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of 4(w) in powers of Jp-N. The result of such an ex- where ¥(z) is the digamma function, the logarithmic

pansion is derivative of the vy function. The zeros of H(w) lie on
3n2/To\? i/ Tp the imaginary w axis, and for T sufficiently large there
A (w)=——(———> w[l——(——) are no zeros in the upper half-plane. However, as T is
16\ N 2\N. lowered, for J<O0, one zero moves up into the upper
To [P () To\d half-plane, thus producing, we may assume, a new
- dg___]_l_ol:(__) :l behavior in 4 (w) and invalidating (38). The tempera-
N J_p w—Ettie N ture at which this happens we call T’ and is deter-
3n2/Tp\? wr(Jp mined by
=-—~<—-—> w[l—ZJGo(w)+—(—>:| 32/ Jp\?
16\ N 2\N. O=H(O)=1+]Go(0)———<—> . (40)
T\t 16\ N
+0I:<E> ] - (38)  Using (39) we see that
This solution is presumably valid at high tempera- T /=ﬁ e ]_V_ 1_:?’1'_2 {f ’ (1)
tures, and we may expect it to be valid as long as the e *P Jp 16\ N
expression in the brackets on the left-hand side of (26)
does not vanish. We call this expression H (), or
To [P f©—% 3r/Tm? Ti'=Txe G0 UFIN> T 42)
Hw)=1+= / dsL——z———<—p> e <0
NJ_p w—t+ie 16\N since J<0.
32/ Tp\? ACKNOWLEDGMENTS
= 1+JGo(w—|—ie)——(—-> .
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The s-d exchange model is treated using equations of motion truncated at the lowest nontrivial order, fol-
lowing Nagaoka. The coupled equations are reduced to a single nonlinear integral equation for the con-
duction-electron ¢ matrix, which depends only on energy. An approximation to the integral operator which
treats the Kondo divergence accurately permits this equation to be transformed to a differential equation
which is exactly integrable. The solution agrees with the leading terms of perturbation calculations above the
Kondo critical temperature T'x, and passes through this temperature smoothly, reaching the unitarity limit
at zero temperature. A different analytic continuation of the ¢ matrix is trivially found which acquires non-
physical singularities below Tx. At low temperatures this form is shown to be identical to Abrikosov’s
solution and to Suhl’s solution prior to analytic continuation. The resistivity of dilute alloys is calculated.
Noninteracting impurities are shown to give no contribution to the specific heat. The effective local moment
entering the magnetic susceptibility is found to be almost completely canceled at zero temperature for
spin-} impurities.

I. INTRODUCTION deal of effort has been expended toward a physical
understanding and an accurate calculation of the low-
temperature properties of these systems. Unfortunately,
a unified picture has not yet emerged. This work
represents a ‘“‘second generation” effort, yielding a new
1J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964). solution for the s-d exchange model which is simple,

INCE Kondo’s discovery of the low-temperature
divergence in the perturbation series for conduction-
electron scattering in dilute magnetic alloys,! a great
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valid at all temperatures, and capable of relating the
results of several workers.?

The s-d exchange model has been treated by diverse
methods primarily because the spin-operator commuta-
tion relations preclude the direct application of the
usual Feynman diagrams of many-body perturbation
theory. Abrikosov® and Doniach* have derived two
alternative diagrammatic formalisms which permit the
summation of selected infinite series. Suhl has applied
an adaptation of the Chew-Low method.® The point of
departure for the present work will be the method first
applied by Nagaoka, who used decoupled equations of
motion for double-time Green’s functions.®?

There were several reasons for the choice of this
approach for further study. First, the formalism was
familiar and versatile. Second, the key approximation
was simply the use of the lowest-order nontrivial
decoupling. This is admittedly not a particularly
physical rationale, but the physics of this system is not
well understood. In addition, we have seen the identity
of calculations based on summing leading divergences
with those based on lowest-order decoupling (RPA) in
the case of the electron-gas correlation energy,® so it
might not be overly optimistic to hope for the same
unity in this problem. Third and most important, the
physical content of Nagaoka’s decoupling approxima-
tion did not appear to be exhausted by the solutions he
found. This remark will be expanded in the next
paragraph.

It should be stressed that Nagaoka was fully aware
of the limitations of his low-temperature solution, and
the criticisms we give here are largely his own.®” First,
he found separate solutions for low and high tempera-
tures, which say nothing about the important region
around the Kondo critical temperature Tx.! Second,
his ansatz which led to a low-temperature solution is
equivalent to finding the best approximation to the
one-electron ¢ matrix by a function with a single complex
pole. This form is certainly very restrictive. Third, his
self-consistency test of this ansatz was satisfied in only
a rather limited sense.®

The initial step towards a better solution is the
reduction of the decoupled equations of motion to a
single integral equation for the one-electron ¢ matrix in
the non-spin-flip channel, which is a function of energy
and temperature only. This reduction is described in

2 A summary of this work has been presented; see D. R-
Hamann, Bull. Am. Phys. Soc. 12, 22 (1967).

8 A. A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 48, 990 (1965)
[English transl.: Soviet Phys.—JETP 21, 660 (1965)3; Physics 2,
5 (1965); 2, 61 (1965).

¢S. Doniach, Phys. Rev. 144, 382 (1966).

® H. Suhl, Phys. Rev. 138, A515 (1965); Physics 2, 39 (1965);
1(’1}19%57.)Rev. 141, 483 (1966); H. Suhl and D. Wong, Physics 3, 1

¢ Y. Nagaoka, Phys. Rev. 138, A1112 (1965).

