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High-Temperature Expansions for the Classical Heisenberg Model.
II. Zero-Field Susceptibility"
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The high-temperature series expansion of the zero-Geld magnetic susceptibility, p/pz „,=1+
Zi 1 a~(J/kT), is related to the diagrammatic representation of the corresponding high-temperature
expansion of the zero-field static spin correlation function (S~ S, )y presented elsewhere. The erst nine
terms al for loose-packed lattices and the erst seven terms for close-packed lattices in the susceptibility
series are explicitly obtained in terms of Domb's "general lattice constants" p&, . The general lattice ex-
pressions are then used to evaluate these a& numerically for three two-dimensional lattices and for three
cubic lattices. Finally, the a& are employed to discuss two questions of current interest: (1) Does the critical
exponent y—in the assumed form of the divergence of x, x (T—T,) & as T—+T,+—have the value 3 for
the fcc, bcc, and sc lattices? (2) Do high-temperature expansions suggest a phase transition (T,&0) for
some two-dimensional lattices with nearest-neighbor ferromagnetic interactions' It is argued that extrapola-
tion suggests p is de6nitely greater than —, for the fcc, bcc, and sc lattices, and that T. is appreciably
different from zero for the plane square and triangular lattices.

I. INTRODUCTION

t lHE high-temperature expansion of the zero-held..susceptibility

x/xo-. .=1+Q ztt( I/&T) '
l=1

is difficult to extend beyond order /=6 for general spin
quantum number S because of the enormous labor
involved. ' Recently it was shown that order-of-magni-
tude simplifications occur when one treats the non-
commuting quantum-mechanical spin operators oc-
curring in the Heisenberg Hamiltonian as commuting
vectors of length 8=—LS(5+1)]"', suggesting that
many more terms in the series can be obtained "semi-
classically" than "quantum mechanically. '" Moreover,
useful results in the critical region (T)T,) can be
obtained from this classical Heisenberg model or "infi-
nite-spin approximation, " the errors in various critical
properties of interest being small and decreasing rapidly
with S.

Elsewhere' the simplifications of the classical Heisen-
berg model were exploited to obtain the diagrammatic
representation of the first nine coeS.cients n~ for loose-
packed lattices and the first eight n~ for close-packed
lattices in a high-temperature series expansion of. the

~ This work constitutes part of a Ph.D. thesis submitted to
the Physics Department of Harvard University, January, 1967.

t Operated with support from the U.S. Air Force.
' Recently additional terms have been obtained for S=~ by

methods practicable only for 5=-,'. See C. Domb and D. W.
Wood, Proc. Phys. Soc. {London) 86, 1 (1965); G. A. Baker, H.
E. Gilbert, J. Eve, and G. S. Rushbrooke, Phys. Letters 20,
146 (1966).' H. E. Stanley and T. A. Kaplan, Phys. Rev. Letters 16, 981
(1966)

'H. E. Stanley, preceding paper, Phys. Rev. 158, 537 (1967).
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In Sec. II we utilize these results to calculate the first
nine terms a~ for loose-packed lattices and the first
seven terms for the close-packed lattices4 in the suscepti-
bility series Eq. (1) for the classical Heisenberg model
with nearest-neighbor (n.n. ) exchange interactions. '
Following previous practice, we shall first obtain ex-
pressions for the susceptibility coe%cients uE in terms
of "general lattice constants, '" and then, using the
general lattice expressions, we will evaluate the a~

numerically for three two-dimensional lattices (plane
square, triangular, and honeycomb) and for three
three-dimensional lattices (fcc, bcc, and sc) . Before the
present work. was finished, Wood and Rushbrooke
independently obtained and published eight terms a&

4 We do not include the dose-packed lattices {e.g., face-centered
cubic and plane triangular) in our eighth- and ninth-order cal-
culations. For example, in order 3=8 there are roughly four times
as many diagrams needed for the close-packed as compared to
the loose-packed lattices. Also, there is somewhat less motiva-
tion for obtaining additional terms in the series for the close-
packed lattices, since the terms are more regular for close-packed
than for loose-packed lattices.

5 Some of the results of this work were presented in November
1966 as parts of two talks at the Twelfth Annual Conference on
Magnetism and Magnetic Materials, the proceedings of which
will appear in J. Appl. Phys. (see Refs. 10 and 13). A pre-
liminary account of this work is also given in H. K. Stanley, M. I.
T. Lincoln Laboratory Solid State Research Report No. 4, DDC
647688, 1966, (unpublished) .See also Bull. Am. Phys. Soc. 12, 134
(1967); 12) 334 (1967).

