral lattice of samarium is the key to the problem and
that the lattice specific heat of this metal cannot very
well be approximated by Cz, (La). The sharp peak at
9.6 K is probably due to traces of some impurity which
undergoes a magnetic transition at that temperature.

Most of the observations in this work can be corre-
lated with results from other properties of the metals,
such as magnetic susceptibility and electrical resistivity.

In comparison with previous specific-heat measurements
covering the range from 3-25 K, the present work
gives more accurate results, owing to improved tech-
niques and higher-purity specimens.
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Numerical computations have been made for the growth rate of oxide and other dielectric contact films
for the case of ion transport by diffusion and electron transport by tunneling. In the early phase of growth,
electronic equilibrium prevails and the oxide growth rate can be limited by the diffusion of ions aided by a
relatively large negative electrical contact potential V~ between metal and adsorbed oxygen. In the later
phase of growth, ionic equilibrium prevails and the rate can be limited by the tunneling of electrons through
the oxide aided by a positive electrical ionic diffusion potential Vz. The growth law in the early phase
is of the Mott-Cabrera form, while in the later phase it is very nearly direct-logarithmic. The rather sharp
transition between the two growth laws occurs at film thicknesses of the order of 20 to 303,, and is accom-
panied by a change in sign of the electrical potential across the oxide. The oxide growth rate in the early
stages depends primarily on the value of the Mott potential V~ (defined as the difference in metal Fermi
level and the 0 level in adsorbed oxygen) and the parameters associated with ionic diffusion. For the later
stages of growth, the metal-oxide electronic work function Xo is the most important parameter, with the
ratio of ionic boundary concentrations playing a lesser role through Vz. An increase in temperature in-
creases the growth rate exponentially in the early growth stages, but increases the rate only moderately
through VD in the later stages.

I. INTRODUCTIOÃ
' 'N 1939Mott proposed a model' ' to explain the limit-
-- ing-thickness behavior of the growth kinetics of
thin oxide 6lms on metals. The model was for low-

temperature oxidation; the thermal excitation of elec-
trons from the metal into the conduction band of the
oxide was thus considered to be unimportant, so that
electrons could penetrate the 61m only by the quantum-
mechanical tunnel effect. '4 The electron current J,
could thus be large only for oxide films less than a few
tens of angstroms in thickness. The metal ions were

* National Aeronautics and Space Administration Predoctoral
Fellow.' N, F. Mott, Trans. Faraday Soc. 35, 1175 (1939).

2 N. F. Mott, Trans. Faraday Soc. 36, 472 (1940).
3 J. Frcnkel, Phys. Rev. B6, 1604 (1930).
4 A. Sommerfeld and H. Bethe, IIaedbuch der I'hysik, edited by

H. Geiger and K. Scheel (Springer, Berlin, 1933l, Vol. XXIV/2,
p. 450.

considered to di6use' through the oxide 61m, however,
so that the temperature had to be high enough to allow

some thermal motion of the ions. Therefore, the limits

of applicability of this model are that the thermal energy
kT must be suKciently low relative to the metal-oxide

work function to eliminate thermionic emission but large
enough relative to the activation energy for ionic dif-

fusion to allow thermal motion of ions. This requires in

general that the electron metal-oxide work function Xo

for the system be larger than the activation energy 8'
for ionic motion, assuming no drastic differences in the
pre-exponential factors.

Neglecting the effect of electric 6elds, the ionic current
for this model according to Mott is given by

D;dC;/ch, —

5 %. ]ost. L48'usinn (Academic Press Inc., New York, 1952).



KINETI CS OF OXIDE F I LM GROWTH 60i

L,=A(8ttsxs)-"'. (1.4)

The parameter Xo is the metal-oxide work function, m is
the effective mass of the electron, and A is the ratio of
Planck's constant h to 2x.

The growth rate dL(t)/dt was considered by Mott to
be given by E,t „where J, is the smaller of the two cur-
rents. The parameter E, is defined as the volume of
oxide formed per particle of the rate-limiting species
which reaches the oxide-oxygen (x= L(t)) interface. The
picture of the growth kinetics which emerges from this
model is quite simple: The thermal diffusion of ions
limits the growth rate for films so thin that the electron
tunnel current J, is larger than the ionic diffusion cur-
rent J;, and this stage of growth is parabolic (L(t)'~ 1).
On the other hand, the electronic current J, limits the
growth rate in thicker 61ms, for which J, is smaller than
J;, and this stage of growth is nearly direct-logarithmic
(L(~)"log1).

Mott formulated a second model (published" in
1947) which was subsequently expanded and elaborated
upon by Cabrera and Mott" in 1949.This second model,
often referred to as the Mott-Cabrera theory, is some-
what less restrictive in range of temperature and film
thickness since it is based on thermionic emission of
electrons (or perhaps electron tunneling, according to
Cabrera and Mott" ) and ionic diffusion. The following
two characteristics distinguish the second model from
the first model:

(a) Electrons were considered to traverse the film,
either by thermionic emission from the metal into the
conduction levels of the oxide or by the tunnel effect,
more rapidly than ions could diffuse through the 61m.
An equilibrium electrical contact-potential V~ was con-

which in the steady-state6 decreases inversely with in-
creasing Glm thickness L(t). The parameter D; is the
diGusion coefficient, C; is the concentration of the dif-
fusing ionic species (apart from the stoichiometric con-
centration), and x is the position normal to the metal-
oxide interface, at which x=o. The corresponding
electronic current according to Mott is given by

J,=A' exp{—L(t)/L, ), (1 2)

which decreases nearly exponentially with increasing
L(t). The parameter A' is a slowly varying function' '
of L(t) which has a value of the order of 10"particles/
cm' sec, and L, represents a critical thickness' (of the
order of several angstroms) at which the film begins to
attenuate the electron tunnel current markedly.

A'= xp/4m'AL(t)' (1.3)

sidered to be established in this manner between the
metal and oxygen adsorbed on the oxide.

(b) A large uniform electric Geld Es———V~/L(t)
both in the oxide and at the metal-oxide interface due
to the contact potential V~ could lower the energy
barriers for the initiation of ionic motion in the forward
direction by an amount sufhcient to yield a large contri-
bution to ionic di6usion, even if the temperature
is so low that ordinary diffusion given by Eq. (1.1) is
negligible.

The lowering of the energy barriers for ionic motion
discussed by Mott" for large macroscopic electric 6elds
in the oxide is herein termed "nonlinear diffusion, "
whereas ordinary diffusion' combined with the low-6eld
limiting case of the mobility current linearly dependent
on electric field is termed "linear diGusion. "The equa-
tion of Mott, ""based on the assumption that nonlinear
diffusion under the aiding potential V~ is rate-limiting,
is

J;=2n, r exp( —W/kT) sinh( —q,aVsi/kTL), (1.5)

where n; is the number of ions per unit area which are
in a position to jump the rate-limiting energy barrier
8', v is the ionic attempt frequency, 2u is the ionic jump
distance, q; is the charge per particle of the di8using
ionic species, k is the Boltzmann constant, and T is the
absolute temperature. Equation (1.5) is equally valid
whether the rate-limiting barrier 8' is at the metal-
oxide interface or inside the oxide film. The quantity
n; is frequently expressed in terms of a bulk concen-
tration C; for the diGusing species, in which case n;
= 2aC;.

The electrical contact potential V~, designated herein
as the "Mott potential, " is given by the initial differ-
ence in the metal Fermi level and the oxygen 0 level,
being negative in sign whenever the 0 level lies below
the Fermi level of the metal. Figure 1 represents an
energy diagram for electrons in the metal-oxide-oxygen
system. Note that the metal-vacuum work function is

Ps (subscript designating x=0), and the metal-oxide
work function (energy difference between the conduc-
tion band in the oxide and the Fermi level in the metal)
is X0. The difference between the vacuum potential and
the 0 level in the adsorbed oxygen is represented by
pz, Lsubscript designating x= L(t)j; the corresponding
energy difference between the conduction band in the

VACUUM POTENTIAL

' A. T. Fromhold, Jr., J. Phys. Chem. Solids 24, 1081 (1963).' J. G. Simmons, J.Appl. Phys. 34, 2583 (1963).' R. Stratton, J. Phys. Chem. Solids 2B, 1177 (1962).
'T. E. Hartman and J. S. Chivian, Phys. Rev. 134, A1094

(1964)."N. F. Mott, Trans. Faraday Soc. 43, 431 (1947)."N. Cabrera and N. I'. Mott, Rept. Progr. Phys. 12, 163 (1949l.

