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The Green s-function equations describing an electron gas in the presence of a magnetic impurity have
been approximated by Nagaoka by means of a truncation procedure that keeps correlations between the
spins of the impurity and a conduction electron, but neglects higher correlations. Nagaoka's approximate
equations are examined here and reformulated as a one-dimensional nonlinear equation. This equation is
solved for temperatures not too close to Tz, a characteristic temperature of the system, and shown to have
two solutions: a normal solution which exists at all temperatures and a condensed solution valid only below
T~. Perturbative corrections to the normal solution are presented.

S INCE Kondo's' demonstration that the transition
probability of conduction electrons in the presence

of a magnetic impurity exhibits a logarithmic divergence
at zero temperature, there have been a number of
attempts to treat such a system by nonperturbative
techniques. ' Although there appears to be some rela-
tionship between two of these methods, ' there remain
differences, and there is as yet no compelling reason to
favor one approach over another. Each approach has
its advocates.

It seems useful, therefore, to examine the various
theories more closely to see what, indeed, they actually
predict. It is the purpose of this paper to present one
of these theories, that of Nagaoka, ' in a somewhat
different mathematical framework that explicitly ex-
hibits the approximations within the theory used
by Nagaoka, and that may suggest alternative
approximations.

The starting point for all of these theories is the s-d

*Work supported in part by the U. S. Air Force Ofhce of
Scientific Research under Grant No. AF-AFQSR-735-65 and by
the National Research Council of Canada.' J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).' Y. Nagaoka, Phys. Rev. 13&, A1112 (1965); A. A. Abrikosov,
Physics 2, 5 (1965); H. Suhl, Phys. Rev. 138, A515 (1965).' S. D. Silverstein and C. B. Duke, in Twelfth Annual Con-
ference on Magnetism and Magnetic Materials (to be published).
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He then introduces his decoupling scheme, factoring
higher-order Green's functions by replacing certain
products of operators by their expectation values. His

4 P. W. Anderson, Phys. Rev. 124, 41 (1961).
5 J. R. Schriefter and P. A. Wolff, Phys. Rev. 149, 491 (1966).
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Here Ctl, creates a conduction electron of momentum
k and spin ct, $„is the conduction-electron energy
measured from the Fermi energy, S is the spin operator
for the impurity moment (which we take to have spin
—', ), 1V is the number of electrons, and J is the strength
of the exchange interaction, taken here to be a contact
interaction. (This will require later that certain integrals
will have to be cut off.) This Hamiltonian has been
shown to follow, under suitable conditions, from the
Anderson Hamiltonian' by Schrieffer and Wolff. '

Nagaoka writes the equations of motion for the
retarded. Green's functions
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Let us deGne
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an used, (23) to eliminate F(M) in (8). We then solve
insert that in(8) for JG(M) as a function of A(M) and insert
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This is the basic one-dimensional nonanear equation
which, with the exception of the constant density of
states assumption ~(17) follows exactly from Nagaoka's
basic approximation (4).

We wish to examine this equation in the limit

ol
T»= (2yD/zr) exp(alt/Jp), (33)

where lny =0.577 is Euler's constant.
N can calculate the conditions under which

give (28) We notice that as T +T» , and—there—fore

6 —+0+, (31) may be written

Jp/1V«1 (weak coupling) .
0=1+——+ = 1+JGo(0)

(27) 2 iV

then is easily seen to have two solutions:
(1) normal solution:

A(M) =0. (29)

This is a solution of (28) for all temperatures, and gives
the noninteracting conduction-ele

~ ~
— lectron Green's

function.
(2) condensed solutionr:

A(M) =za (a real), (~&0). (30)

LThis corresponds to a peak in Gks'( )G ~o)~ at (v=0, of

' Since completion of this work we havhave discovered that D. R.
Hamann has derived essentially the same equation indepen ent y

be noted that Suhl's theory, based on an S-matrix
be ublished).'""'""""'"'l'-"'-"l s h h-- "-":l'udesPO 7 P
trans ort coeft]Lcients are smootn unctions o
s T cf. H. Suhl and D. Wong, Physics (to be published)].

ver preclude a gradual change in properties
e vicinit of T» Pcf. H. Suhl, Lectures presented at the 1966

f Ph "Enrico Fermi" Varenna ItalyInternational School o ysics nr
(unpublished) ].

In this limit, one might suppose that we cou gcould ne lect
the term proportional to (Jp/1V)' in brackets on the
left-hand side of (26). The resultant equation
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which, incidentally, implies that near Tz
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16 S (37)
TK

As long as the condition (37) is satished, (28 is a good
approximation to (26), and the two solutions (29) and

q 0~ alid. Thus for T&T~ there are two solutions
t th Nagaoka equations. It is easy to veri y a
condensed solution has a lower energy than the normrmal
solution orf T&T . Hence the Nagaoka equations

1 that there is, in the vicinity of TJ;, some
sort of phase change, where the system changes rom
the normal to the condensed solution.

29 then theIf we consider the normal solution
first thing one might try is a perturbative expansion

(T= T») . (34)

Hence, everyt ing in eh' the brackets on the left-hand. side
at T= TE.of (26) vanishes except the (Jp/E)' term at T=

and M=O. We therefore must keep the (Jp/$)s term
in the vicinity of Tz.

More precisely, near T= Tz, the term in the rac etin the rac ets
of (26) at M=0 is (taking h«T) approximate y
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where P(s) is the digamma function, the logarithmic
derivative of the y function. The zeros of H(co) he on

the imaginary ~ axis, and for T sufIiciently large there
alc Ilo zeros ln thc upper half-plane. However, as T ls

lowered, for J&0, one zero moves up into the upper
half-plane, thus producing, we may assume, a new

behavior in A (&o) and invalidating (38). The tempera-
ture at which this happens we call T~' and is deter-
mined, by

f(5)
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of A (~) in powers of Jp-X. The result of such an ex-
pansion ls

This solution is presumably valid at high tempera-
tures, and we may expect it to be valid as long as the
cxpl'css1011 111 flic brackets 011 flic left. -llaIld side of (26)
does not vanish. We cail this expression H(ar),
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The s-fg exchange model is treated using equations of motion truncated at the lowest nontrivial order, fol-

lowing Nagaoka. The coupled equations are reduced to a single nonlinear integral equation for the con-
duction-electron t matrix, which depends only on energy. An approximation to the integral operator which

treats the Kondo divergence accurately permits this equation to be transformed to a differential equation
which is exactly integrable. The solution agrees with the leading terms of perturbation calculations above the
Kondo critical temperature T~, and passes through this temperature smoothly, reaching the unitarity limit
at zero temperature. A different analytic continuation of the t matrix is trivially found which acquires non-

physical singularities below T~. At low temperatures this form is shown to be identical to Abrikosov s
solution and to Suhl s solution prior to analytic continuation. The resistivity of dilute alloys is calculated.
Noninteracting impurities are shown to give no contribution to the specific heat. The effective local moment

entering the magnetic susceptibility is found to be almost completely canceled at zero temperature for
spin-2 impurities.

I. INTRODUCTION

S INCE Kondo's discovery of the low-temperature

divergence in the perturbation series for conduction-
electron scattering in dilute magnetic alloys, ' a great

~ I. Kondo, Progr. Theoret. Phys. I,'Kyoto) M, 3/ (1964).

deal of effort has been expended. toward a physical
understanding and an accurate calculation of the low-

temperature properties of these systems. Unfortunately,

a united picture has not yet emerged. This work.

represents a "second generation" effort, yielding a new

solution for the s-d exchange model which is simple,