6 C. Domb, Advan. Phys. 9, 330 (1960), Appendix III; C.
Domb and M. F. Sykes, Phil, Mag. 2, 733 {1957).'P. J. Wood and G. S. Rushbrooke, Phys. Rev. Letters 1V,
307 (1966). For a discussion of the relation between their method
and ours, seeAppendix A of Ref. 3. See also G. S.Joyce and R. G.
Bowers t Proc. Phys. Soc. (London} 88; 1053 ('1966)], who have
described an alternative procedure of extending Eq. (1) classically.
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ZERO-FIELD SUSCEPTIBILITY

Tsar.z I. The susceptibility coeNcients a~ (notation as in Ref. 6).

.=(-:-) (-+1)
~ = (-')' ( +1)

E3j'I:1/5jt (5~' —3) (0.+1)—30p j
as ——[ss]'[1/5][(5o'—6o ) (a+1) —12 (5o+2) Ps —40P4]
as = [s]s[1/25][5(Sa —9a +18/7) (o +1) —6 (75as+40a —78) Ps —80 (So +2)Ps —250Ps+120Pso]
gg = Lz g $1/175/I (175o —42003+243a) (0+1)—6 (700o 3+420o. —13020.—891)p3 —56 (750. +400 —93)p4 —700 (50+2) pg

+84(200-+89) pg —2100pg+840(pg +pq) +1400pg,j
os =[s] [1/875][5 (175a —525o +459o —81) (o.+1)—30(875a +560o —2268o —1950o +804) ps

—32 (875o'+525o —1890o —657) ps —350 (75o'+40o.—108)ps+12 (1050o +6230a+7527) ps, +70 {—60 (So +2)ps

+24(So+9)pg~+3(40a+193) pgf+40(5o. +9)pg, +259.2pgd —175p7+60(p7, +p7f, +p7f)+132p7,
+100(p7d+ p7 ) +990p7g Ij

os=[so]s[1/875][5(175o'—630o'+738o' —270o) (o+1)—8(4375as+2800a' —12915a'—6096o+5637) P4

+70{ 6(75o—'+40o 123)p—s+7 2(25o'.+60a+213)ps +12(10o+52)pso —200ps+60psa+100psk+1080psr}]
os = [s]s[1/875][(875as—3675a +5400o —3024a +4050/11) (o+1)—8(5250as+3500a —19320as —10404os+16080o+4380) Ps

+70{—24(25os+15os —69o —867/35) Ps+24(10os+27o +124.8o +159/7) Pso+6(30a +208o+2368/35) Pro
—80(5o+2) ps+8(5o'+9) (3pss+5pss) +144(15a+13)psr+172. 8pss+100ps&+60(pss+ps&)+132ps~}]

for the fcc, bcc, and sc lattices. Although their "moment
expansion" of the partition function differs from our
use of the spin correlation function, we obtain the same
numerical values of the coefficients a~ when we specialize
to the cubic lattices they treated.

In Sec. III we analyze the extended series (1) by
Pade approximants and "slope methods" and consider
two questions of current interest: (1) Does the critical
exponent y—in the assumed form of the divergence of

x, x~(T T,) & as T——+T,+ have the value —x~ for the
fcc, bcc, and sc lattices? (2) Do high-temperature
expansions suggest a phase transition (T.WO) for soine
two-dimensional lattices with nearest-neighbor ferro-
magnetic interactions? We argue that & is definitely
greater than 3 for the fcc, bcc, and sc lattices, and that
extrapolation to T,=o for the plane square and tri-
angular lattices is much less reasonable than extrapo-
lation to nonzero T,.

II. CALCULATION OF THE SUSCEPTIBILITY
COEFFICIENTS

For a Heisenberg Hamiltonian

3C—=—2JQ St So gtseHQ St, —(3)
fsg f

with nearest-neighbor exchange parameter J, the zero-
field susceptibility per spin x and the zero-field spin
correlation function (Sr S, )e are related by

=(g' 'W»~)Z(S S.),
f, g

as may be readily verified upon differentiating the
partition function with respect to the magnetic field.
Hence the susceptibility coefficients a& in Eq. (1) may
be obtained directly from the a& in the high-temperature
series (2) for (Sr So )e by means of the formula

as ——(P/S(S+1) (—J) 'l!]—' Q oss (5).
f, g

In the preceding paper a diagrammatic representation
as= +sess(d) was developed for the coefficients csi in

