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The energy-density —energy-density and energy-density —spin correlation functions are evaluated for the
two-dimensional square Ising model. Results are obtained at zero magnetic field and near the critical point,
i.e., for

The correlation functions are
o=(4J/kT) i (T T,/T—,) i

«1.

(E&&Eo)—(E)'= (2J/&r)oo&PE&o(ot&!) —Zoo(ot&') ]
(Eso o)—(E) (&r )= (2 J/&r) o (&r ) ds s 'e '

2eR

where R is the distance between the points in question and Eo and El are modified Bessel functions of the
second kind. Very similar results hold if the coupling constants are diBerent in the two directions. The above
results agree in form with the structure predicted by the "scaling-law" approach.

I. INTRODUCTION

ECENT theoretical work on critical-point phenom-
ena has emphasized a series of relations eon-

' ~

necting various critical indices. ' KadanoG has intro-
duced an Ising-type model from which he has shown
how to deduce these relations, which he refers to as
scaling laws. ' A wide variety of experimental data con-
6rms the approximate validity of these scaling laws for
real physical systems. ' The model also predicts the
functional form of various spin-correlation functions.
It is our purpose here to calculate two such functions,
the energy-density —energy-density and the energy-
density —spin-correlation functions, for the two-dimen-
sional Ising model and compare with the functional
forms predicted.

In Sec. II we derive the relevant scaling-law predic-
tions. Sections III and IV present the actual calcula-
tions.

II. SCALING-LAW FORM FOR CORRELATION
FUNCTIONS

The Ising-model Hamiltonian is

H= ——,
' Q J(r, r')o, o, —+ho.,= Q (E,—ho, ),

(2.1)

where J(r, r') vanishes except for nearest neighbors,
and E„ is the energy density at point r. It is also con-
venient to introduce e, a dimensionless measure of the

interaction near T„as
e= (4J/hT)

~
T T. ~/To. — (2.2)

In Kadanoff's "derivation" of the scaling laws, the
Ising model is discussed in terms of interacting cells of
spins. The cell variables er, to, 6, J, and e correspond
to the lattice site variables r, o;, h, J, and e. We let the
number of nearest neighbors equal s, and let &r„+t(to ~r)
mean a nearest neighbor to o.,(to ) .

A change in coupling constant and magnetic held
will change the free energy by

3~= —s3Jg (~, +o, )—3h g (o,)
r

=-s»Z &..+ &-»Z &..&.
a a

The sum over r can be replaced by a sum over n times
the number of sites per cell, L", where L is a cell length
and d is the dimensionality of the lattice.

It is postulated that the site and cell problems scale
according to

h= hL*& e= eL", J= JL" (2.4.)
For the purpose of calculating critical fluctuations,
(2.3) and (2.4) lead to the following identifications:

or= L~"t .& ~&sr+, =L~"p.ts.~,. (2.5)

Thus, for e—&0 and large spin separation R=
~
r r'

~,
—

we can write the spin-spin, energy-density —energy-
density, and energy-density —spin-correlation functions
as

f„(e h, R) = (&r o. )= L'i~"& (to to )= L't~ "&f,(», h, R/L),

f«(e, h, R) = (~&or+to"o"+t)=L" "'&tt-t.+tt -t -+t)=L" "'ftttt(e& h& R/L),

fs. (e, h, R) = (o;&r,+to;)=L'+» '"(ts to tts. )=L~» '~fjr. (e, ttt, R/L). (2.6)
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The last equality in (2.6) arises because the p„'s de-
scribe essentially the same problem as the 0,'s, so the

p -correlation functions should have the same func-
tional form as the a-,-correlation functions, but with
variables appropriate to the cell problem.