"Y. Nagaoka, Progr. Theoret. Phys. (Kyoto) 37, 13 (1967).

8D. Pines, The Many Body Problem (W. A. Benjamin, Inc.,
New York, 1963).
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Sec. II. The integral operator in this equation is
approximated in Sec. III by a form which treats the
logarithmic divergence accurately, and the equation
converted to a differential equation which is integrable
in simple closed form. The solution is compared with
those of Abrikosov® and Suhl,® and all three are found
to be closely related. The resistivity, specific heat, and
susceptibility are calculated in Sec. IV.

II. REDUCTION OF THE EQUATION OF MOTION

We shall follow Nagaoka’s notation as closely as
possible, and repeat the key definitions and equations
from Sec. II of Ref. 6 here. The Green’s functions
involved (for a local spin S=1% )are

Gir (@)= (Cit|Cra'), (2.1)
Tiwr (@)= (Cr1S:4Cr1S_| Cra®). (2.2)
The important thermal averages are
N =Z <Cl‘rTCkl1>, (23)
i
mpr =3 Z (CnTcka__>. (24)
l
The two equations of motion considered are
(0— &) Grr (@)+ (J/2N) 3 Tra(w)= (1/2m)01r,  (2.5)
p
(0— &) (@) + (J/N) (i —3) 2 Tra(w)
l
(2.6)

+ (J/2N) (G —my) ; Gri(w)=0,

where e is the electron energy measured from the
Fermi level and J is the strength of the exchange
coupling between the conduction electrons and the local
spin S. Equation (2.5) is exact, while Eq. (2.6) has been
decoupled.

To complete these equations, the thermal averages
must be related to the Green’s functions. This relation
is given by the general expression®

(4B)=i / do> ()G an (i)~ Goan(wo—it)]

=5.[Gan()],

where f(w) is the Fermi function. It is customary to
write 24 ImG4p(w+48) for the bracketed expression in
the integrand in (2.7), but this is generally correct only
if the operators 4 and B are Hermitian adjoints. In
addition, the form (2.7) is much easier to use in the
reduction procedure described here, and we shall make
extensive use of the functional notation &.

® D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [English transl.:
Soviet Phys.—Usp. 3, 320 (1960)7].

(2.7)
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Nagaoka has shown that (2.5) and (2.6) have a
formal solution which may be written

1 t(w)
Gra (@) =—, + ,
27r[ (w—e) (w—er)(w— ek:)]
Hw)=—(J*/4N)T (0)/[14+ TG (w)

Ok

(2.8)

1F(@)r(w)], (2.9)

where
F(w)=—2k2w_ , (2.10)
GE@=—T——, (2.11)
I )—1 m—t 2.12
) —N§ — (2.12)

We note that #(w) as defined by (2.8) is the ¢ “matrix”
for non-spin-flip scattering® Its independence of k
and k' is a result of the momentum independence of the
exchange interaction in the simple s-d exchange model,
and not a necessary feature of the physical problem.
By setting k=%’ in (2.8) and considering the Lehmann
spectral representation for Giix(w),’ we can conclude
that the discontinuity of #(w) across the real axis in
the w plane is pure imaginary, so

Hw+18)=t*(w—10). (2.13)

To obtain an integral equation for #, we must express
G(w) and I'(w), the unknown functions in (2.9), as
functionals of ¢ This is easy for G(w). Using (2.3),
(2.7), (2.8), and (2.11) we write

1

1
Gl=—X

k' W— €

; For[Gu (@) ]—3 (2.14)

Now & is a linear functional, and the relative position of
all the singularities in (2.14) is well defined by the ¥’s
[G will always be evaluated as G(w+148)]. Therefore
we can interchange the order of & and the ! and &’
sums. The algebra is easily carried to the point

1 F)i()
Gl) =) +—F| S —— " | (215
@ =G+ [; — <w'_e,,,)] (2.15)
where
1 €&)—%
GO(w)=—zf( )73 (2.16)
Nt w—e

The key step is now to expand the %' summand in
partial fractions in e before carrying out the &’ sum.

10 This identification follows from the definition of the ¢ matrix
in one-particle scattering theory and a common identity. See, for
example, A. Messiah Quantum Mechanics, translated by J. Potter
(North-Holland Publishing Company, Amsterdam, 1962), Vol. II,
p. 830, Eq. (XIX.102a) and p. 827, Eq. (XIX.88a).
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This step yields

N
G(0)=G"(w) > For

U

[F (@) -}:‘(w)F(w')t(wl)] AT

wW—w

To obtain a similar expression for I', a bit of manipu-
lation is necessary. Using the definition (2.4) of m and
the properties of the trace, we can show

my=3 Z (Ckrl,TCnS_;_)*. (218)
i

Using the symmetry of the system under coordinate
rotations in spin space [Nagaoka’s Eq. (2.13)],% this
can be expressed as

Mg =2 Zz: {For[Tra(e) I} *

=2{§w'[2l: Te(@) 3. (2.19)

Using the form (2.18) rather than (2.4) is extremely
important, because I'x; summed over the left index
cannot be expressed simply, while the sum over the
right index is found from (2.5) and (2.8) to be

N t(w)
? I‘k'l(w)= _——

wJ w— €

(2.20)

Substituting (2.20) in (2.19), it is easy to show from
(2.13) that my is real, so the complex conjugation may
be dropped. I'(w) is expressed in terms of ¢ by using
(2.12), (2.19), (2.20), and evaluating the &’ sum inside
F as was done in the case of G(w). We find

2N [F(o')—F(w) , .
T(w)= —;f—ffwl[———‘-»—_—c?—t(w )]—zF(w) . (2.21)