(5) . Now all diagrams d of the same "topological type"
r contribute equally. Thus the summation +to +on i(d)
may be replaced by 2~,n&(r) A. (r), where A(r) denotes
the number of occurrences on a given lattice of the
diagram of topological type r. (For example, the num-
ber of four-sided polygons which can be placed on a
square lattice is E; the number of six-sided polygons
is 2N'. )

The above is of general validity; henceforth we
specialize to the classical Heisenberg model, for which
the nonzero ni(r) are given in Figs. 1—5 of the preceding
paper. Hence to find the coefficients a& we need only
calculate the lattice factors A(r). We first exp.ress the
A(r) in terms of Bomb's "general lattice constants, '"
in order to obtain expressions for the a~ valid for any
lattice of equivalent spins. For example, we write 1Vp„
for the number of rt-sided polygons and ELso'/2 —3p8j
for the number of three-step chains, where 0—=s—j.
and s is the lattice coordination number. The "general
lattice" expressions thereby obtained are given in Table
I. The lattice constants ps, have been tabulated for
common lattices by Domb, ' so that it is a simple task
to compute numerical values for u~ from Table I. In
Table II we list the a~ for the fcc, bcc, and sc three-
dimensional lattices and for the triangular, square, and
honeycomb two-dimensional lattices.

III. APPLICATION TO CRITICAL PHENOMENA

We now utilize the extended series in Eq. (1) to
discuss two questions of current interest:

(1) The divergersce of 7t as T +T,+ is assumed to be-
of the„form x~(T—T,) r Does the critical ex. porserst y
have the valsse 7'r for the fcc, bcc, arid sc lattices?

Previous arguments' ' for y = 3 have been based upon
the assumption that the more classical the model, the
more rapidly the terms of the high-temperature series
settle into a smooth behavior. This assumption, coupled

8 C. Domb and M. F. Sykes, Phys. Rev. 128, 168 (1962).
9 J. Gammel, W. Marshall, and L. Morgan, Proc. Roy. Soc.

(London) A275, 257 (1963).
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TABLE II. The susceptibility coeKclents cp.

Honeycomb
net Square Triangular Simple cubic

Body-centered
cubic

Face-centered
cubic

3
:4

6
7

9

2.0000
2.6667
3.0222
3.3185
3.6797
3.5759
2.8846
2.6796
3.2328

2.6667
5.3333
9.9556

16.9086
27.2404
42. 2122
63.0670
91.6638

129.4967

4.0000
13.3333
39.8222

110.6963
292.3096
741.8552

1822.0514

4.0000
13.3333
43.3778

136.2963
424. 5446

1 301.5034
3 967.8674

11 998.0391
36 150.6748

5.3333
24. 8889

114.7259
509.7877

2 249.9706
9 779.9445

42 335.1558
181 758.3614
778 141.1626

8.0000
58.6667

413.8667
2 855.3481

19 415.8527
130 694.4263
873 209.9634

5 800 796.3979~

~ From Ref. 7.

with the observation from the first six terms that
p(S= ~) =—„has led to the proposals' that y(S) =~4

independent of spin and lattice. "Here we consider the
effect of additional terms ai upon p(~). We find

y(~) to be several percent larger than, a~ by means
of extrapolations based upon both the method of Pade
approximants and the simp/er "slope method. " The
former method is well known', we shall concentrate
our discussion on the slope method. If y diverges as
T~T,+ with a power law, then for large 3

pi= (~i/~i«-i)~~. L1+ (r—1)/6, (6)

so that the limiting slope of a plot of ratios of successive
coefficients against 1// will be proportional to y —1.
Here t,= T,/T~, an—d Tetr is the critical temperature
predicted by the molecular-6eld approximation.

The ratios p~ for the fcc, bcc, and sc lattices are listed
in Table III and plotted against 1/1 in Fig. 1. The
straight lines shown were chosen in such a way as to
weight the last few p& more heavily than the early p&.

They correspond to y—1.33 for the fcc and bcc lattices,
and p—1.37 for the sc lattice.