If we substitute (2.4) into (2.6) and furthermore
demand that the O.,-correlation functions be independent
of the arti6cially introduced cell length I., we And that
f„,fss, and fs. should have the forms

f =esÃ *)Iuf—&(siluR sk wl*)—

fzc es(& —w)lufz—(eilwR &k wlu) .
-

fz, ets& *—w)lu f-z(—eilwR, sk ul*) . - (2.7)

For the two-dimensional Ising model, x=15/8 and
y= 1, so that (2.7) becomes, in zero magnetic field,

f..=e"'fi(eR),

jps ——s'js (eR),

fE, es "fg (eR——) .

(2.8a)

(2.8b)

Equation (2.8a) has been verified previously. ' In Secs.
III and IV of this paper we verify (2.8b) and (2.8c).

III. ENERGY-DENSITY-ENERGY-DENSITY
CORRELATION FUNCTION

It ls well know'D that thc two-dimensional Ising
model can be reduced to a problem involving non-
lntcl actlDg fcl nllons. Kc usc this 1cductlon ln thc
particular form developed by Kadano6. ' He used a
set of fermion variables b;~+ and b;~ which refer in
some sense to the lattice point {j, k) . In terms of these
variables, the energy density

(3 1)

can be written as

E,s Jt'cosh2E*+——(2/s) sinh2E*b;, s+I,+b;u 'j

+(2/s) ~'»u+4 (32)-
For generality, we consider diferent horizontal and
vcI'tlcal coupling constaDts.

%C seek to evaluate the correlation function

f~~(», k=0, R) = (E»Ess)—(Ep, )(EN)), (33)
where R is the distance between (0, 0) and (j, k).
Clearly expression (3.3) involves products of four f)

operators. However, this is a problem of noninteracting
fermions. In this kind of problem it is always true that
for fermion operators with different indices,

(M lkllklll ) (kkf ) (kllklll ) (kill ) (klklll )+ (Mill ) glklt )
(3.4)

We can use (3.4) to simplify (3.3) . A further simplifica-

4 J. P. Kadanoff, Nuovo Cimento 448, 276 (I966).
~ T. Schultz, D. Mattis, and E. I.ieb, Rcv. Mod. Phys. 35,

856 (1964).
6 Scc Rcf. 4. Throughout the rest of this paper& we Qsc thc no-

tation and many of the results of Ref. 4.

with
G(p P.) =v(p. )/LV{P.) —exp(sp*) 3 (3 8)

It is convenient to separate the p, dependence from
the 2&2 matrix dependence. This is done in Appendix
1, where it is shown that

dp—exp(spk) exp[—v(p) l j l)~(p)— 2m
g(jk) =

for j(0, (3.9)

and q(p) and the 2&&2 matrix A(p) are defined in
Appendix 1. Since we are interested in g(jk) for smail
e and large spin separatio11, i.e., large

~ J ~, the 111ain

contribution to g(jk) will come when y(P)((1. Thus,
we approximate y(p) sinh2E (s'+p')'I a11d extend
the limits of integration to +~. %C then shift the
contour of integration through the substitution

p=e sinhLN+I tan-'(k/
f j [

sinh2E') j, (3.10)

and we find that the four components of g(jk) may be
cxplesscd 1D ter1Tls of thc modldcd Bcsscl functions of
the second kind, Eo and E~, where

E„(x)= exp( —x coshl) coshnudN. (3.11)

Speci6cally we obtain~

fx~(s, k=0, R)
= L( J' sinh2E*+ J')'/s']s'[Eis(eR) Ess(eR) j, —

(3.12)
' J. Stephenson PJ. Math. Phys. '1, 1123 (1966)Q has used

Pfaf6ans to derive the limiting forms (3.14) along a row of the
square lattice.

tion in fgs occurs for large R, for then the difference
between k and k+1 in terms such as (b,s+bss ) and
(b, ,s+I,+bi) ) is negligible. These simplifications enable
us to write (3.3) as

f8'(s, R) =4(J sinh2E*+J')'

&&LC»+& )(f -& )—(k.+& -)(f' -& )3 (35)
In evaluating the right-hand side of (3.5) it is con-
venient to consider the four expectation values as the
four components of a matrix:

g{jk)=I (3 6)
(((&» &o~)-+) ((4 &~)-+))

Here the ( )+ means that the b operators are to be
ordered with respect to j with the largest value of j on
the right, and. a minus sign is introduced if the b's have
to be interchanged.

