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The Green’s-function equations describing an electron gas in the presence of a magnetic impurity have
been approximated by Nagaoka by means of a truncation procedure that keeps correlations between the
spins of the impurity and a conduction electron, but neglects higher correlations. Nagaoka’s approximate
equations are examined here and reformulated as a one-dimensional nonlinear equation. This equation is
solved for temperatures not too close to Tk, a characteristic temperature of the system, and shown to have
two solutions: a normal solution which exists at all temperatures and a condensed solution valid only below
T'k. Perturbative corrections to the normal solution are presented.

INCE Kondo’s! demonstration that the transition

probability of conduction electrons in the presence
of a magnetic impurity exhibits a logarithmic divergence
at zero temperature, there have been a number of
attempts to treat such a system by nonperturbative
techniques.?2 Although there appears to be some rela-
tionship between two of these methods,? there remain
differences, and there is as yet no compelling reason to
favor one approach over another. Each approach has
its advocates.

It seems useful, therefore, to examine the various
theories more closely to see what, indeed, they actually
predict. It is the purpose of this paper to present one
of these theories, that of Nagaoka,? in a somewhat
different mathematical framework that explicitly ex-
hibits the approximations within the theory used
by Nagaoka, and that may suggest alternative
approximations.

The starting point for all of these theories is the s-d

* Work supported in part by the U. S. Air Force Office of
Scientific Research under Grant No. AF-AFOSR-735-65 and by
the National Research Council of Canada.
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interaction Hamiltonian

J
H=3 £xCMoCa——

T CroraG g -
=, N kT s C kaCk BOap S. (1)
Here C'y, creates a conduction electron of momentum
k and spin @, & is the conduction-electron energy
measured from the Fermi energy, S is the spin operator
for the impurity moment (which we take to have spin
3), IV is the number of electrons, and J is the strength
of the exchange interaction, taken here to be a contact
interaction. (This will require later that certain integrals
will have to be cut off.) This Hamiltonian has been
shown to follow, under suitable conditions, from the
Anderson Hamiltonian* by Schrieffer and Wolff.

Nagaoka writes the equations of motion for the
retarded Green’s functions

Gix (@) =(Crt [ Ctir) 2)
and
T (@) = (Cir 1S 24 Ci1S—| Clict ). 3)

He then introduces his decoupling scheme, factoring
higher-order Green’s functions by replacing certain
products of operators by their expectation values. His

4 P. W. Anderson, Phys. Rev. 124, 41 (1961).
¢ J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).
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approximation may be written as

ﬂ%s (CTprCsC15(045X S)  Oag| Clia)
~—2i(CtyyC1a) % (8045Ca| Cia)

+7'[§: <CTD7S : “7ﬂC1ﬁ>]<an| kau) . (4)

The resulting equations of motion are then “solved,”
for the case (S.)=0, to yield the results [Egs. (2.15)
through (2.21) of Nagaoka?]

2 G ()= ' () s)
T b AN )=t
2T ()= [one—De)
7l (w) = — ————[ (mpr—3)g(w
) 2N (w—&x) (w—Ex) s
— (mw—3)v(w)],
where
)= JT (w) R
T T I A F @) (W)
14+JG(w)
w)= =1-3JF(w)y(w), (8
e T @ i), ®
with
( L > : ©
w)—N - w-—Ek’ )
1 —3
G(w)=—§ T (10)
ro)=—¥ —, (1)
k w—£g
nk=Zl: (C1Cxr), (12)
mr=3 (CT11Cx1S_), (13)

and, because these are retarded Green’s functions, w
is to be interpreted as w-ie, where e is a positive
infinitesimal. This is not a solution yet because one
still must solve self-consistently for the expectation
values #; and m;.