Fxo. 1. Energy-level
diagram for metal-oxide-
oxygen system.
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oxide and the 0 level in the adsorbed oxygen is repre-
sented by Xl.. The width of the filled portion of the
conduction band in the metal is designated e~, and the
band gap in the oxide is eG. The Mott potential V~ is
herein defined as

which from Fig. 1 can be seen to be equal to e '(@p Qr—),
where e is the mageANde of the electronic charge. For
the potential energy diagram in Fig. 1, V~ is negative
in sign. An equilibration of the metal Fermi level and the
oxygen 0 level by electron transfer from metal to oxy-
gen results in the establishment of an electrostatic po-
tential V~ across the oxide film, so that a positive
electric field E, equal to Ep —Vpr/——L(t) in the absence
of space charge, is created in the oxide. Figure 1 is an
idealized representation of the energy, since image
sects actually round the sharp discontinuities in po-
tential at the interfaces.

Cabrera" has shown that electromagnetic radiation
corresponding to energies as large as Xo and XL, can shift
the electron equilibrium so that an electrostatic po-
tential somewhat greater in magnitude than V~ can
thereby be established across the film. This is essentially
due to the fact that the effective density of electronic
states for photon excitation are diferent at the two
interfaces. Cabrera" has also deduced that a Aux of
molecular oxygen from the gas phase suKcient to main-
tain V~ during oxidation requires oxygen pressures of
the order of 10 Torr or larger. In addition, Grimley"
has argued that equilibrium adsorption isotherms re-
quire that V~ should be temperature- and pressure-
dependent, although these effects are predicted to be
rather small at ordinary temperatures and oxygen
pressures.

The present paper represents a synthesis of the two
theories of Mott"" (and the theory of Mott and
Cabrera") in the domain where electron transport
occurs by tunneling. "All essential features are included;
in addition, the following are incorporated into the
model:

(a) The effect of the ionic concentration gradient on
the nonlinear diffusion current.

(b) The effect of the ionic diffusion potential on the
electron tunnel current.

(c) The capability of an electrical current equilibrium
for either of the two charged species.

Numerical analysis of the model has been performed;
the results which are presented here illustrate the pre-

I N. Cabrera, Phil. Mag. 40, 175 (1949).
»T. B. Grimley, Disc. Faraday Soc. 28, 223 (1959); T. B.

Grimley and B. M. W. Trapnell, Proc. Roy. Soc. (London)
A234, 405 (1956).

'4The thermionic emission case is distinctly different; hence,
it is not included in the present paper. A treatment of the elec-
tron rate-limited phase of the thermionic emission case has been
presented: A. T. Fromhold, Jr., and Farl L. Cook, Phys. Rev.
Letters 17, 1212 (1966).

dieted kinetics of growth and delineate the eGects of the
several parameters in low-temperature oxidation
phenomena.

The technique used for obtaining the growth rate is
that of coupled charge currents' " first proposed by
Wagner" and applied to the derivation of the parabolic
growth law"" for transport by electronic and ionic
diffusion. In the present case, the surface-charge field
is determined from the condition" of equal charge cur-
rents of the oppositely charged species and the growth
rate dL(t)/dt is then obtained by evaluating one of the
currents as a function of 61m thickness.

Our results' show an early-stage Mott-Cabrera type
law, corresponding to film growth which is rate-limited

by ionic diffusion, and a later-stage direct-logarithmic
law, corresponding to film growth which is rate-limited
by electron-tunneling. These laws are the same ones
obtained by Mott for the second and the first models,
respectively; our rate constant for the direct-logarithmic
law, however, is modified by the electric field in the film.
In addition, our work represents a quantitative determi-
nation of the transition" between the limiting cases of
a current equilibrium for one of the two species.

II. FORMULATION OF EQUATIONS

1. Ion (or Ion-Vacancy) Current

The ionic di6usion current J;, in the absence of space-
charge effects, ' ' is given" in the steady-state approxi-
mation by

J;=4av exp( —W/kT)sinh(Z;eEpa/kT)

&( {C;(L)—C,(0)exp [Z,eEpL(t)/k T))/
{1—exp[Z;eEpL(t)/kT]) . (2.1)

The parameters C,(L) and C, (0) are the bulk-defect
concentrations of the diffusing ionic species (interstitials
or vacancies) at the oxide-oxygen (x=L) and at the
metal-oxide (x=0) interfaces, respectively, while E,
is the surface-charge field in the oxide. The parameter e
is the magnitude of the electronic charge, and Z;e is
the effective charge per particle of the ionic species under-
going transport through the lattice. "The Z; includes
sign of the charge, covalency, and internal electric-field
e6ects, and thus Z;e differs in general from q;, which is
considered here to be the actual electric charge (includ-

I5 A. T. Fromhold, Jr., J. Phys. Chem. Solids 24, 1309 (1963);
Bull. Am. Phys. Soc. 10, 454 (1965); J. Chem. Phys. 41, 509
(1964).' C. Wagner, Z. Physik. Chem. B21, 25 (1933).

I' Qur results for the limiting case of a linear ionic diffusion
current have been reported: A. T. Fromhold, Jr. and Karl L.
Cook, Bull. Am. Phys. Soc. 11, 195 (1966).

'g A. T. Fromhold, Jr. and Earl L. Cook, J. Chem. Phys. 44,
4564 (1966).

"A. T. Fromhold, Jr., J. Phys. Chem. Solids 25, 1129 (1964).
~ A. T. Fromhold, Jr., J. Chem. Phys. 40, 3335 (1964).
"A. T. Fromhold, Jr. and Earl L. Cook, J. Appl. Phys. (to be

published). This equation is based on a discrete picture of the
lattice; it is somewhat similar to the integrated form of a con-
tinuum equation given by L. Young, Anodhc Oxide Films (Aca-
demic Press Inc., New York, 1961),p. 16.



ing magnitude and sign) that is transported by one de-
fect which diffuses from one interface of the oxide 61m
to the opposite interface. The quantity Z;e determines
the force exerted on a diffusing defect by a given value
of the macroscopic electric 6eld and is the quantity
which occurs in the Einstein relation, while q, is a mea-
sure of the actual electric charge associated with the
diffusing defect. Space-charge effects, ""however, are
neglected in the present treatment because of the thin-
ness of the 6bns involved in electron tunneHng. This is
a good. approximation'~" for charged defect concen-
trations below 10"/cm' whenever the film thickness is
less than 50 A.

For cases in which a negative Mott potential V~
exists across the 61m, the sign of the 6eld is positive. For
'tile case of d1ffllslllg catloll llltel s'tl'tlals C '(0))C (L)
and the sign of Z; is also positive; the quantity Z;t,EOL (t)/
kT is therefore a positive quantity much greater than
unity for this case, since eV~ is generally expected to be
of the order of an electron volt while kT is of the order
of 0.03 eV. Equation (2.1) reduces very closely in this
limit to the equation of Mott for nonlinear di6usion,
Eq. (1.5), provided that Z;e equals q, and 2uC, (0) is
substituted for m;. The additional approximation sug-
gested by Mot t ' of I'cplRclng thc hyper bOllc 81nc
function by &~ expI Z;eEou/kTI will also be valid for
Kq. (2.1) provided that Eo is much greater in magni-
tude than

I kT/Z;euI. For a monovalent ion diffusing
in an oxide with a lattice constant 2u of 5 A, I kT/Z;«I
is approximately 10' V/cm at 300 K.