Up to this point, the reduction procedure has seemed
little but an exercise in algebra with no real direction.
Now, however, if we substitute (2.17) for G(w) and
(2.21) for I'(w) into (2.9), the formal solution for ¢, an
unexpected simplification occurs in the denominator,
and we find

e o)

t(w)={
X { 1+JG°(w)——§1{6jF‘(w)

sw,[w;(w')ﬂ_l. (2.22)

W—w

JN

2w

The functionals in the numerator and denominator are
very similar, and as we shall see in the remainder of this
section, their leading contributions are identical. We
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stress that (2.22) is identical to Nagaoka’s equations.
Its advantage is that it will enable us to make all
approximations in terms of the function of most direct
physical interest, ¢, Nagaoka has carried out the
generalization of his original treatment to arbitrary
spin S.7 This generalization can be applied to (2.22)
simply by replacing the number 3 by 45(S+1) in the
two places where it appears.

To proceed, it is necessary to study the functionals
in (2.22) in detail. Let us write them

[F()—F (w)]"t

wW—w

eule)= 5] @] e
where n=1 or 2. F(w), defined by (2.10), will depend
on the conduction-band density of states which is
chosen. Rather than choosing a square density of states
symmetric about the Fermi level immediately as did

Nagaoka,® we find it convenient to begin with a
Lorentzian form. Then
mpD/N
Flo)=——— (2.24)
w+1D sgn(Imw)

where p is the Fermi surface density of states, and D is
the half-width of the conduction band. Examining the
definition of &, Eq. (2.7), we can see that the o’ integra-
tion in ¢, will be singular only when w and «’ are on op-
posite sides of the real axis [otherwise F(w)—F (') — 0
as o’ —w]. It is only the singular terms which can
contribute to logarithmic divergences associated with
the Kondo effect. In addition, if we assume that ()
can be large only for |w’| < Tk, where Tk is the Kondo
temperature,! it is easy to see that the nonsingular
terms will be small [of order Tx/D~exp(N/Jp)] as
well as being slowly varying functions of w. [We are
interested in the case of antiferromagnetic exchange
(J<0), and must consider the dimensionless coupling
Jp/N to be small for the truncation of the equations of
motion to make sense.] Therefore it is a good approxi-
mation to drop the nonsingular terms, and we find
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2mwipD?/N)»
o (to-ig) m TR/ / '
1(w+iD)* J_,
< f(@) t(w’—18) (2.25)
w . .
/w—w’-l-i& (o’ —1<D)"
3rwiJ% J N—1
t(w+i6)=[—-— il _” WEACL z*( "4 a)}
16N2 N w—w' 418
320
X{I-I—
16N2
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Let us consider the «' integration in (2.25). Since
(') is related to Giw (@') by (2.8), it must satisfy the
same analyticity requirements as the Green’s function,
and can have no singularities except a branch cut along
the real axis on the physical sheet of the ' Riemann
surface.® Therefore if we were to close the o’ contour in
the lower half-plane, the only singularities it would
contain would be those of f(w’).! Thus we can replace
f(@) by f(o)—3% without changing ¢,(w). It is im-
portant to make this symmetry of ¢ explicit before
destroying the analytic simplicity of (2.25) as we shall
in the next paragraph.

A key assumption necessary at this point is that
t(w’) goes Lo zero as ' —  sufficiently rapidly so that
(2.25) will converge without the factor (w'—iD)~" in
the integrand. It will be shown in Sec. III that the
(') found from this treatment does so, proving the
consistency of this assumption. Since the range of
t(w") is of order Tx<D, we will replace the slowly
varying functions (w+4D)~" and («'—2D)~" by their
values at w=w'=0. Since the factor (w'—iD)~" does
impose a range of order D on the integrals, we shall
restrict the integration to —D<w'<D. These steps
yield

@n(w18) ~ (%)”"‘( ) / de’

L(__I_)—_—_t(w _15)
w—w' 418

(2.26)

We would have obtained essentially this form by
starting with the square density of states and neglecting
the real part of F(w), following Nagaoka.® However,
we believe that the above development, in treating the
analytic properties carefully, is more satisfactory.
Approximations for the remaining terms in (2.22)
which are consistent with (2.26) are
F(w418)=—1imp/N, (2.27)
/ ._-_—
J6)=3

. (2.28)
w—aw' 418

G (wi0)=— / de

With all these substitutions, (2.22) becomes

2wiJp? P & flo)—3 l:

i -1
CER?) —_} , (229
N J.p w—w'+id (W) 2] (2.29)

TP

where we have exploited our careful choice of the limits in (2.26) to combine G°(w) with the operator term in the

denominator, and used (2.13).12

If we in fact performed this contour integral, we would obtain a sum over imaginary values of ' of the type familiar in

temperature perturbation theory.
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Equation (2.29) still contains some unexploited symmetry, which we can bring out by considering the integral

equation for

Y(w+18) = 1— 2mipt (w+18) ,

e R

—D w—w'+i5

(2.30)

[1+S(s+1)(72—”>2+v / ’ dw’f(—w?jw*(w'w)] . (231)

where y=Jp/N is the dimensionless coupling constant,
and we have included the generalization to arbitrary
spin. The substitution (2.30), which was motivated
purely by the desire to eliminate the unknown function
from the numerator of (2.29), is in fact the definition
of the S matrix in scattering theory. It has the analytic
properties of #(w), and the symmetry

Y (0ti8) =y¢*(—w+id),
which may be proved from (2.31).