Now,
nE= -2 dw f(w) ImGk (w) y (14)
where f(w) is the Fermi function and
1
Gy (w)= Z Gu(w)=— ————vg(w) (15)

2r w— Extie
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We note that

1
Gw)+iF(w)=—> ——
N x w— Ek—l-ze

We follow Nagaoka in assuming that the density of
states varies slowly over the conduction band and may
be replaced by p, its value at the Fermi surface, so that

23

(16)

Zk: —*)p/dfk. an
Then
e [ 1
Gw)+3F(w)=— d — dw' W'
@r+iF() N./_w Eo.) ttie2r J o /@)
glw'+ie)  glw'—1ie)
X[w’——f-l—ie w'—E—ie]
1
=— —1€). 18
. /_«, g0 (19)

Further, since m; is real we have

mk=m*k=3 Z (CfmCuS_)
1
-2 / do f(0) ImT(w), (19)
where -
1
Ty (w)= 2 Cu(w)=——""y@). (20
T w— Ertie
Hence
1 my,
T+ (w)=—2——
Nk w-—Ek-i—te
P f(®)
=— | di———(E—ie). (21)
NJ_o w—E&+tie
Now, using the approximation (17), we have
1 1 © g
Flotid=—Y —— o ‘
N ¥ w—§die NJ_w—Etkie
=Fir(p/N). (22)

If we combine this with (18) and (21), noting (8), we
get the relation

i Jp 3ir p
G(“’)=G°(‘°)'ZN‘[F(“’)’TE]’ (23)

where

f&  irp
[t
N p w—§tie 2N

and we have introduced the cutoff D, following
Nagaoka.

f(fk)_‘

w—E&

Go(w) —N -

(24)
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Let us define
gw)=0/[w+4 ()] (25)

and use (23) to eliminate I'(w) in (8). We then solve
(8) for JG(w) as a function of 4 (w) and insert that in
(18). The resulting equation® is [noting that 4*(¢4-ie)
=A(k—i€)]

[1 i_wfpjifp : f®
2N NJp w—Ettie
3xt/Jp w
"13< N) L—A @)
=1+£7I]pzfp Ddg 16 & . 6)
2N NJop w—ttiet+A*©)

This is the basic one-dimensional nonlinear equation
which, with the exception of the constant density of
states assumption (17), follows exactly from Nagaoka’s
basic approximation (4).

We wish to examine this equation in the limit

Jp/N<K1 (weak coupling). 27

In this limit, one might suppose that we could neglect
the term proportional to (Jp/N)? in brackets on the
left-hand side of (26). The resultant equation

[1 ivzfpifp j& 7 e
1N NJop w—ttiedo—A4()
i Jo Jp P
=1+¢1 p% 3 i f(&) £ 08)
2N NJop w—itiett+A*E)

then is easily seen to have two solutions:
(1) normal solution:
A4 (w)=0. (29)

This is a solution of (28) for all temperatures, and gives

the noninteracting conduction-electron  Green’s
function.
(2) condensed solution’:
Aw)=1A (Areal), (A>0). (30)

[This corresponds to a peak in Giw(w) at w=0, of

6 Since completion of this work we have discovered that D. R.
Hamann has derived essentially the same equation independently
(to be published).

71t should be noted that Suhl’s theory, based on an S-matrix
formulation of the problem, implies that the scattering amplitudes
and transport coefficients are smooth functions of temperature
across Tk [cf. H. Suhl and D. Wong, Physics (to be published) ].
This does not, however, preclude a gradual change in properties
in the v1c1mty of Tk [cf. H. Suhl, Lectures presented at the 1966
International School of Physms “Enrico Fermi,” Varenna, Italy
(unpublished)].

REFORMATION OF NAGAOKA EQUATIONS

569
width A.] Here A is determined by
im Jp Jp f €3]
2 N N J-p E—zA
Jp
=—— £ tanh—. (31)
N Jo E+A% 2T

This is a solution providing J<O (antiferromagnetic
coupling) and 7< Tk, where Tk is a critical tempera-
ture determined by

(32)

or
Tx=(2vD/r) exp(N/Jp),

where Iny=0.577- - - is Euler’s constant.

Now, we can calculate the conditions under which
it is permissible to drop the (Jp/N)? term in (26) to
give (28). We notice that as 7’— Tx—, and therefore
A — 0+, (31) may be written

irJo Jp (2 f(8)
0=1+—— ds
2N NJ.p —Ettie

(33)

=14+JGo(0)

(T=Tx). (34)
Hence, everything in the brackets on the left-hand side
of (26) vanishes except the (Jp/N)? term at I'=Tg
and w=0. We therefore must keep the (Jp/N)? term
in the vicinity of Tk.