Equation (2.1) is quite general, since it still provides
a valid description of the current whenever the potential.
across the 6lm is much less than V~, and even when it
has the opposite polarity from a negative V~. This
generality is necessary, since the growth rate can be
either ion or electron rate limited, and in fact undergoes
R tIRnsitlon bctwccn thc two cases Rs tlM oxide 61IIl
increases to a thickness which severely attenuates the
electron tunnel current.

The ionic current J; approaches zero as the built-in
homogeneous field Eo in Eq. (2.1) approaches E „&",

E . io= {kT/Z;t L(t)}in(C;(L)/C, (0)}. (2.2)

This is the largest field (in magnitude) which can be
created by the diffusing ionic species; it corresponds to
a current equilibrium of the ionic species. This means
that at any point in the film the ionic current in one di-
rection due to the concentration gradient is equal to the
ionic current in the opposite direction due to the electric
field created by the full ionic diffusion potential V~

LE 1'&, with E—&'& given by Kq. (2.2). The
quantity VD is positive in sign, which corresponds to a
negative 6eld in the oxide. Although this diffusion
potential is thermodynamically equivalent to an electri-
cal potential insofar as both represent a capability to
transport charged particles, the microscopic origins are
different; an electric Geld exerts a d.irect force on each

charged particle und. ergoing random thermal motion,
while no such direct force acts on each particle in the
case of a concentration gradient. In the present case
the diffusion potential provides one source for the elec-
tI'1c Geld. Ep.

For values of Ep much less in magnitude than

I
kT/Z;e uI, the hyperbolic sine function in Kq. (2.1) can

be replaced by its argument to a good degree of approxi-
mation. The result is

J;=ti,EO(C;(L)—C,(0)exp(Z;GEOL/kT) }/
(1 ex—p(Z;eZ LO/k T)}, (2.3)

provided. that the usual identi6cation for the zero-6eld
mobility p,;,

p;= (Z,e/kT)4u'1 exp( —W/kT), (2.4)

is made. This is the integrated form' 'p of the ordinary
linear diffusion equation'

D; dC;/dr+—p;EOC;, (2.5)

with the ratio p;/D; given. by the Einstein relation,

tl;/D; =Z;e/kT. (2.6)

Equation (2.3) is a valid expression for the current
whenever the nonlinear effects of the electric field on the
mobility current, which is fundamental to the second
theory of Mott" and to the work of Mott and Cabrera, "
are negligible.

Whenever Eo approaches zero, Kq. (2.1) yields the
same results as the steady-state solution of Kq. (1.1),

J;=—D;(C;(L)—C;(0)}L(t) ' (2.7)

where D; is given by Eqs. (2.4) and (2.6). Equation
(2.7) is in fact a good approximation whenever E0 is
very much smaller in inagnitude than IkT/Z;eL(t) I.
For example, IkT/Z;SL(t) I

is approximately 10' V/cm
for a monovalent ion diffusing in a 25-A oxide 61m at
300 K.

2. Electronic Current

Figure I, which represents the energy for electrons as
envisioned by Mott' for the metal-oxide-oxygen system,
is also applicable for the metal-oxide-metal system. ~ '
The major diKerence is that the Fermi level of the
second metal replaces the 0—level of the adsorbed oxy- .

gen. Because of the similar energy diagrams, electron
tunnel current expressions for the two phenomena
can be developed. in the same manner. Simmons, for
example, has derived an approximate but comparatively

simple expression for the electron tunnel current in a
nonsymmetrical metal-oxide-metal structure. It is
assumed that with an externally applied electrical po-
tential V, the barrier which the electrons must penetrate
in tunneling through the oxide is trapezoidal; the %KB
approXimatio" and an averaging technique are then
used to compute the transmission coeKcicnt. The

"E.Merzbaeher, QNuntlm. Jt/tIechonjcs (John %iley R. Sons,
Inc., Neve York, 1961), Chap. 7,
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temperature dependence' of the tunnel current (due to
the kT spread in occupation probability about the Fermi
level) is neglected in Simmons' approximate equation.

The 0 K situation for the tunnel current in a metal-
oxide-metal system is especially simple since it repre-
sents a physical situation in which Fermi-Dirac statis-
tics allow tunneling to occur only from the filled portion
of the conduction band in one metal electrode into the
empty portion of the conduction band in the other
electrode. Immediately upon aKxing the second elec-
trode, there is tunneling in one direction until the Fermi
levels are exactly equalized, and then no subsequent
current unless the temperature is raised or a bias volt-
age applied. %henever an external potential is applied to
the device, current Bows only in one direction. This 0 K
situation for the metal-oxide-metal system is identical
to the O'K metal-oxide-oxygen situation: If X~&Xo,
there is tunneling from the filled portion of the conduc-
tion band of the metal which lies above the Q level to
the oxide-oxygen interface, energy being conserved by
excitation of normal modes of the adsorbed oxygen.
There is no tunneling from the portion of the conduction
band lying below the Q level. %hen the Q—level and
metal Fermi level are exactly equalized, the current
drops to zero. Before equilibrium of the electron current
is reached, the effective bias voltage for the electron
current is c '(Xo—Xr)+EOL; this drops to zero when an
electron-current equilibrium is achieved, with a contact
potential (Mott potential) equal to V~ —— EOL-
=c—'(Xo—Xi,) then present across the film.

The equations of Simmons are based on the assump-
tion that the Fermi levels in the two diff erent metals
have equalized before the external field is applied. The
potential effective for producing a net tunnel current in
the case presently under discussion of a nonequilibrium
system and no applied potential is simply the Mott
potential U~ diminished by the actual electrical po-
tential difference across the 61m created by the system
in the attempt to achieve equilibrium. Therefore, for
our purposes, V in Eq. (13) of Ref. 7 must be replaced
by Vns+EoL(t), equal to e '(Xo—Xr)+EoL(t), and the
following expression is obtained for the electron tunnel
current:

J,= {8n'AL(t)'} '[{2X,+eE,L(t)}exp{—2m'~'k 'L(t)
&([2XO+eEOL(t)]' '}—{2Xz—eEOL(/) }

)&exp{—2m'~'k 'L())[2Xr,—eEOL(t)]' '}] (2.8)

The condition that the net current be zero whenever
EOL(t) is equal —to the Mott potential c '(Xo—Xr) is

satisfied; this corresponds to a current equilibrium of the
electronic species. For Eo equal to zero and for X&

considerably ls,rger (several tenths of an electron volt
or so) than Xo, Eq. (2.8) reduces to the simple form given
by Kqs. (1.2)—(1.4). Thus Eq. (2.8) inherently contains

(a) the effect of a built-in electric Geld on the electron
tunnel current arising from the modification of the
barrier shape, and

For monovalent cations diffusing in a 61m 5 monolayers
in thickness, for example, Z;a/L(t) =0.1; since exp(0.1)
~0.905, this factor represents a decrease in the ionic
current of less than 10% for this situation. Due to the
fact that AUir depends on L(t) as well as T, the kinetics
would be modi6ed slightly from the Mott-Cabrera
form. This small effect is neglected in our numerical
computations for the kinetics.

Besides the addition 6U~ to the Mott potential for
the case of an electron current equilibrium, there is the
usual dependence of the electron tunnel current on
temperature for the none quilibrium case. This is dis-
cussed in the literature by Stratton for the metal-oxide-
metal case. To first order, the ratio of the current J(T)
at absolute temperature T to the O'K current J(0) is

given by

J(T)/J(0) = (ircikT)/sin(~cikT), (2 9)

where c~ is a parameter determined from the potential
barrier. For the square barrier illustrated in Fig. 1,

ci= (2m/Xo) L(/)/k =4mL(t)/L„(2. 10)

(b) the capability of describing an electron tunnel-
current equilibrium.

The situation in which y~ is larger in magnitude than
Xo (i.e., Vjr is negative and Eo positive) may be re-
versed for some metal-oxide systems. Should the Q
level actually lie above the metal Fermi level (Xo)Xr,)
for a particular case, electrons could not tunnel from
metal to oxygen in zero field unless thermally activated
or unless a potential large enough to lower the Q level
to the metal Fermi level was hrst established by ionic
dif usloi1.