(2.32)

III. SOLUTION OF THE INTEGRAL EQUATION
A. Approximate Operator

Equation (2.31) is a great simplification of the
starting set of equations. However, it is nonlinear and
singular, and the author is not aware of any general
method which may be applied to such equations. A
straightforward computer iteration does not seem
promising either, since there are three energy scale
factors in the problem: T, T'x, and D. These may vary
orders of magnitude relative to each other, making it
extremely difficult to represent ¥ (w) by its value on a
set of points. Therefore we approached the task by
making a rather crude approximation to the integral
operator in (2.31), which turned out to give a much
better solution to this particular equation than we had
any right to expect.

The approximation was suggested by Abrikosov’s
treatment of the integral equation for the vertex
function in his solution of the s-d exchange model.? Let
us consider the integral which occurs in the denominator
of (2.31).

) o fl)—3 .
o(w+18)= do'———y*(0'+18).  (3.1)
_p w—w'+18

We expect the most important feature of ¢ to be a
logarithmic divergence as » and T tend to zero, whose
coefficient will be proportional to the value of ¢ at
w=0. To emphasize this, let us make the variable

2 Since the completion of this work, the author has learned
that D. S. Falk and M. Fowler have independently derived
essentially the same equation (to be published). Their equation
does not retain the particle-hole symmetry of (2.25), which proved
important in our subsequent work.

_p w—w'416

change {=w—w’. Then

-D

wt-.
o(w+i8)= /
w—D

i L1y :
: +i5[f(w—£)—§]¢/ (w—E+18). (3.2)

Next, let us neglect w in the integration limits of (3.2).
This is equivalent, for ¢y =constant and 7'=0, to the
approximation
w18 (w+16)?
In ~1In

iD (0+D)(w—D)’

(3.3

which is universally made in treating this problem. It
is, in fact, closer to the physical situation than the
original form, since the divergences at w==-D are not
present for any density of states that goes to zero
smoothly at the band edges.

Let us now assume that the Fermi function is more
rapidly varying for w— £~0 than ¢ for any value of its
argument. Then ¢(w) ‘“sees” the £=0 pole of the
integrand primarily through the Fermi function. We
should be able to simulate this behavior fairly well by
making the Fermi function sharp and broadening the
pole by T'. Thus we will let

f(w_Ey T)—%N
£+10

flo—§0)—%
T

For y=constant, this step replaces the correct ¢ by

In[ (w+47T)/iD7]. The approximate result has the correct

analytic properties. The quality of the approximation
can be judged by examining the imaginary parts,

(3.4)

T 12) w+1iT
—— tanh—=1Im In
2 2T 1D
=—tanY(w/T). (3.5)

The two sides of (3.5) have the same limits as
approaches ==co, and approximately the same slope
at w=0. The real parts of the exact and approximate
expressions must also agree fairly well since both
satisfy the Kramers-Kronig relations. Therefore we
will call (3.5) a reasonable approximation for the
integral equation and, of course, an exact one in the
T=0 limit.
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Finally, we must make a rather brutal approximation.
Since the logarithmic behavior of ¢ for w~0 is of
primary interest in this problem, we will set w=0 in
Y*(w— £+148) in (3.2). This step can be tried for a few
simple examples, and it is found to reproduce the
logarithmic divergence correctly, and to be surprisingly
good over a much wider range. Our final approximate
form is

1 e dé
plotid)~—— [ ——*(—&+id)
2 )_p&+iT

1 po dE
—= | ——*(—¢+id). (3.6)
2Jp §+iT

From (2.32), we see that we may replace y*(— £4-145) by
Y (£416) in (3.6). This step, although it looks trivial, is
crucial in solving (2.31), reducing it to an equation
in ¢ alone instead of ¥ and y*.

The form of (3.6) suggests the change of variables

a=In[ (¢+47)/iD], (3.7)
y=In[ (w+iT)/iD]. (3.8)

Equation (3.7) is a conformal mapping of the £ plane
into the x plane. The mapping of the original integration
contour in (3.6) into the x plane is shown in Fig. 1.
Since ¥ (¢4-46) is analytic in the upper-half ¢ plane, we
may deform the two pieces of the contour in the x plane
anywhere in the cross-hatched region. If we define

(%) =y (¢+149), 3.9
®(y)= p(wt1d), (3.10)
then (3.6) becomes
1 v 1 v
<I>(y)=——2-'/i"/2 dx\I/(x)-—E [i"/2 dx(x). (3.11)

B. Solution and Its Properties

The same approximation should be applied to the
integral in the numerator of (2.31), which is simply —y.
We may now express (2.31) as

1—S(S+1) (yn/2)*—y

W(y)= . (12
O st rtee . o2
Solving (3.12) for &,
1+a 1—a—
Cp(y=to Tem (3.13)
Yy ¥

where a=S(S+41)(my/2)%. Taking the derivative of
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i
fE_W‘/“E@/i ////_/

Fic. 1. The conformal mapping generated by Eq. (3.7). The
cross-hatched region is the upper-half £ plane and its x-plane
image, and the heavy lines are the integration contours in Egs.
(3.6) and (3.11).

both sides of (3.13) with respect to y,

dd 1 1—a—vyyd¥
——=¥(y)=—roA——F—, (3.14)
dy Y(y) ~¥(y) dy
Y ! av (
— y= . 3.15
l—a—yy ¥—¥ )

The differentials in (3.15) are exactly integrable, and
we obtain
\I,Z

InB(1—a—vyy)=2%1In ,
v2—1

(3.16)

where 8 is the integration constant, which has been
taken inside the logarithm. It is simple to solve (3.16)
for ¥, and

l—a—yy
¥ (y)=

T [(—a—yyp—1/8J2

We may determine the sign of the square root and the
integration constant 8 by substituting (3.17) into (3.11)
and (3.12), and setting y=1m/2. The resulting algebraic
equation can be solved to obtain

!