Contrary to the appearance of the top curve in Fig. 1,
even the last few p~ for the fcc lattice do not lie on a
straight lin- rather, they possess a smu/l bit steady
downward clrm, timbre. A more refined method of esti-
mating the limiting slope (as l—+~) could be to de-

termine the slopes of successive "straight-line extrapo-
lations" (SLE's) given 6, 7, 8, ~ ~ terms in the series,
and then to extrapolate the slopes of these successive
SLE's to t= ~. But this "second-order" extrapolation
would require a subjective choice of the best SLE for
each order, A more precise procedure is to choose
successive straight lines passing through p~ and p~ ~,

and to calculate numerically the corresponding func-
tions

&i, i-i —=p~+ (~—1) (pi —pi-i),

vi, i—i=1—~L(«, i-i—pi)/~~, i-ill (8)
"Recently Stanley and Kaplan suggested (essentially on the

basis of the first six terms) that there exists a slow but neverthe-
less clear variation of y with S for fcc, bcc, and sc lattices, and
that for the spine/ lattice with n.n. interactions between the 8
sites, the value of p predicted by extrapolations (y~ 1) may
di6er from 43 by as much as 50%. See H. E. Stanley and T. A.
Kaplan J. Appl. Phys. 38, 977 (1967).

0.88—

0.86—

THREE- DIMENSIONAL LATTICES

{s=~)

0.84—

0.82—

P 080—
~tl

0,78—

0.74

0.72—

Oo70 I 'I t
I I I I
9 6 T 6

t /I.

Fzc. 1. The ratios p~—=a~ jaia~ 1 of successive terms in the sus-
ceptibility series (1) for the face-centered cubic (fcc) body-
centered cubic (bcc), and simple cubic (sc) lattices.

which approach t, and p, respectively, in the l—+
limit. These new sequences t~, ~ i and y~, ~ & determined
from the successive "two-point" SLE's for the fcc
lattice are plotted against 1/l in Fig. 2; we see that the
t&,» and p&, & & are, respectively, monotonically decreas-
ing and increasing. Because of this unambiguous "down-
ward curvature" in the plot of pi versus 1/l, the SLE
chosen in Fig. 1 would seem to be in error. The fact
that the last four p& lie very nearly on a straight line
motiva, tes the SLE to l= ~, and the identification of
this intercept, 1.38, with the value of y; reasonable
extrapolation of the plot of fi suggests that t,= T./TM—
0.792. Ke obtain the same limiting values for y and t,
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TAsr.z III. The ratios p~=—a~/a1a~ 1.

Honeycomb net

1.000000000
0.666666667
0.566666667
0.549019608
0.554421769
0.485889571
0.403338945
0.464463768
0.603231517

Square

1.000000000
0.750000000
0.700000000
0.636904762
0.604138852
0.581104972
0.560268112
0.545038309
0.529775510

Triangular

1.000000000
0.833333333
0.746666667
0.694940476
0.660161109
0.634477361
0.614018545

Simple cubic

1.000000000
0.833333333
0.813333333
0.785519126
0.778716356
0.766411429
0.762169996
0.755950112
0.753262147

Body-centered
cubic

1.000000000
0.875000000
0.864285714
0.833161157
0.827539633
0.815006020
0.811644866
0.804997457
0.802722179

Face-centered
cubic

1 F 000000000
0.916666667
0.881818182
0.862399771
0.849977467
0.841415700
0.835163737
0.830383963

Thus a plot of p~' against 1/t should also approach the
critical temperature t, with limiting slope proportional
to y —1. Such plots of p~'were constructed and were

0.8 I 5 I.40

0.8 I 0—
FCC (S = co)

---- &-WR

0.805 l.35—

0,800
I

v

0.?95 l.30—

0.790 —'

0.785 I+25
I I I

8 7 6
I I

5

Fxo. 2. The sequences t~, ~ ~ and yg, ~ ~, defined in Eqs. (7)
and (8), which should approach t,=—T,/T~ and y, respectively,
if x diverges with a power law as T—+T,+. The extrapolations in-
dicated by the dashed lines suggest t,—0.792 and y—1.38 for the
face-centered cubig lattice.

when we plot against 1/t the residues and roots of the
Pade approximants P~' and extrapolate to l ==- ~; higher-
order Pade approximants are not inconsistent with

y—1.38 and t.=0.792 for the fcc lattice.
Direct extrapolation is unrealistic for the bcc and sc

lattices since the ratios p~ oscillate from term to term.
Improved results cue be obtained by extrapolating the
functions t&, & 2 and p&, & 2 given by successive straight
lines passing through p~ and p~ 2. However, a more
satisfactory procedure is as follows: If x~(T T.)—
as T—+T.+, then for large l

found to be almost straight lines; this suggests we
apply the same idea of successive two-point SLE's used
above for the ratios p~, defining new functions t~, ~