Thus, (3.5) involves the determinant of this matrix.
The components of g( jk) were evaluated in Ref. 4
where lt was shown that

dP* dPu
g(jk) = "

exp(VP*) «p(skp. ) ~(p*, P.),
2Ã — 2m
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where
R'=j ' sinh'2E'+k'. (3.13)

1 ~
—2'

fss —( J sinh2E, + J')'-2. R
(3.14a)

We may replace E* and E' in (3.12) by E,= J/'kT, .
When the vertical and horizontal coupling constants
are equal, sinh2E, =1 and the complete circular sym-
metry of f~E is apparent. Expression (3.12) verifies the
scaling-law prediction, Eq. (2.8b) .

For very large 8, i.e., ~R))1,

whereas for very small e, i.e., eR«1,
lsd [(J sinh2E, +J')'/or' ](1/R') (3 14b)

We may use (3.12) to calculate the specific heat near
T,. The specific heat per site is

~=(1/kT) Z [&E,.~-&-&~;.)&~-&] (3»)
(i,&)

Ke expect that the main contribution to this summa-
tion over (j, k) will come from large R. Then we may
use (3.12) and also replace the summation in (3.15) by
an integration over E, where the lower limit is R;„&1.
Then the specific heat is

2Ã COC=, , Rd Rfsg (oR)
k T sj.nh2E g

4 T' sinh2E'
(J sinh2E*+ J') '

xdx[Ei'(x) —Eo'(x) ]
—2( J sinh2E*+ J')'

[(oR;„)'Eio(oR;.) —(oR; ) 'Eo'(oR; ) —oR;„Eo(oR;„)Ei(oR;„)]. (3.16)
xk T' sinh2E'

Since eE;„«1,we can approximate

E'i(oR;„) 1/oR;„,
Eo(oR;„) —ln (oR;„).

Then expression (3.16) simplifies to
—2 (J sinh2E*+ J') '

C lil oR~j~
mkT, 2 slnh2E,

2( J sinh2E*+ J')'
lnc—' (3.18)

To evaluate these expectation values we borrow
another trick from Ref. 4. Consider a generalization of
the matrix in Eq. (3.6), so that, e.g., the upper left-
hand corner is

g'Vk+&'k'+) =((»'+b'+ )+&/& oo& (43)

and similarly for the other three elements. Above T„
expression (4.3) is 0/0 indeterminant. Below T„(0'oo)
does not vanish, so that (4.3) is well defined then. In
terms of g' and g, (4.2b) becomes

and
L &»,&+i,+b~o—«o) (b~ o+i,+bj&—) &«o &]

[&b,'+b,' «o&—&4+4 )&«o)]

is negligible (see Appendix 2), so that (4.1) becomes

fI.:. (2/i) (J sinh2E"".+——J')

X[&b I+b i—ooo) —&b,oybv —) &«o)] (4 2b)

' L. Onsager, Phys. Rev. 65, 117 (1944).

which is Onsager's famous result.

IV. ENERGY-DENSITY-SPIN CORRELATION
FUNCTION

This correlation function is

fz.= (&,i«o& —&&,a) &«o)

= (2/i) J sinh2E*(b; o~i+bii ooo&

+(2/) J'(b +b'- )
—(2/i) J sinh2E*(b; i+i,+b,o )(o'oo)

-(2/) J'&b;,b; &&--&. (4.1)

As e—&0 and R—+~, the diGerence between

fs = (2/i) ( J sinh2E, + J')

&&[g'( jk+jk —) —g( jk+jk —)]&«o& (4.4)