Although the exact form (3.18) is necessary to satisfy
the integral equation, the second term in the brackets
is always small compared to unity in cases for which
any of this theory is valid, and will generally be
neglected.

(3.17)

(3.18)
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The solution may be simplified by one last change
of variables. Let

1 w+1T
X=—-—|:1—S(S+1)(1r'y/2) —vIn = :l

.

it
=In[(w+:7)/iTx], (3.19)
where Tk is defined by (3.19) and is, explicitly,
Tg=D exp{[1-S(S+1) (xv/2)*]/v}. (3.20)

This is identical to the usual expression for the Kondo
temperature! except for the small correction term in
the square brackets.

Putting everything together, we arrive at our result
for the ¢ matrix:

Hw)= (1/2wip){1— X[X*+S (S+1)=* T} .

In studying its properties, let us also consider the func-
tion f obtained from ¢ by bringing the numerator X
inside the square root,

Hw)= (1/2rip) {(1—[1+S (S+1)a2/ X212} . (3.22)

To begin our analysis of #, let us first consider its
analytic properties in the X plane. Both ¢ and # must
have two branch cuts because they contain square roots
of quadratic functions of X. The branch points are fixed
at the poles and zeros of the square root’s argument. For
both fand Z, there are poles at X = =4[ .S (S+1) J/2. For
¢, there is a double zero at X= o, and for £, a double
zero at X=0. A possible choice of cuts is sketched in
Fig. 2 for ¢ and Fig. 3 for Z. These figures also show the
X-plane image of the upper-half (wh.) » plane for
T>Tg and T<Tk. The branch points at =imw
X[S(S+1)J2 can never enter this region, since S>%.
However, for T< Tk, the X =0 branch point of  enters
the u.h. w plane.

(3.21)

[+
X PLANE
t
¢ ir/S(S+1)

SEOSDARNARAARND
9999,
KIS
SEEHXKRIRREL
u.p.T.:{(LANE —r fEETT u..h.u_;.:%:\NE
@

F16. 2. The analytic structure of ¢ in the X plane. The branch

points and cuts are indicated, and the image of the « plane for
high and low temperatures is superimposed.
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X PLANE

tr/S(S+1)

Fi16. 3. The analytic structure of £ in the X plane. The branch
points and cuts are indicated, and the image of the w plane for
high and low temperatures is superimposed.

Both ¢ and 7 have the same perturbation expansion
at high temperatures, which diverges as T— Tk for
w<Tg. They can be considered analytic continuations
of the high-temperature expansion along different
paths. For ¢, the path is in the physical region, while
for 7, it must pass outside ==ir[S(S+1)]/2 in the X
plane. Only ¢ is a solution of the integral equation; the
incorrect continuation 7 is not. The fact that 7 displays
nonphysical singularities below Tx clearly does not
indicate any instability in the system. The correct
solution in our approximation, #, shows that nothing
of particular significance happens at T'=Tg, which
simply acts as a parameter setting the energy scale.

Having established the satisfactory analytic behavior
of £, let us return to the question of how well it satisfies
the original integral equation. First, we note that
{(w) «In"?|w/Tx| as w—> . This establishes that the
convergence of the integral assumed in going from
(2.25) to (2.26) is satisfied (although marginally).
Second, let us examine the high-temperature behavior
of ¢ by expanding (3.22) for Z in this limit. Since | X |>>1
for T>Tk,

tw)= (1/2wip){3S (S+1)=*/ X*
—LSE+DP/XH---}. (3.23)

To obtain a true perturbation series in v, we must
substitute (3.19) for X, yielding

1
Hw)= {%S (SH1)7r%?
2mip
wt1T w+:iT
x[1+271n 3t Int T]
D D
—3LS(S+1)a™ P
w+:T
X[l+4’y In: —]+} . (3.29)
D
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The leading logarithmic terms come from X2, and go
as v In"|w+1T|/D. The coefficients of these terms
agree with perturbation theory through n=2,'*% which
is as far as straightforward perturbation theory has been
carried to the author’s knowledge. There is also a series
of terms proportional to y*+ In*|w+4T|/D, and these
must be given correctly by (3.24) since they arise from
the imaginary parts of the logs, which are uniquely
related to the real parts by the analytic properties of .
Third, it was feasible to check numerically the most
gross assumption of this treatment, that of setting
w=0 in ¢* in (3.2), at T=0. In Table I, we compare
our approximate solution ¥ with the first numerical
iteration ¥' computed without the aforementioned
assumption. The numerical integration is accurate to
#+0.002, and we have chosen S=0.5 and y=—0.1 to
display one of the worst cases that reasonably fits the
basic assumptions. It is seen that the approximation
is worst at w=Tg (Inw/D=—10), but rather remark-
ably good nevertheless. We cannot claim that it should
be this good in general, but simply that it is for this
particular integral equation. This is not entirely an
accident. The approximation treats the logarithmic
divergences correctly, and these divergences are the
key features of the Kondo problem. Fourth, we note
that since our solution is a function of In(w=+47), the
considerations leading to our approximate treatment
of temperature, Eq. (3.4), are self-consistently satisfied.