~'

and y«&' by equations analogous to Eqs. (7) and (8).
Successive values of t~, ~»' and y~, ~

~' for the bcc and sc
lattices are plotted against 1/t in. Figs. 3 and 4, re-
spectively. For the bpc lattice, these sequences are seen
to oscillate with "amplitudes" that'seem to be de-
creasing with larger and larger /, suggesting the "ex-
trapolation envelopes" shown on Figs. 3 and 4, which
converge to t.=0.77 and y—1.38. For the sc lattice,
the sequences are less regular and reliable extrapolation
appears impossible, although the plausible extrapolation
envelopes indicated in Figs. 3 and 4 suggest the values
t,—0.72 and y—1.42. Extrapolations from sequences of
Pade approximants are consistent with our conclusions
for the bcc lattice. For the sc lattice, neither the Pade
approximant sequences nor the sequences t&, & 2 and
y~, ~ 2 converge any better than the sequences t~, ~

~' and
p~, ~

~' plotted. However, the "plausible" values of t,
and p suggested by all three extrapolation methods
appear to agree.

In summary, then, our analysis suggests that p does
rot have the value ~ for the fcc, bcc, and sc lattices.
In fact, our extrapolated values of p are slightly larger
than the value p=1.36 proposed by Wood and Rush-
brooke for all three lattices on the basis of eight terms
(and indicated by WR in Figs. 2—4).r Although we
predict y—1.38 for the bcc and fcc lattices and y—1.42
for the sc lattice, the series for the sc is unfortunately
not smooth enough to say with confidence that 7 is
indeed lattice-dependent. '

(2) Do high temperature expan-sions suggest a possible
phase transition (T.NO) for some two dimensional lat-tices
with n.n. ferromagnetic interacti onsr

For two-dimensional Heisenberg lattices with short-
range interactions, the spontaneous magnetization or
"order parameter" is zero" and it is commonly believed
that no phase transition can occur. However, there is
the possibility —previously pointed out—of a phase
transition to a low-temperature state with zero spon-
taneous magnetization but with an infinite zero-Geld

~' N. D. Mermin and H. Wagner, Phys. Rev. Letters 1V, 113$
(1966).
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OeT8— 'BCC

0.76

0,74

0.70

SG'
~~gf

Q

fff f f . f
I987 6 5

WR —--

FIG. 3. The sequence tz', z I, defIned by Eq. (7) with primes on
all quantities, should approach t, as l~~. The "extrapolation
envelope" indicated for the body-centered cubic lattice indicates
t,~0.770. For the simple cubic lattice, the sequence plotted (as
well as the sequence tz, z z and the various sequences of Pade
approximants) is too irregular to aGord reliable extrapolation.
However, if one imagines the numbers tz, ~

I' to be approaching the
"extrapolation envelope" indicated by the dashed line, then one
would expect t,=0.720 for the sc lattice.

I.50— Bcc

olation to T,=O. However, our present more careful
method of taking into account the downward curva-
ture does give appreciably lower values of t, (even on
the basis of only six terms) than reported previously. "
In Fig. 6 are plotted the successive tt, t r (corresponding
to straight-line extrapolations through pt and pt r) for
both square and triangular lattices together with tz, z

I'

for the square net. It again appears that extrapolated
values of t.=0 are unreasonable: The regularity of the
sequence tz, z ~ for the triangular lattice suggests t,—0.4,
and consideration of gz, g j and fz, z y together for the
square net suggests t,—0.3. Moreover, the roots of Pade
approximants extrapolate near the suggested values of
t, . Of course, extrapolation from a finite number of terms
of an infinite series never constitutes a rigorous proof;
however, our analysis of the extended series for the
square and triangular lattices supports the original
suggestion that high-temperature series expansions indi-
cate y diverges at a nonzero T, for some two-dimen-
sional lattices.

The ratios pz for the non-Bravais honeycomb lattice
listed in Table III are seen to be quite irregular. This,
of course, does not mean that the critical temperature
is zero for the honeycomb net, but means only that

susceptibility. " '4 To our knowledge, not even a plausi-
bility argument has been presented against the existence
of such a phase transition. However, Stanley and
Kaplan have argued that for some two-dimensional
lattices extrapolations to nonzero T. are as reasonable
as for three-dimensional lattices. ""Their extrapo-
lations were based upon the 6rst six terms in the high-
temperature series (1) which are available for all 5.
The eBect of additional terms for any spin value would
certainly be useful in connection with this question, "
and consequently we have computed a7 for the tri-
angular (close-packed) lattice and ur —as for the plane
square and honeycomb (loose-packed) lattices (see
Table II).