Since the 6 s obey an equal j anticommutation relation,
we can write

g'(~'k+&'k —) —g(~k+&'k —)

= (—i/2) Trr2[g (j kj k) g(jkjk)], (4.5—)

where Tr means trace over the 2/2 matrix. Then
(4.4) may be written as

fE, —(o.)(J sinh2E, ——+J') Trro[g'( jkjk) —g( jkjk)].
(4 6)

We proceed to express g' in terms of g by writing an
equation of motion for g . This is done in a manner
exactly analogous to Ref. 4, and we obtain

g'( j+1,k, j', k')

= Q q(k —k) [1—2gi(jk) ]g'( jkj'k')

b;,'V(k k') [1—2m( —jk') ]. (—4.7)
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Here
rn(jk) =1

=0
ifj=0 and k&0

otherwise. (4.8)

The matrices g and g have matrix elements

For the following calculations we want to pass to
another matrix notation. Thus, we consider g' as a
very large matrix whose rows are specified by (jk) and
columns by (j'k'). Each element is actually a 2X2
matrix. If a(jkj'k') is an element of another such
matrix, then matrix multiplication is

Q g'( jkyk) a( ply'k') = (g'a) rs, o . (4.9)

g(j kj'k') = —«p[—~ Ij j'
I

+—ip(k k') ]-
— 27r

X-,'[1+c,' (p) c;— (p),]
X ——,'[1—c,"(p)c, "(p)r,]

for j&j'

for j&j',

the results already derived in Ref. 4, Sec. 3. The main
idea is to factorize the matrix pe in terms of matrices
cp and c; which have certain important analytic proper-
ties. This factorization is the Wiener-Hopf technique
for solving this problem. Here we simply list those
results necessary for this calculation. They are

q( jkj'k') = 8 'g(k —k')

n( jkj'k') = &r~'4s nt(jk) (4.10)

co(jkj'k') =8„—exp[iP (k—k') ]co(P)," —.2x

We also define a translation operator T such that c;(jkj'k') = 5y —exp[iP(k —k') ]c;(P)" —.2~
(&g') ' =g'( j+1,k, j', k').

Then Eq. (4.7) becomes

Tg'= g (1—2') g' —q (1—2') .

(4.11)

(4.12)

'gCp+ 3g=Cp+ 3g

qc', "g=yc, ",
2'ggri= ri+r/co ocr, ororI)

From Ref. 4, the same procedure for g yields

2'g=m ~ «g= —(2'—V) '~ (413)
(4.15)

(1—2gg) r= 1+2gri(1—2rigg) t= 1—2gco"ric, "ro.
g'=2g~g'+g 2g~-
g'= (1—2gri) '(g —2gri) . (4.14)

(4.16)or

Equation (4.16) is used to evaluate (4.14) and then
(g' —g);&,& is found with the use of (4.15) . Finally the
trace indicated in (4.6) is taken, and the result is

We can make a unitary transformation in (4.6) without
changing the value of the trace. ' Then we can use all

Rearranging (4.12) and multiplying on the left by Thus
(T—q) 'yields

fx, o(J sinh2E*+——J') (o ) P rl (k*)
1I' jp dp

exp[ —Ij I (p+&') ]exp[i(p —p') (k—k*)]— 2' 2'

co(p) c'(p') c'(p)
c'(p') co(p) co(p')

o(P )
(4 17)

c'(p)

Q ti(k*) exp[i(p —p') (k—k*)]= exp [i(p—p') k]
1—exp[i(p —p') ]co(p) = sinhE'(e —ip)'I',

c;(p) = sinhE'(e+ip)'I',

y(p) = sinh2E'(os+ps) rlo.

and we may replace the denominator by i(p' —p) in-
side the integrals. We also shift he contour of integra-

(4 1g) tion [see Eq. (3.10)], i.e., let

We are interested in the case e«1 and
I j I

))1.Then The summation
only small p and p' values are important in (4.17) . In
this limit,