The nonzero-temperature case is more complex for
both the metal-oxide-metal and the metal-oxide-oxygen
situations, since tunneling in both directions occurs
simultaneously. The effective Aux of electrons impinging
upon the barrier at the oxide-oxygen interface must
then be included in the derivation for the metal-oxide-
oxygen case. This is given by the product of the number
of filled Q levels eo- and an electronic vibration
frequency v„where No- is related linearly to the surface-
charge field Eo. The reverse tunneling during an elec-
tron current equilibrium phase can reduce the magni-
tude of the potential by a small amount 6U~ which is
of the order of kT/e, the temperature spread in occu-
pation probability about the Fermi level. The exact
reduction depends on v, and no-, it therefore varies
somewhat with film thickness due to the variation of Eo
with L(/), since E, and No- are related linearly. The
effect on the kinetics is small, even considering that
the dependence of the nonlinear ionic current on U~
given by Eq. (2.1) is exponential. The growth rate is
modified by a factor of the order of

exp{ t Z;eaAV~/kTL—(&) ) } exp{—
) Z;a/L(&) ( }.
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where L, is given by Eq. (1.4). For the effective mass m

equal to the free-electron mass mo and for a potential
barrier height Xe of 1 eV, L ~0.98 A and ci/L(i)~0. 512
(A-eV) '. A film 25 A in thickness under these conditions
would have ci——12.8 (eV) ', so that J(78 K)/J(0'K)
~1.01 and J(300 K)/J(0 K)~1.20. These ratios de-
crease toward unity for smaller film thicknesses,
smaller eRective masses, and larger barrier heights.

The ratio J(300oK)/J(78'K)~1. 19 may be con-
trasted with the corresponding ratio (exp(—X,/kTi)/
exp( —Xe/kTe)) exp(110) which would be expected
for the mechanism of thermionic emission over the
barrier for this example. The theoretical prediction of
the relatively small temperature dependence for tunnel-
ing has been verified experimentally; for example,
Hartman and Chivian' G.nd only a 30 to 50% increase
in current in Al-A1203-Al structures with oxides approxi-
mately 26 A in thickness upon increasing the tempera-
ture from 78 to 300 K. This dependence of the forward
tunnel current on temperature is a relatively small
e6ect, and therefore is neglected in our numerical
computations.

Another possible eRect which is also neglected is a
spread in energy of the 0 level, corresponding to a
variation in X~. This would result in an eRect similar
to the kT spread in occupation probability about the
Fermi level of the second metal electrode in a metal-
oxide-metal structure. The corresponding change in
potential would depend primarily on the width Fo- of
the energy distribution, and to a lesser extent, on the
nature of the distribution function and the applicable
statistics for the 0 levels.

It has been presumed throughout the above discussion
that there is enough adsorbed oxygen at the oxide-oxygen
interface to supply a suQicient number of 0 states for
establishing the Mott potential. The Mott potential cor-
responds to approximately 1%%u~ ionization of a monolayer
of neutral oxygen atoms, so this is reasonable. The pres-
ent treatment presumes that the surface density of
neutral physically adsorbed oxygen is essentially con-
tinuous; otherwise, geometrical factors'" due to the
absence of adsorbed oxygen directly opposite a certain
fraction of the metal-oxide interface would have to be
introduced. However, an adsorbed monolayer is a com-
mon observation even at pressures as low as 10 4 Torr.

III. NUMERICAL RESULTS

1. Dependence on Mott Potential

Figure 2 (lower part) is a linear plot of the growth
curves obtained for several values of the Mott potential.
The numerical values for the parameters are listed in the
figure caption and Table I. The parameters q; and q,
were chosen to be Z;e and —e, respectively. As pre-
viously discussed, AV~ was neglected in computing
these curves. For values of V~ of the order of —0.75 to
—0.50 V (curves 4 and 3), as postulated in the liter-
ature, "the film initially grows very rapidly; this phase
is followed by a more or less abrupt reduction in growth
rate. As V~ decreases in magnitude (e.g., curve 2,
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to obtain the growth rate

dL(t)/Ch= R.J. (2.12)

as a function of L(i). The growth rate is then integrated
to yield L(i) versus t. In practice, the rate lim-iting current
should be substituted. into Eq. (2.12); the nearly bal-
anced current depends too sensitively on the exact
value of the field to be used. Although this rule is
mandatory when making analytical approximations, it
is not critical for exact numerical evaluation if enough
significant figures can be handled by the computer. In
the present work, the determination of Eo(L) and the
integration of the growth-rate equation were performed
numerically"; Newton's method'4 was used to solve
the transcendental equation for Eo(L) and standard
numerical techniques were employed to perform the
integration.

q;J~+gg.=0. (2.11)

This condition, termed herein the "kinetic condition, "
is used with the currents J, and J, given by Eqs. (2.1)
and (2.8) to determine the surface-charge field Ee as a
function of 61m thickness L(t). The Ee(L) thus de-
termined is substituted into either Eq. (2.1) or (2.8)

3. Coupled Equations

The assumption" that the steady-state currents are
equal in magnitude but opposite in sign leads to the
following condition:

1 2 3 4 5 6 1 8 9 10
v&aaa (10' sacoNos )

Fzo. 2. Film thickness L |,'t) and kinetic potential VIf; versus
time for dHFerent values of Mott potential. Curves 1-4, V~=0.00,—0.25, —0.50, and —0.75 V, respectively. Other parameters
are listed in Table I.

~ The IBM 1401-7040 computer system of Auburn University
was used, with peripheral calculations performed on an IBM
1620 machine. The accuracy achieved was better than 0.1%.

'4 I. S. Sokolinko8 and R. M. Redheffer, Mathematics of Physics
ared Moderre ENgireeering (McGraw-Hill Book Company, Inc.,
New Yerk, 1953), p. 684.
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TARSI.z I. Parameters for numerical computations.

Symbol

C'(I-)

Definition and units

Metal-oxide electron work function (eV)
0=Oxide work function (eV)
Mott potential e '(X0—XI) (V)
Temperature ('K}
Thermal activation energy for ionic

motion (eV)
Ionic jump distanceb (A)
Ionic vibration frequency (sec ')
Ratio of diffusing ionic defect eBective charge

to electronic charge magnitude e
Low-6eld ionic diffusion coeflicient

4a'v exp( —8'/kT) (10 "' cm'/sec)
Low-Geld ionic mobility (4u2vZ;e/kT)

Xexp (—W/kT) (10 "cm'/V sec)
Ionic defect concentration at metal-oxide

interface (cm d)

Ionic defect concentration at oxide-oxygen
interface (cm ')

DiGusion potential—(&TI&'~)log. fC'(I) ic'(0) ) (V)
Oxide volume increase per transported

ionic defectb (A')

2.00

300
0.65

4.25
10l2

+1

83.9

0,179

—0.50
300

0.65

2.1'j

19.19

Figure
6

2.00
2.50—0.50

0.65

4.25
1012

+1

300

4.25
1012

+1

1015

0.179

0.64
0.64
0.00

300

4.00
1012

+2

Q.179

a Varied with curve in figure.
b The parameter Rs for Figs. 2-7 is approximately that for Curio, and 2g is approximately the distance between Cu sites in the |i00$ direction in a

Curio lattice. This is the expected situation for diffusion in the presence of an electric field applied along the $100j direction.

Vsr= —0.25 V), glowtll hccoIIlcs less rap1d 111 'tlm carl/
phase, which eliminates the sharp "knee" in the curve
just prior to the low growth-rate phase. Note that
growth under the concentration gradient alone is rela-
tively slow (curve 1, Vir ——0).

The corresponding electrical potential V~ across the
flhn during growth is also shown in Fig. 2 (upper part).
It is designated the kinetic potential, since it is de-
termined at each instant by the kinetic condition of
equal but opposite charge currents. Note that initially
V~ has the value of the Mott potential V~, but that it
drops away as the 61m increases in thickness. It de-
creases to zero and then changes sign.