In Fig. 5 we plot pz for the triangular lattice and
pz+&' for the square lattice. The downward curvature,
although greater than for the three-dimensional lattices
discussed above, is not su%.cient to suggest an extrap-

l.40—

1.50—

f,40—

),50

sc (s =m} r
r

0 r p

ro

11 I I I

t I I l I

9 8 7 6 5

&rE

WR----

'~H. E. Stanley and T. A. Kaplan, Phys. Rev. Letters 1'7,
913 (1966).

"H. E. Stanley and T. A. Kaplan, J. Appl. Phys. 38, 975
{1967).

'4 For example, if at large It' the spin correlation function
(So Sg)p E &, then xo-Zg(SO. Sg)p~~ for y(2, but the
spontaneous magnetization is zero (see Ref. 13).

@ For S=&~, u7 is negative for the square and honeycomb nets.
LH. K. Stanley (to be published) j.

Fro. 4. The sequence y~, ~
&' de6ned by Eq. (8) with primes on

all quantities. The same statements made in the caption to Fig.
3 apply here: The sequence y&, z 1' seems to approach y—1.38
for the bcc, and if one imagines the corresponding numbers for
the sc lattice to be approaching the "extrapolation envelope"
indicated by the dashed line, then one expects y—1.42 for the
sc lattice. The latter conclusion, if made, would contradict the
common belief that the critical indices {in particular y) are
identical for all three-dimensional lattices. R indicates the
VVood-Rushbrooke extrapolations (Ref. 7) .
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there is no clear evidence one way or the other. (Even
if T, were zero for the honeycomb lattice, this would
certainly rot imply T,=0 for all two-dimensional
lattices. ) An analogous situation occurs in the Ising
model: The ratios p& are regular for the plane square
and triangular lattices and irregular for the honeycomb
lattice, despite the fact that all three lattices undergo
phase transitions.

IV. SUMMARY

0.6 ——

0,5—

0.4— Po

In summary, then, we have obtained expressions —in
terms of Domb's lattice constants pi,—for the first
nine terms a~ for loose-packed lattices and the first
seven terms for close-packed lattices in the high-
temperature series (1) for the zero-field magnetic
susceptibility. These "general lattice expressions" were
used to compute numerical values of the coefficients
ai for the fcc, bcc, and sc (three-dimensional) lattices,
and for the plane square, triangular, and honeycomb
(two-dimensional) lattices.

Two questions of current interest were then discussed
with the aid of the coefFicients. (1) It was argued, on
the basis of extrapolations from both Pade approxi-
mants and from the simpler "slope method, " that
y=~ is far less plausible than y—1.38 for the bcc and

0,3—
~Eh

0.2—

O.I—

t TRIANGULAR NETI C-I

t~ g
SQUARE NET

t

Cl t'
g

SQUARE NET
i

I I I I I

I I I I I98765

I.O— TNO-DIMENSIONAL, LATTICES

FIG. 6. The functions t&, & 1 for both square and triangular lat-
tices and the function t&, &

1' for the square lattice. The extrapola-
tions indicated by the dashed lines suggest t,=0.4 for the triangu-
lar net and t,~0.3 for the square net.

0.9—

0.8—

0.7—

p4

fcc lattices, and y—1.4 (perhaps 1.42) for the sc lattice.
Unfortunately, the series for the sc lattice is not su%-
ciently smooth to say reliably that p is indeed lattice-
dependent within the class of fcc, bcc, and sc lattices. "
(2) The same extrapolation methods were applied to
the question of whether or not T.=0 in two-dimensional
lattices for the classical Heisenberg model. It was
argued that the extrapolations to T,/'r~ 0.3 and 0.4, —
respectively, for the plane square and triangular lattices
are more convincing than the extrapolation to T.=o.

O.R

0.$

t
5 5 5

esca 4
I

2

rig

FIG. 5. The sequence p&=—a&/a&a& & for the triangular lattice
and the sequence p&+&'=—(a~+&/a~ &)'~'/a& for the square lattice.
If these sequences tend to limiting values, these values are
T,/T~.
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