C. Comparison with Other Solutions

Nagaoka’s low-temperature solution can be written
ty (w) = (1/2wip)[2iA/ (w+iA) ], (3.25)

where A is a function of T, approximately equal to our
Tk at T=0, and decreasing with increasing 7. At the
Fermi surface, ¢y (w=0) is a T-independent constant
equal to the unitarity limit for s-wave scattering.’* Qur
t(w=0) approaches this limit asymptotically as T
approaches zero. Nagaoka mentions that a solution
with the pole in the wh. » plane satisfies his self-

TasLE I. Numerical check of key approximation,
with §=0.5, y=—-0.1.

Inw/D Re¥! Re¥? Im¥! Im¥°
—40 —0.995 --0.996 0 0
—30 —0.990 —0.991 —0.001 —0.001
—-20 —0.965 —0.968 —0.011 —0.010
—15 —0.893 —0.903 —0.062 —0.053
—10 —0.079 —0.120 —0.539 —0.685

—8 0.607 0.690 —0.333 —0.304
-5 0.882 0.892 —0.074 —0.063
-3 0.932 0.936 —0.031 —0.029
-2 0.946 0.949 —0.022 —0.020
—1 0.957 0.958 —0.015 —0.014

13 7. Kondo (private communication).
14 A. Messiah, Ref. 10, p. 737, Eq. (XVIL.52), p. 817, Egs.
(XIX.51) and (XIX.52).
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consistency condition equally well.5 It appears that
this solution might correspond to our Z. Beyond a certain
rudimentary similarity in analytic structures and
agreement at w= T=0, however, there is little similarity
between the two solutions.

Abrikosov’s solution may be written?

ta(w)= (1/2mip)3S (S+1)a*/X>.

At high temperatures, this gives the same leading
logarithmic terms as our ¢ However, at low tempera-
tures, it predicts that the scattering goes to zero at the
Fermi surface. If we expand our f for 7Tk, we find
that its leading term is equal to ¢4. Therefore, we con-
clude that Abrikosov’s theory and ours are equivalent
to leading logarithmic order, but that his solution is the
wrong analytic continuation at low temperatures.

We can also compare our result to Suhl’s, although
not quite so directly. From the third paper of Ref. 5,
we may extract the relations

(3.26)

ts(w)= (1/2mip) (1—€*%), (3.27)
4 Tmé=In[14+16S(S+1)m2|F|?],  (3.28)
F(w)= (4pX)71, (3.29)

where we have taken the limit of the ordinary potential
scattering going to zero. It is not possible to carry out
the Kramers-Kronig integral which gives the real part
of the analytic function § by hand. However, we can
easily combine the above equations to finds

[2mipts— 1| =[14+S(S+1)=¥/| X |22, (3.30)
From (3.22), we find
[2mipi—1] = |14+S(S+1)a%/ X212, (3.31)

Therefore we conclude that /g and  are almost identical,
(3.30) and (3.31) differing only by the appearance of
the absolute value sign around X in (3.30). For T<<T'x
or I>>Tk, the results are identical. The difference, of
course, makes it impossible to write {g simply as an
analytic function. In the last paper of Ref. 5, Suhl and
Wong recognized that the £ discussed above was the
wrong analytic continuation for 7< Tk, and found the
correct one. While we cannot simply compare this
result to our 4 it is clear that it must be very similar,
since the incorrect analytic continuation is so close to
our incorrect analytic continuation. Furthermore, they
found that the quotient of the S matrices corresponding
to the correct and incorrect solutions was a unimodular
function. We see from (3.21) and (3.22) that X/(X2)1/2
plays this role in our treatment.

It was pointed out by Suhl'® that Abrikosov’s
perturbation-theory approach should yield the same
equations as his scattering theory. This was shown to

15 The extraction of this result from Suhl’s work was carried
out by P. W. Anderson (private communication).

16 H. Suhl, Lectures presented at the 1966 International School
of Physics “Enrico Fermi,” Varenna, Italy (unpublished).
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be true to leading logarithmic order by Silverstein,!’
and is certainly consistent with the preceding com-
parisons.

IV. CALCULATION OF MEASURABLE
QUANTITIES

A. Resistivity

The conductivity is given by the formula®

2¢? af
o= —~/7(6)v2(e)—p(e)de, 4.1)
3 Je
where v(e) is the velocity at energy ¢, and
[27(e)J*=c Imi(e), (4.2)

where ¢ is the impurity concentration. Since the
derivative of the Fermi function restricts the e integra-
tion to | e] < T, we can expand (4.2) in powers of e. Only
the leading term is important, and we find for the
resistivity

2mwc

T
{ 1—-1n<——->
nekyp Tx

Xl:ln2<Ti>+S(S+1)7r2:I_ll2}, (4.3)

K

Ap=

where # is the electron density and k7 the Fermi wave
vector. Since this result is characterized only by a
multiplicative constant and Tk, it should be relatively
easy to compare this prediction of the theory with
experiment. It is qualitatively similar to the numerical
results of Suhl and Wong.?