A more complete picture of the kinetics is obtained.
by observing the film thickness and kinetic potential
versus logarithm of time in the lower part of Fig. 3 for

03-
IA 00
0~.2 .
-04-

+-0.e-
-0.-

the same growth curves. The variation of growth rate
with V~ is pronounced for the early growth stages. In
the later growth stages, however, it can be seen that the
curves are completely independent of V~. Although
this result is at first surprising, it is readily understood
by referring to the time dependence of the kinetic
potential which is illustrated in the upper part of Fig. 3.
It can be seen that the larger the value chosen for a
negative V~, the more quickly the potential drops
toward zero, and after a relatively long time the kinetic
potential is completely independent of V~. An ad-
ditional curve (dashed) is also shown in this figure to
illustrate the effect of a positive Mott potential (VII
=+0.10 V). The computations for this curve were
performed on the assumption that a diffusion potential
of 0.10 V can be established by the ionic species to
equilibrate the 0—level with the metal Fermi level so
that tunneling can occur. This potential seriously re-
tards ionic diffusion in the early growth stages, as evi-
denced by the time dependence of the dashed curve.

The behavior of the potential can be more readily
understood by referring to Fig. 4. This Ggure is a linear
plot of potential versus Glm thickness. Note that the

30-
OCg

20-

0 s s I

10 10 10 10 10 10 10 10 10 10 10 10 10
TINK ( SKCONOS )

Fio. 3. Film thickness I (t) and kinetic potential V~ versus
logarithm of time for diferent values of Mott potential. Curves
1-4, V3I=0.00, —0.25, —0.50, and —0.75 V, respectively. Dashed
curve, V~=+0.10 V. Other parameters are listed in Table I.
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co 0.0-I-
+-O.R-
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IO RO 50
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Fxo. 4. Kinetic po-
tential V~ across the
61m versus Glm thick-
ness I.(I) for different
values of Mott po-
tential. Curves 1-4,
V~ = 0.00, —0.25,—0.50 and —0.75 V,
respectively. Bashed
curve, V~ =+0.10
V. Other parameters
are hsted m Table I.
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transition away from Vsr occurs at approximately 20 A,
and does not depend too markedly on the value of V~.
It is clear now that this is the thickness at which the
film attenuates the electron tunnel current to such an
extent that an electronic current equilibrium cannot
further be maintained. The kinetic potential thus drops
away from the Mott potential to values for which the
ionic and electronic currents are equalized. These values,
of course, vary with film thickness. Once the thickness
exceeds approximately 30 A, Fig. 4 shows that the po-
tential is again constant, and is of the opposite sign
from a negative V~. This constant potential is the ionic
diffusion potential V~, which has a value given by—8, &'&L(t) as computed from Eq. (2.2). This region
of growth corresponds to an ionic current equilibrium.
The transition from electronic to ionic equilibrium is the
most striking feature of the present computations.

Thus, the early stage growth is ion diffusion-current
rate-limited, and the later stage growth is electronic
tunnel-current rate-limited. The negative Mott po-
tential corresponding to electronic equilibrium in the
early stages aids ionic diffusion, and the diffusion po-
tential corresponding to ionic equilibrium in the later
stages aids electron tunneling. The early stage growth is
faster for larger negative Mott potentials, so the critical
value of approximately 20 A for the transition is reached
more quickly iLi time. This explains the time dependence
of the potential noted in Fig. 3.

The zero-6eld ionic diffusion coefBcient D; and maxi-
mum ionic defect concentration C ~&') at the interfaces
play important roles in the early growth stage for which
Eq. (2.1) determines the rate; the time for growth to a
given 6lm thickness varies inversely with the product
D,C, &'&/a, as can be deduced from Eqs. (2.1), (2.4),
and (2.6). The predominant increase in rate, however,
is exerted by the product ~Z;eaVtr/ItTL(t) ~, since this
occurs as the argument of the hyperbolic sine function
in Eq. (2.1). Temperature effects are thus especially
pronounced in this phase, being exponential through
D, and sinh( —Z;euVtr/kTL(t)). Note from the argu-
ment of the hyperbolic sine function that an increase
in Z; is equivalent to a corresponding change in V~ for
this early growth (pretransition) region. For example,
curve 2 (Z=1, Vsr= —0.25) in Fig. 2 would for Z=2
and V~= —0.25 become almost identical to curve 3
(Z=1, Vsr= —0.50). Therefore a change in Z; results
in a very large eBect on the kinetics. Oxygen pressure
effects will be moderate if C &'& happens to be C,(L),
and, will be large if the pressure is so low that V~
cannot be sustained.

The parameters D;, u, and V~ are entirely ineffective
for the later growth stages, however, since both Kq.
(2.8) for the rate-limiting electron tunnel current and
Eq. (2.2) for E &0 are independent of these pa-
rameters. The predominant rate-determining factor for
the later stages of growth following the transition from
electronic. to ionic equilibrium is the metal-oxide elec-

tronic work function Xp. To a lesser extent, the ionic
diffusion potential Vn ———8 &@L(t) given by Eq. (2.2)
is also important in this later phase. Note from Eq.
(2.2) that Vn increases linearly with temperature, in-
versely with Z;, and logarithmically with the ratio of
ionic defect concentrations at the interfaces. (Both
C;(0) and C;(L) can vary exponentially with tempera-
ture, while only C;(L) varies signi6cantly with oxygen
pressure. ) For example, consider the case in which Vn
is produced by monovalent ionic defects diffusing at
300 K with boundary concentrations C;(0) and C,(I.)
equal to ].0" and 10" cm ', respectively. For Xp=1.00
and X~——1.50 eV, the electron tunnel current through
30, 35, and 40 A fihns is 6.5X10", 3.8X10", and 2.1
X10' electrons/cm' sec, respectively. A factor of 2
increase in Vn results in an increase in the current (and
corresponding oxide growth rate) by factors of 2.0, 4.7,
and 7.0 for the 30, 35, and 40 A films, respectively. This
eBect can be compared with a factor of approximately
two for the corresponding increase in electron tunnel
current due to the intrinsic temperature dependence
arising from a spread in values of the occupation proba-
bility around the Fermi level. In general, then, the in-
crease in rate and the temperature dependence resulting
from V~ are important enough to be included in the"rate
constant for the later stages of growth.

2. Dependence on Metal-Oxide Work Function

The e6ect of varying the total barrier height Xp,

keeping V~ constant, is shown in Fig. 5. The relevant
parameters are again listed in Table I. The early stage
growth is unaffected by changes in Xp, as expected be-
cause of the electron current equilibrium; however, the
later-stage growth rate decreases with increasing Xp.

This reQects the fact that barrier penetration is impeded

by the increased barrier height, . thus yielding a lower
growth rate in the electron rate-limiting stage.
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Fro. 5. Film thickness L(t) aud kinetic poteritial Vtr versus
logarithm of time for different values of total barrier height.
Curves 1—5, X0=2.00, 1.75, 1.50, 1.25, and 1.00 eV, respectively.
Dashed curve, xo ——2.00 eV aud m/mo ——0.4. Other parameters
are listed in Table I
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ln curves 1-5 of Fig. 5 (as well as in the preceding
figures), the electron efiective mass m is considered to
to be the same as the free-electron mass tsp. The dashed
curve, however, is the same as curve 1 except that m is
considered to be only 40% as large as mo. Note that
the greater penetrating ability of the lower mass particle
yields a remarkable increase in the film thickness
(~50%) for the later stages of growth. Therefore rate
can be limited by electron tunneling even for film thick-
nesses as large as 100 A.

Figure 5 also shows the accompanying kinetic po-
tential curves. Since no parameters are varied which
cause a net variation in V~ and V~, there exists little
difference between the curves. The transition does occur
somewhat sooner in time for the larger Xp curves, since
the increased diKculty in achieving barrier penetration
shortens the electron equilibrium phase of growth.