More prec1se1y, near I'=Tk, the term in the brackets
of (26) at w=0 is (taking AT approximately

J Jp TK-— T 3n%/Jp
-2, 35)
N Tk 16\ NV
which, incidentally, implies that near Tk
A 4Tx—T
—r— (36)
T = Tk

Hence, the (Jp/N)? term may be dropped whenever

|T—Tx| 3x2|J]|p
>— . (37
Tk 16 N

As long as the condition (37) is satisfied, (28) is a good
approximation to (26), and the two solutions (29) and
(30) are valid. Thus for T'<T'k there are two solutions
to the Nagaoka equations. It is easy to verify that the
condensed solution has a lower energy than the normal
solution for T<Txk. Hence the Nagaoka equations
seem to imply that there is, in the vicinity of Tk, some
sort of phase change, where the system changes from
the normal to the condensed solution.

If we consider the normal solution (29), then the
first thing one might try is a perturbative expansion
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of 4(w) in powers of Jp-N. The result of such an ex- where ¥(z) is the digamma function, the logarithmic

pansion is derivative of the vy function. The zeros of H(w) lie on
3n2/To\? i/ Tp the imaginary w axis, and for T sufficiently large there
A (w)=——(———> w[l——(——) are no zeros in the upper half-plane. However, as T is
16\ N 2\N. lowered, for J<O0, one zero moves up into the upper
To [P () To\d half-plane, thus producing, we may assume, a new
- dg___]_l_ol:(__) :l behavior in 4 (w) and invalidating (38). The tempera-
N J_p w—Ettie N ture at which this happens we call T’ and is deter-
3n2/Tp\? wr(Jp mined by
=-—~<—-—> w[l—ZJGo(w)+—(—>:| 32/ Jp\?
16\ N 2\N. O=H(O)=1+]Go(0)———<—> . (40)
T\t 16\ N
+0I:<E> ] - (38)  Using (39) we see that
This solution is presumably valid at high tempera- T /=ﬁ e ]_V_ 1_:?’1'_2 {f ’ (1)
tures, and we may expect it to be valid as long as the e *P Jp 16\ N
expression in the brackets on the left-hand side of (26)
does not vanish. We call this expression H (), or
To [P f©—% 3r/Tm? Ti'=Txe G0 UFIN> T 42)
Hw)=1+= / dsL——z———<—p> e <0
NJ_p w—t+ie 16\N since J<0.
32/ Tp\? ACKNOWLEDGMENTS
= 1+JGo(w—|—ie)——(—-> .
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The s-d exchange model is treated using equations of motion truncated at the lowest nontrivial order, fol-
lowing Nagaoka. The coupled equations are reduced to a single nonlinear integral equation for the con-
duction-electron ¢ matrix, which depends only on energy. An approximation to the integral operator which
treats the Kondo divergence accurately permits this equation to be transformed to a differential equation
which is exactly integrable. The solution agrees with the leading terms of perturbation calculations above the
Kondo critical temperature T'x, and passes through this temperature smoothly, reaching the unitarity limit
at zero temperature. A different analytic continuation of the ¢ matrix is trivially found which acquires non-
physical singularities below Tx. At low temperatures this form is shown to be identical to Abrikosov’s
solution and to Suhl’s solution prior to analytic continuation. The resistivity of dilute alloys is calculated.
Noninteracting impurities are shown to give no contribution to the specific heat. The effective local moment
entering the magnetic susceptibility is found to be almost completely canceled at zero temperature for
spin-} impurities.

I. INTRODUCTION deal of effort has been expended toward a physical
understanding and an accurate calculation of the low-
temperature properties of these systems. Unfortunately,
a unified picture has not yet emerged. This work
represents a ‘“‘second generation” effort, yielding a new
1J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964). solution for the s-d exchange model which is simple,

INCE Kondo’s discovery of the low-temperature
divergence in the perturbation series for conduction-
electron scattering in dilute magnetic alloys,! a great