B. Specific Heat

The specific heat for one impurity is given by®

AC—dE/d (@)2 ImAG (@) (4.4)
=74 wwf(w)2 ImAG:(w) , .

where
AGri(w)=1t(w)/ 27 (w—€x)?. (4.5)

If we evaluate the & sum using the Lorentzian density
of states, and then approximate the resulting function
of w by a sharp cutoff as in Sec. II, we find

P [ 1w ti5). (4.6)
AC‘,,—"'B m;;/;p ww[f(w) f] wW-T10). 5

There are two contributions to AC,, since d/dT acts on
both the Fermi function and ¢ Considering the latter,
we are forced to recognize that our approximate treat-
ment of temperature in Sec. III is not good enough for
present purposes. However, the comparisons of our

17 S, D. Silverstein, J. Appl. Phys. 38, 1150 (1967).
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result with others suggest that (3.21) for ¢#(X) may be
a more accurate result than Eq. (3.19) for X. Let us
take this suggestion, and replace (3.19) by the function
it approximates. Then

o  dt [P dw,af(w')

- T w—w'+16 '

4.7
T dXJop &

Substituting in (4.6), interchanging the order of w
and «’ integration, and putting w=w—w'+w’, we obtain

b (P W
ACﬂ———D- Im{/_D do w o7 1 (w-18)

D f@) P flw)—3 di(wtid)
— / dow’ o' / dw
D T J_p o' —w—1iddX(w+1d)

D dat P af ()
— do [flw)—% '
/—D L ]d_)E /—D : oT

} . (48)

The third term in (4.8) is zero because the ' integrand
is odd. In the second term, the w integral is exactly the
same operator which we approximated in Sec. III. In
keeping with our premise that #(X) is more accurate
than X, we must regard the replacement of this operator
by the integral with respect to X as a better approxi-
mation than its derivation indicates. Therefore we
obtain
D

P 0f(w) .
AC,,——EIm{/—.dew Py #(w18)

D a /
+f i o f(o')
-D oT

Since the quantity in braces is real, we obtain a null
result, AC,=0.

This result is difficult to interpret. However, it is
consistent with the calculation of Yosida and Miwa,
who found that there are no 7™ InT terms in the free
energy to fourth order in J.!® Insofar as our calculation
accurately represents the leading logarithmic terms,
we must conclude that they give no contribution to C,
to all orders. As we shall see in the next section, the
physical picture of a spin which contracts with
temperature—used by Yosida and Miwa to explain
their result'®—is predicted by the present solution.
However, this cannot be the complete answer, since
real alloys which display straightforward Kondo effects
in their resistivity, such as Ag(Mn), do display specific-
heat anomalies in the same temperature regions.!?
Explanations of these anomalies have been based on

*w'+i8) ;. (4.9)

18 K. Yosida and H. Miwa, Phys. Rev. 144, 375 (1966).

1 G, J. Van Den Berg, in Progress in Low Temperature Physics,
edited by C. J. Gorter (North-Holland Publishing Company,
Amsterdam, 1964), Vol. IV, p. 194.
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interactions among the impurities, with?® or without®
consideration of the anomalous scattering, and on
interactions of single impurities with host magnetiza-
tion.”? Nagaoka did predict a specific-heat anomaly on
the basis of his solution of the one-impurity problem,®
but the present results force us to question this. It has
been suggested by Dworin® that C, may contain
logarithmic terms at low temperatures when calculated
from the more realistic Anderson model.** Therefore
we believe that the mechanism of the observed
anomalies must remain an open question.

C. Susceptibility

The extent to which the total spin S, of the electrons
is correlated with the local spin S should provide a
measure of how the susceptibility of the local spin is
modified. If we think of S=% and an oversimplified
model where .S interacts with a single electron, we
would predict (S-S;)— —2 as T'— 0 for antiferro-
magnetic coupling. Nagaoka has shown that when the
g factor of S and the conduction electrons are equal,”

X=(gus/3T)[S(S+1) (1+v/2)+(8-8,)], (4.10)

where pup is the Bohr magneton and we have omitted the
temperature-independent Pauli susceptibility. Equa-
tion (4.10) is based on a further Green’s-function de-
coupling similar to the basic decoupling used to truncate
the equations of motion. However, the preceding
simple picture of a two-spin problem leads us to believe
that (4.10) is not only correct, but at least qualitatively
good for cases in which the g factors differ.

It is easy to show from (2.6) and (2.7) that?
] dnk
(S'Se>=5(5+1)7/2+]—\;2 me—,  (4.11)
k

€k

where n; and my, are defined in (2.3) and (2.4). Using
the equations in Sec. II, we can express m; and #x as
integral operators acting on ¢ These turn out to be the
same operators we usually encounter, and using the
Sec. III approximations, we find

mi—3= (1/27) Im{[X2+S(S+ 12 2+X},  (4.12)
m= (2/m%y) Re{[X>+S (S+1)x?]2— X}
—@/my)C, (413)

where X is (3.19) evaluated at €. C in (4.13) is the
left-hand term evaluated at |e|=D, and is approxi-
mately (v/2)S(S+1)#2. Substituting these expressions

2 J. Kondo, Progr. Theoret. Phys. (Kyoto) 33, 575 (1965).

2 M. W. Klein, Phys. Rev. 136, A1156 (1964); Phys. Rev.
Letters 11, 408 (1963); M. W. Klein and R. Brout, Phys. Rev.
132, 2412 (1963); W. Marshall, sbid. 118, 1520 (1960).

2 A. W. Overhauser, Phys. Rev. Letters 3, 414 (1959).

2 L. Dworin, Phys. Rev. Letters 16, 1042 (1966).

% P. W. Anderson, Phys. Rev. 124, 41 (1961).
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in (4.11), we find

.._1 D
(S-S)—S(S+1)y/2=— / de

™ J_p

XRe{[X?+S(S+1)n2]2— X —C)
X Re{ [X[X*HS(S+1)m T 2+1](T—ie . (4.14)

This integral is very difficult to handle, since the
integrand is not an analytic function of X. We will
evaluate it in the high- and low-temperature limits,
taking D/Tx>>1 in both cases. For T>>Tk, we can
expand the integrand and use contour integration in
the e plane, obtaining

X=X [1-In"1(2T/Tx)], (4.15)

where Xo is the susceptibility of the free spin. If we
neglect the factor of 2 multiplying T in (4.15), which
is consistent with our approximate treatment of
temperature, this result agrees with perturbation theory
for x.%