3. Comyarison vrith Mott-Cabrera Theory

Figure 6 illustrates a sequence of curves which com-
pares our coupled-current results with theoretical Mott-
Cabrera curves deduced from the nonlinear ionic
diffusion current of Eq. (1.5) assuming a constant V~.
The parameters for this sequence of curves are again
listed in Table I. The several curves correspond to
different values of the temperature, which affects the
zero-6eld ionic diffusion coefficient and the nonlinear
contributions to the current exponentially, as shown in
Eqs. (1.5) and (2.1), and modifie Vn in a linear manner
for fixed boundary concentrations as given in Eq. (2.2).
The Mott-Cabrera type curves (primed) are character-
istically" concave upward on the semilogarithmic plot
of Fig. 6. These curves follow the coupled-current curves
(unprimed) very closely during the electron tunnel-
current equilibrium phase of growth. This shows that
Eq. (2.1) reduces very closely to Eq. (1.5) for large
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0.0-0
-0.2-

+-0.4-
-O.b-

30
ocg

20

10

10 10 10 'IO 10 10 10 10 10 10 10 10 10
TINE (SECONDS )

FIG. 6. Comparison of L(t) versus I curves computed from non-
linear Mott-Cabrera ionic current for V~= —0.50 V (primed
curves} with corresponding curves for L(t) and V~ deduced from
coupled-currents approach (unprimed curves). Curves 1—6,
2'=200, 250, 300, 350, 400, and 450'K, respectively. Other pa-
rameters are listed in Table I.

~~ D. A. VcrInilyea, Acta Met, 6, 166 (1958).

forward ionic currents, as expected. At the point where
the kinetic potential breaks away from the constant
Mott potential V~, however, the kinetics change drasti-
cally. Because of severe attenuation of the electron
tunnel current, the Mott potential can no longer be
sustained. It gives way to the ionic diffusion potential,
and rate is determined by electron tunneling under this
potential. Instead of continuing to be concave upward,
the curves become asymptotic to a straight line on the
semilogarithmic plot of Fig. 6. The transition portion of
the curves is convex upward. The Mott-Cabrera type
curves, however, continue to rise on a logarithmic-type
plot until sinh$ Z,ea—V~/kTL(t)g can no longer be
approximated by +-,'exp~Z;eaV"/kTL(t) (, at which
time they also begin to level off. This occurs at thick-
nesses somewhat greater than those illustrated in Fig. 6.

The difference in the results of the two approaches as
illustrated in Fig. 6 has serious implications' regarding
the magnitude of the limiting 61m thickness, its temper-
ature dependence, and the sign of the electrical potential
across the Glm when it has ceased to grow. Clearly, the
limiting thicknesses following the transition are pre-
dicted to be significantly larger on the basis of the Mott-
Cabrera picture than is predicted by the coupled-
currents approach. In addition, the potential is generally
expected to be negative (i.e., positive fields) according
to the Mott-Cabrera theory, while the potential is
positive following the coupled-currents transition.

The differences in time and 61m thickness at which the
transition occurs can be seen in Fig. 6 to vary with
temperature. This poses the question of whether or not
the transition is expected to occur on the basis of a
reasonable laboratory time scale for a given metal-oxide
system. Our computations show that the time to and
61m thickness for the transition depend critically on
the zero-6eld ionic mobility p;, and therefore on the
temperature. Figure 6 illustrates that the kinetic po-
tential decreases rapidly in magnitude once the break-
away from the Mott potential takes place, so the tran-
sition point (L"', t"*) is defined for convenience
(although arbitrarily) in the present work as the point
at which the kinetic potential differs from V~ by 5%.

Figure 7 illustrates the dependence of the tnne t~*
needed to reach the transition (lower solid curves) and
the transition thickness L"*(upper solid curves) on p;.
Note from curves 1-3 that J„~* and lnt~* decrease
nearly linearly with increase in in@;. The only difference
between curves 1 and 2 is the electron barrier height
(curve 1, Xo——1.5 eV; curve 2, Xo——2.5 eV). Note that
for a given mobility the logarithm of the time to the
transition is decreased only a relatively small am.ount
by the increase in Xp, while the transition thickness is
decreased significantly. (For example, for p„=10-»
cm'/V sec, L~~ is decreased from 23.7 to 19.01 by an
increase in Xo from 1.5 to 2.5 ev). The only djfference
between curves 2 and 3 is the Mott potential (curve 2,
V"=—0.5 V; curve 3, V~= —1.0 V). Note that
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curves illustrated, and L~* is less (generally much less)
than 20 A, while for pq&10 "cm'/V sec, t~* is greater
than 10' sec (~12 days) and L~* is greater than 22.5 A.
The simple technique used to deduce the phase diagrams
of Fig. 7 is described in the following section.

10

10
V~ 10

~ 10

10 0

(R,J,(L)) 'dL (3.1)

4. Analytical Appro»mations

Equation (2.12) for the growth rate can be written
in the following separated form which is useful for
actual evaluation of L(t) versus t:

L(s)

10 10 10
. P (CM/V SKC)

10

I'IG. 7. Time t* to reach transition and transition film thickness
L, as a function of zero-6eld ionic mobility p;.

Curve X0 {eV) V~(V)
1,A,B 1.5 —0.50
2' '

2.5 —0.50
3 2.5 —1.00

Other parameters are listed in Table I. Transition-point criteria:
Curves 1-3, V~=0.95 U~, curve A, Vip=0; curve B, V~=0.95
Vg).

this change experts a small decrease in LM*, but a
relatively larger decrease in lnt~*. For a given mobility,
then, the logarithm of the time needed to reach the
transition is not too dependent on Xo, although the tran-
sition 61m thickness varies somewhat with Xo. Alterna-
tively, the transition 61m thickness does not depend too
critically on V3f, although the logarithm of the time
to the transition does vary somewhat with V~.

The dashed curves in Fig. 7 represent transition thick-
nesses and times based on different criteria for the tran-
sition point. Curve A is the same as curve i except that
the transition point (Lo*,to ) is chosen to be the point
at which V~ is zero. Similarly, curve 3 is the same as
curve 1 except that the transition point (L~*,in*) is
chosen to be the point at which V~——0.95 V~. Note
that for a given p;, the increments between the transition
thicknesses Lj/I~, Lo*, and Lo*, LD* are approximately
5 A. Therefore the entire transition takes place over a
range of approximately 10 A, which is a large part of
the 6nal thickness of the 61m. The time difference be-
tween curve 1 and curve A is a factor of 10, while there
is approximately a factor of 100 separating curves A
and B.Thus the entire transition covers approximately
3 orders of magnitude more time than is initially re-
quired to reach the transition.

It is perhaps helpful to delineate the range of mobility
over which the transition can be expected to occur on a
laboratory time scale. The area to the left of the curves
in Fig. 7 is the pretransition (Mott-Cabrera) region,
while the area to the right of the curves is the post-
transition (coupled. -currents) region. For p,)10 "
cm'/V sec in Fig. 7, t~* is less than 10 sec for the three

When J, represents the nonlinear diffusion current J;,
it is generally helpful to change variables from L to L '.
The early-stage (L(t)(L~*) growth rate is given to a
good degree of approximation by the nonlinear ionic
current expression of Eq. (1.5), in which the concen-
tration gradient is ignored and the potential across the
film is simply Vjr. Since ( Z;eaV~/—kTL) is of the
order of unity at 3000K for Vjr= —0.5 V across a 50 A
film with lattice parameter 2a=5 A and an eifective
ionic charge of e, it is generally a good approximation
for 6lms less than this in thickness to replace the hyper-
bolic sine function by one-half the corrresponding ex-
ponential function. In this limit, Rhodin" has pointed
out that the growth-rate expression (3.1) can be inte-
grated in terms of the tabulated exponential integral2'
~r(n),

& (n)= f 'exp( k)C— (3.2)

The resulting growth rate expression L(t) versus t is

At= L exp( L/L) LEr(L/L—), —
where

R;n;v exp( —W/kT)—,

I-= q;a V~/k T. ——

(3.3)

(3.4)

(3.5)

2St=L ri ' cschgdri.
I/L

(3.6)

~6 T. N. Rhodin, Jr., J. Am. Chem. Soc. 72, 5102 (1950)."Handbook of Mathematica/ Functions, edited by M. Abramo-
witz and I. A. Stegun, National Bureau of Standards Applied
Mathematics Series, No. 55 (U. S. Government Printing Ofhce,
Washington, D. C., 1964), p, 227.