9 In Ref. 4, a unitary transformation was made on g. The same
transformation happens to convert rg and —v2. Ke have included
this minus sign in expression (4.17).

p= e sinh(u+ie),

p'= e sinh(u' —i8) . (4.19)
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When these substitutions are made in (4.17) we find that fII, is independent of 0 and is

2 . , "dudu' exp[—0R(coshu+ coshu')] cosh(u/2) sinh(u'/2) sinhu'
fe. ———(Jsinh2E*+ J') (o )0

x2 coshu coshu'0 0
(4.20)

Further substitutions of

r cosg= sinh(u'/2),

r sing= slllll(u/2)

allow one to do the p integration, and the final sub-
stitution

al ——sinP sinh2Eo cosh2E',

gp = cos112E slnh2E —slI1112E cosh2E cosP~

ap ——sinp sinh2E* sinh2E',
(A1.3c)

s= 20R(1+r') (4.21b)

allows one to express the energy-density —spin-correla- Then Eq. (3.8) can be written as
tion function below T, as

fk, = —(o )(J sinh2E', +J') d~ ~
—'e—s (4 22)

Since (o )~cljp, then fs, 00~0fp(0R), which explicitly
verifies the scaling-law prediction, Eq. (2.8c) .

For very large R, i.e., eR&&1,

fE. ((0 )/2——Ir) ( J sinh2E, +J') (e "~/20R'). (4.23a)

For very small e, i.e., eR&(1,

f,.=(( )/2 )[(J i h2E, +J')/R). (4.23b)
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exp& (P.) 3j1(P.)
e&—exp(ip, )

e &B(p„)

e l' —exp(iP, )

(A1.4)

g('&) =

As T—+T„E'~E*,and we let

. (A1.5)
if j&0

Now the p, dependence has been separated from the
2X2 matrix dependence, so that the p, integration in
Eq. (3.7) can be performed. We use contour integration
and the fact that y& 0 to obtain

X A(p) if j&0

.=2
I
E'—E* I/»nh2E'. (A1.6)

APPENDIX 2
APPENDIX 1

The physical content of the approximation in Eq.
The eigenvalues of the 2X2 matrix q(P) in Eq.

(3.8) are e+&&», where y) 0 and satisfies
(0jkoj+I,kopp) —'(ojk&jk lopp)) , — (A2 1)

cosh' = cosh2E ~ cosh2E' —cosp sinh2E* sinh2E'.
i.e, for large E. it does not matter whether the two

(A1.1) spins near (j, k) are along a row or a column. Relation
(A2.1) is for a symmetric lattice (J= J'); when JW J'
an extra factor of sinh2E* adjusts for the asymmetry.

From Eqs. (3.1) and (3.2) we have that

We can write

V(p) = j1 (P)e'+JI(p) e ',

The author wishes to thank Professor L. P. Kadanoff
for suggesting this problem and for several helpful chen the coupling constants are equal, e reduces to
comments on how to simplify the calculations. Eq. (2.2).

where A and B are the projection operators onto the
eigenstates I

e+&).
Let

2 0'&go ~'+1,y cosh2E
sinh2E* sinh2IC*'

~11 ~12

!jl =!
+pl Opp)

(A1.3a) I
—.

I 4+4-=o,k,k-l.ij (A2.2b)

Some algebra shows that

Cll= (1 822) = 0[1+(EGI/2 Slnh'r)'])

alp
——apl* ——(—al+iap) /2 sinhy, (A1.3b)

Multiplication of Eqs. (A2.2) by o'pp shows that
(bj,k+I,+b,k opp) differs from (b,k+bjk opp) by a constant.
But if we subtract the uncorrelated parts, i.e.,
(6& k+1 +6~k ) (opp ) an d (bjk+ljk ) (o pp ), as ls done 111

Eq. (4.2a), the extra constant cancels.