In the T'=0 limit, the X-plane contour for (4.14) is
simple, and we have

2 +oo—imr /2

<S'Se>_S(S+1)7/2=;

axX

—00—im /2

X Re{[ X245 (S+1)a]H2— X}

XIm{X[X2+S(S+1)72]12}. (4.16)
The portion of this integral which is not zero from
symmetry can be expressed in terms of complete
elliptic integrals by the substitution

X=(x/2){[4S(S+1)]2—1} tanp—ir/2  (4.17)

and the use of several identities involving these func-
tions.?® For T small but nonzero, the contour in (4.16)
terminates at In(7/Tk) instead of —o, and the
difference can be easily calculated by expanding the
integrand. We find

X=Xo[1— (4x/m)E(k)—2 In(T/Tg)+C"], (4.18)

where E is the complete elliptic integral of the second
kind, k= [4S(S+1)]/2 and C’ is a constant of order 7.

For the local moment to be canceled at T=0, we
expect the second term in the brackets in (4.18) to
equal —1. [The first terms in (4.18) are only exact
consequences of our solution in the limit y=0, so C’
should be neglected when examining the cancellation. ]
In fact it equals —0.98 for S=2%, and is smaller in
magnitude for larger S. Nagaoka found —0.66 for

% B. Giovannini, R. Paulson, and J. R. Schrieffer, Phys. Letters
23, 517 (1966); D. ]J. Scalapino, Phys. Rev. Letters 16, 937
(1966); K. Yosida and A. Okiji, Progr. Theoret. Phys. (Kyoto)
34, 505 (1965).

% E. Jahnke and F. Emde, Tables of Functions (Dover Publica-
tions, Inc., New York, 1945), p. 56, Sec. V6, line 2; A. Erdelyi et al.,
Higher Transcendental Functions (McGraw-Hill Book Company,
Inc., New York, 1953), Vol. II, p. 319, bottom line of table.
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S'=1." Thus for this case our solution predicts almost
complete cancellation, and it is reasonable to suppose
that the 0.02 error is a result of our approximations
and not physically meaningful. For larger spin, it has
been suggested that the simple s-d exchange model, in
wbich the momentum dependence of the exchange has
been neglected, is inadequate.?” The present results
support this.

Finally, if we assume complete cancellation at T=0
and examine the temperature dependence of (4.18), we
see that the coefficient of X, does not go to zero suffi-
ciently rapidly to overcome the 7! divergence of X,
and predict a finite 7'=0 susceptibility.

V. CONCLUSIONS

The results of this calculation have been examined in
detail in the main text, and will only be summarized
here. First, we conclude that the approaches of
Nagaoka,® Suhl,® and Abrikosov?® are all equivalent to
leading logarithmic order. The self-energy given by
Abrikosov, however, apparently corresponds to an
incorrect analytic continuation of the high-temperature
perturbation series. Second, we conclude that the
properties of the system vary smoothly with tem-
perature. Tk determines the scale of the temperature
variation, but does not mark the onset of any insta-
bility. Nagaoka’s interpretation of his solution as
evidence of a quasibound state® has engendered a school
of thought which would consider Suhl’s solution to
represent a supercooled state of the system below Tk.!®
Our results indicate that Nagaoka’s calculation should
not continue to be used to support this view.

This physical picture is also suggested by Yosida’s
demonstration that a singlet bound state can exist for
the s-d exchange model.?® Close examination of his
calculation shows that the approximate eigenstate is
undamped because sharp Fermi functions keep inte-
grals involving energy denominators away from their
singularities by approximately T'x. From (4.12) we see
that nx, which is the average occupation of the state %
at the impurity site, is the Fermi function for 7>>Tk,
but has a width of order T'x for T<<T'kx. This suggests
that if Yosida had attempted a self-consistent calcula-
tion, simultaneously deforming the Fermi sea at the

27 J, R. Schrieffer, J. Appl. Phys. 38, 1143 (1967).
28 K. Yosida, Phys. Rev. 147, 223 (1966).
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impurity site and calculating the approximate one-
particle eigenstates, he would have found damping and
a scattering resonance instead of a true bound state.

Experimental susceptibility results, which are most
relevant to this question, are usually dominated by
impurity interaction at low temperatures. Measure-
ments which seem to be free from this effect have been
carried out on Fe in Rh, Ir, and Rhg s Irg s, all showing a
finite zero-temperature susceptibility.?? However such
measurements of Fe in Cu show a diverging suscep-
tibility with a steadily decreasing moment per Fe far
below the Tk inferred from resistivity measurements.*
The latter is in qualitative agreement with our results,
while the former is not. We believe that the s-d ex-
change model may be inadequate for the susceptibility
calculation, as we will explain below.

The more realistic dilute alloy model introduced by
Anderson* can be transformed into the s-d exchange
model by neglecting the hopping processes which give
the level its width.® It has been shown that a rather
complicated correlation mechanism acts in the Anderson
model to make the effective spin lifetime much longer
than the hopping time so that a Curie law susceptibility
is seen at high temperatures.®® The Kondo anomaly! is
also present at these temperatures.® However, it has
been suggested that below Tk, the Kondo mechanism
may act to undo the correlation effect which produced
this long spin lifetime, and suppress the impurity
moment itself rather than compensating it with a
bound cloud of conduction electrons.®* An accurate
low-temperature 'treatment of the Anderson model
should satisfy the self-consistency requirement sug-
gested by Suhl in his criticism of the bound-state result
for the s-d exchange model.®
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