The parameter R; is the oxide volume increase per ionic
defect transported to the oxide-oxygen interface.

If a replacement of the hyperbolic sine function by
the corresponding exponential function is not a good
approximation in certain instances, then Fq. (1.5) can
be used in Eq. (3.1) with the suggested change of vari-
able L(t) -+ L(t) ' to yield the following integral form
of the growth equation:
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Dignam et at."have numerically evaluated this expres-
sion to obtain growth curves for comparison with their
experimental data on oxidation of aluminum.

In the limit where V~=0, the early-stage growth is
parabolic:

(3 7)L(t)

as can be obtained by substituting Kq. (2.7) into Eq.
(3.1) and performing the simple integration. This is the
case, for example, in curve 1 in Figs. 2 and 3 prior to
the transition. Growth is also parabolic in the limit in
pvhich nonlinear eQects are negligible. ' This can be
obtained by substituting Eq. (2.3) with E,= —V~/L(t)
into Eq. (3.1) and performing the elementary integra-
tion. A similar parabolic growth law is obtained by
integrating Kq. (3,1) when the hyperbolic sine function
in Eq. (1.5) is replaced by its argument, as is valid in
the limit of small arguments. This parabolic law was
deduced by Mott and Cabrera"; it differs somewhat
from the one obtained using Eq. (2.3) since the effect
of the concentration gradient is riot included. These
early-stage parabolic growth laws are not generally
expected to occur, since any appreciable value of V~
will introduce nonlinear sects into ionic diffusion in
the very-thin-6lm stage. On the basis of the present
model, the transition to the electron-tunneling rate-
limiting phase of growth occurs before the 6bns become
thick enough for nonlinear effects to be neglected, unless
the Mott potential is very small.

The transition thickness Lj/I* for a given set of pa-
rameters can be ascertained from phase diagrams such
as those illustrated in Fig. 7. These can be generated
quite readily by substituting Kq. (2.8) for the electronic
current and Eq. (2.1) for the ionic current into the ki-
netic condition (2.11),with VIr ———EOL(t) given by 0.95
V~. For a given value of L(f), this equation gives im-

mediately the value of {v exp( —W/kT)} necessary to
satisfy the kinetic condition, which can then be used to
compute the value of p; from Eq. (2.4). By choosing a
series of values for L(t), a phase diagram for L~*versus

p,, such as illustrated in the upper solid curves in Fig. 7
can be plotted. The curves L{)*versus p; and LD* versus

p,; can be deduced in a similar manner; the only differ-

ence is that the value of V~ is zero and 0.95 V~, re-

spectively, instead of 0.95 V~.
The transition time t~* corresponding to each par-

ticular value of L~* can subsequently be obtained from

Eq. (3.3) to a good degree of approximation, since the
deviation of V~ from V~ is not important for the
chosen transition-point criterion {Vx=0.95 V~}.Thus
a phase diagram for t~* versus p,; can be plotted similar
to the solid curves illustrated in the lower part of Fig.
7. The curves t'0* versus p; and tD* versus p; illustrated

by the lower dashed curves in Fig. 7 cannot be obtained
so readily; it is necessary to do an exact integration of
the growth curve to the points Lo* and L~*, respec-

28 M. J.Dignam, W. R. Fawcett, and H. Bohni, J.Flectrochem.
Soc. 113,656 (1966&.

tively, using the coupled-currents approach presented
herein.

During the later-stage growth LL(t))LD*] following
the transition, the growth law is almost direct-loga-
rithmic PL(t) ~ logt], as can be noted in Figs. 3, 5, and 6.
This can also be ascertained analytically by substituting
the constant {—Vii} for EOL(t) in Eq. (2.8) for the rate-
limiting electron tunnel current, since the forward
current (i.e., the portion involving Xo) then has the same
functional dependence on L(t) as the current given by
Eq. (1.2), and the reverse current (i.e., the portion in-
volving Xi,) can be ignored to a good degree of approxi-
mation. In fact, the result is identical to Eqs. (1.2)—(1.4)
with the substitution of {2XO—eVii} for 2Xo. Since the
major film-thickness dependence for L(t))Ln* is given
by the exponential term in Eq. (1.2) instead of the
L(t) ' factor of Eq. (1.3), it is acceptable to approximate
L(t)—' in Eq. (1.3) by (LD*) ' in the present case. The
above approximations for J, reduce the growth expres-
sion (3.1) to an especially simple form, which yields

L(t) =L,' lnLexp(LD*/L, ')
+{A"R,(t—Ii)*)/L, '}], (3.8)

where

and

L,':A{4m(2XO—g V—ii) }

A"—= (2Xp—eVg))/{8n'A(Ln*) '}.

(3 9)

(3.10)

The parameter R,= iq, /q;~E, is the oxide volume in-
crease per electronic defect transported to the oxide-
oxygen interface. The rate constant in the logarithmic
portion of the growth curve is therefore dependent on
the diffusion potential VD, as well as the electron effec-
tive mass m and the metal-oxide work function Xo.

29 T. N. Rhodin, Jr., J. Am. Chem. Soc. 73, 3143 (1951)."O. Kubaschewski and B. E. Hopkins, Oxidatioe of Metals
uwd Alloys (Butterworths Scientific Publications, Ltd. , London,
1962), p. 38.

» M. Wym. Roberts, Trans. Faraday Soc. 57, 99 (1961).
3 J. Kruger and H. T. Yolken, Corrosion 20, 29t (1964); J.

Kruger (private communication).
38 F. P. Mertens, Ph.D. dissertation, Worcester Polytechnic

Institute, 1965 (unpublished). See also J. E. Boggio and R. C.
Plumb, J. Chem. Phys. 44, 1081 (1966).

+ K. Haute and B. Ilschner, Z. Elektrochem. 58, 382 (1954).
3'W. H. Orr, Ph.D. dissertation, Cornell University, 1962

(unpublished). See also T. N. Rhodin, in Structure and Properties
of Thie Films, edited by C. A. Neugebauer, J. D. Newkirk, and
D. A. Vermilyea (John Wiley Bi Sons, Inc, New York, 1959),
p. 87.

5. Comparison with Published Experimental Data

The observation of initially rapid thermal oxidation
followed by very slow oxidation, with effective limiting
thicknesses in the range 20 to 50 k, is very common
below 30'C. This behavior has been observed even for
temperatures as high as 300'C. The kinetics have been
reported in some cases to be of the Mott-Cabrera (pre-
transition) form ' » ~ " in other cases to be oi the
direct-logarithmic (post-transition) form, ""while in
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still others (e.g. , potassium, " copper, " and sodium")
neither form is found to be adequate. In the case of cop-
per, epitaxially-induced strains in the oxide have been
experimentally observed"; these strains surely modify
the growth kinetics.

Perhaps the most convincing of the data reported to
be of the Mott-Cabrera form are those of Vermilyea25
for the oxidation of polycrystalline tantalum between
150 and 300 C. Oxide 6bn thicknesses were in the range
10 to 140A, and were measured with a capacitance
technique. Although the scatter in the data is appreci-
able, the computed curves Gt the data within experi-
mental error; moreover, the temperature dependence
is self-consistent with one set of values for the relevant
parameters. The corresponding data taken at 50 to
100 C, however, deviate from the Mott-Cabrera form,
and in fact, are better Gt with a straight line on linear-
thickness —versus —logarithm-of-time plots. This behavior
at 50 and 100 C is not explained by the present ap-
proach, since according to Fig. 6, the transition is ex-

pected to occur sooner at higher temperatures. Also,
thermionic emission may play a more important role
than electron tunneling in establishing the Mott po-
tential for the 300'C curve, since the 140-A thickness
provides a formidable barrier for tunneling even if the
eGective mass of the electron in the oxide is relatively
low.

Rhodin"" measured the kinetics of oxidation of
carefully prepared monocrystals of copper at tempera-
tures in the range 78—353'K using a vacuum micro-
balance. The relatively close agreement between the
measured and computed curves for film thicknesses
below 30 A has on occasion been offered as evidence for
the validity of the Mott-Cabrera theory. Vermilyea25

has pointed out, however, that the data and computed
curves are inconsistent with the Mott-Cabrera equation
because the slope on the linear-thickness —versus —loga-
rithm-of-time plots decreases with increasing time. The
present authors have attempted to reproduce the com-
puted linear-thickness —versus —linear-time plots in Fig. 5
of this work" on copper. Although the analytical ex-

pressions are correct and the values of the parameters
are deduced properly from Fig. 4, the early-stage oxi-
dation occurs much too slowly to be consistent with the
short times in which the films reach a limiting thickness.
In addition, the temperature dependence was not found
to be self-consistent with a single set of values for the
relevant parameters. It must therefore be concluded
that these interesting data provide no quantitative
support for the Mott-Cabrera theory. Likewise, these

' J. V. Cathcart and G. P. Smith, J. Electrochem. Soc. 107,
141 (1960).

~'F. W. Young, J. V. Cathcart, and A. T. Gwathmey, Acta
Met. 4, 14S (1956).

3 J. V. Cathcart, L. L. Hall, and G. P. Smith, Acta Met. 5,
245 (1957).

39 B. Boric, C. J. Sparks, Jr., and J. V. Cathcart, Acta Met.
10, 691 (1962).

data do not provide quantitative support for the present
coupled-currents approach because of the relatively
large temperature e6ects observed in the later stages of
growth.

Dignam et ul.28 found with the aid of a vacuum micro-
balance that the growth kinetics of amorphous oxide
films 30 to 60 A in thickness formed on polycrystalline
aluminum between 450 and 500'C could be described
well by the Mott-Cabrera equation. Values for the pa-
rameters were derived from a comparison between ex-
periment and theory. Likewise, the observations of
Roberts" using a volumetric technique for the formation
of iron oxide 6 to 12 monolayers in thickness for temper-
atures 0 to 120 C have been interpreted as indicating
the validity of some features of the Mott-Cabrera
theory. The most commonly observed experimental
feature which is in agreement with the Mott-Cabrera
theory seems to be the linear dependence of the re-
ciprocal of the limiting oxide-film thickness on
temperature 25, 26, 29,31

The experimental data supporting the thin-fillndirect-
logarithmic equation are in general much less subject to
question than the data supporting the Mott-Cabrera
equation. Kruger and Yolken32 have measured the oxi-
dation kinetics at 30 C on single-crystal and polycrystal-
line iron with an ellipsometer, and And that films 20 to
30 A in thickness grow logarithmically over three
orders of magnitude in time. Data obtained by Mertens"
with an ellipsometer for the growth of aluminum oxide
balms 13 to 21 A in thickness formed at 300C are direct-
logarithmic over four orders of magnitude in time.
Haute and Ilschner" quote measurements by Scheuble
for the oxidation of nickel at 200'C; growth from 10
to 18 A is direct-logarithmic, and covers between one
and two orders of magnitude in time. Orr" has studied
the temperature dependence of the oxidation of mag-
nesium evaporated 61ms with the Wagener Bow method.
The results between —75 and 135'C indicate a later-
stage growth which is direct-logarithmic, following an
initial nucleation and lateral growth phase. The oxide
films are of the order of 25A in thickness, and are
insensitive to temperature and oxygen pressure, in
accordance with the predictions of the present work.

Unfortunately, no experimental studies have been
made which are comprehensive enough to cover both
the pretransition and post-transition regions. In many
cases there are factors such as low oxygen pressures"
and nucleation phenomena" which limit the early-stage
growth rate, thus effectively eliminating the Mott-
Cabrera phase. In other cases this phase occurs so
rapidly that it cannot be followed by present-day hlm-
thickness monitoring instruments. On the other hand,
the much slower growth rate in the logarithmic phase
enables it to be readily observed.

Figure 8 illustrates our attempt to fit the logarithmic
phase of the oxidation of iron at 30'C and 760 Torr
oxygen pressure with the present coupled-currents ap-
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which is predicted for measurements taken prior to and
during the transition.
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Fxo. 8. Comparison of calculated oxide 61m thickness L, (t)
versus logarithm of time with experimental data of Kruger and
Yolken for the oxidation of iron at 300'K and 760 Torr oxygen
pressure. Curves 1-4, S'=0.20, 0.40, 0.45, and 0.50 eV, respec-
tively. Other parameters are listed in Table I.

proach. The data are those published by Kruger and
Yolken. "Note that curve 1 Gts the data quite well.
Parameters are again listed in Table I; for convenience,
the values of Xo and V~ listed are appropriate for the
situation in which m=mo. In reality, the proper loga-
rithmic slope was obtained by adjusting the quantity
(ohio/~o)(2xo —eVa) to 1.10 eV. Smaller effective masses
yield correspondingly larger values of (2Xo—eVn) for
the given slope. The logarithmic portion of the calcu-
lated curve was matched to the experimental curve by
adjusting the value for the electron Qux in the metal.
The theoretical value given by free-electron theory con-
tains the pertinent factor {Sn'AL(t)') ' in Eq. (2.8),
which is 1.92)&10io (sec eV) ' I (t) '; it was necessary
to reduce this factor to 3.19X10' (sec eV) ' L(t) ', a
reduction of approximately six orders of magnitude.
The value of 8' chosen to compute curve 1 is 0.20 eV,
and V~ is chosen to be zero for convenience. Curves 2,
3, and 4 illustrate the eGect of increasing 8" while

keeping all other parameters fixed. For these curves,
8'=0.40, 0.45, and 0.50 eV, respectively. The increase
in 8' electively decreases p;. This perturbs the slope of
the logarithmic region, since for the lower zero-6eld
mobilities the transition is extended throughout the
measured range of Glm thicknesses. For very low mo-

bilities, as illustrated by curve 4, there is a significant
deviation of the theoretical from the experimental
curve. Figure 8 therefore shows that a lower limit to the
zero-Geld ionic mobility is provided by a comparison
between theory and experiment for the case of a 6xed
V~. It furthermore emphasizes the shape of the curve

IV. CON'CLUSIONS

(1) Electronic tunnel-current equilibrium generally
prevails in the early low-temperature growth stages for
negative Mott potentials whenever Xo)$'; rate is
limited by an ionic diffusion current of the Mott-
Cabrera form. The critical factors determining growth
rate in this phase are sinh(Z;eEoa/kT) and avC

X exp( —W/kT). The increase in rate with increase of
temperature is thus exponential. A smaller tempera-
ture e8ect in the opposite direction results from a de-
pendence of V~ on kT due to reverse tunneling.

(2) Ionic current equilibrium prevails in the later
growth stages; rate is limited by electronic tunneling
under V~, and the growth law has a nearly direct-
logarithmic (L(t) ~ logt) form as predicted. by the first
theory of Mott. The critical parameters determining
growth rate in this phase are Xo and V&, the quantity
V~ varying with temperature and ratio of boundary
concentrations as )kT 1n{C;(0)/C;(L))].An increase in
V~ by a factor of two results in a severalfold increase
in the rate-limiting tunnel current; this is a relatively
small eGect, yet it is generally larger than the intrinsic
temperature dependence of the electron tunnel current.

(3) A rather sharp transition takes place between the
two growth stages with increasing 61m thickness; this
generally occurs between 20 and 30 A depending upon
the zero-Geld ionic mobility, and is almost independent
of V~. This transition is usually accompanied by a
change in sign of the electrical potential (negative to
positive) across the film.
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