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The diagrammatic representation of the first nine coefficients for loose-packed lattices and the first eight
coefficients for close-packed lattices in a high-temperature series expansion of the zero-field spin correlation
function (S;+S,)s is presented. This calculation exploits the order-of-magnitude simplifications which
occur in treating the quantum-mechanical spin operators in the Heisenberg model as isotropically inter-
acting classical vectors of length [.S(.S+1)]"2. This semiclassical approximation—the “classical” Heisen-
berg model—appears to be excellent for some critical properties of interest if S>%. A recursion relation is
seen to obviate the need to consider the sizeable classes of disconnected diagrams and diagrams containing
articulation points. The utility of the high-temperature series for (Sy-S,)s is discussed. It contains informa-
tion which is relevant to current experiments and is not contained in the high-temperature expansions for
the thermodynamic functions (e.g., susceptibility, specific heat), as well as providing an efficient method
of extending the series for all the thermodynamic functions together. As an example of the applicability of
the series expansion of (S;-S;)s to obtain information concerning the short-range magnetic order to be
expected for 7> T, a calculation of the elastic paramagnetic neutron-scattering cross section for normal
cubic spinels with nearest-neighbor 4-B and B-B exchange interactions is given, and contact is made with
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experiments on MnCr:0s.

I. INTRODUCTION

ERIES expansions of the thermodynamic functions
in powers of 1/T have long served as standards
by which to judge various approximation techniques,
such as the molecular-field approximation, the Bethe-
Peierls-Weiss cluster approximation, and the several
Green’s-function decoupling procedures.! Even for tem-
perature as low as the critical temperature 7%, it is
generally felt that the most reliable information is that
obtained by extrapolation from the first few terms of
high-temperature series expansions. Considerable effort
along these lines has been directed toward using the
high-temperature expansion of the zero-field suscepti-
bility x to estimate both the location of the critical
singularity 7.,%* and the form of the divergence of x
as T—T. from above’7 The first few terms of the
corresponding high-temperature series for the zero-field
magnetic specific heat C, entropy S, and internal
energy U have also been computed.
The motivation for considering the spin correlation
function (S;+S, )s rather than the customary quantities

* This work constitutes part of a Ph.D. thesis submitted to the
Physics Department of Harvard University, January, 1967,

T Operated with support from the U.S. Air Force.

1 See, e.g., W. Opechowski, Physica 4, 181 (1937); 6, 1112
(1938); J. H. Van Vleck, J. Chem. Phys. 5, 320 (1937); B. Strieb,
H. B. Callen, and G. Horwitz, Phys. Rev. 130, 1798 (1963);
H. B. Callen, zb:d. 130, 890 (1963).
2H. A. Brown and J. M. Luttinger, Phys. Rev. 100, 685 (1955).
3 G. S. Rushbrooke and P. J. Wood, Mol. Phys. 1, 257 (1958).
‘EC. gomb and D. W. Wood, Proc. Phys. Soc. (London) 86,

1965).

5C. Domb and M. F. Sykes, Phys. Rev. 128, 168 (1962).

6J. Gammel, W. Marshall, and L. Morgan, Proc. Roy. Soc.
(London) A275, 257 (1963).

7G. A. Baker, H. E. Gilbert, J. Eve, and G. S. Rushbrooke,
Phys. Rev. Letters 20, 146 (1960).
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is that (S;+S,)s not only yields all of the thermo-
dynamic functions,® but also provides information which
is relevant to current experiments and is not obtainable
from the thermodynamic functions:

(1) (S;+S,)s contains information concerning the
location of the critical temperature T'. for substances
which order to a spin configuration other than ferro-
magnetic.? Substantial improvement over previous esti-
mates of T, for normal cubic spinels possessing both
A-B and B-B nearest-neighbor Heisenberg exchange
interactions has been obtained as follows: Instead of
defining T, as the temperature at which ordinary
susceptibility diverges, one defines T as the temper-
ature at which the maximum ‘“generalized Fourier
amplitude” of (S;+S,)s diverges.’® This generalized
Fourier amplitude is just the usual Fourier amplitude,
suitably generalized for lattices with more than one
spin per unit cell. In the special case where ferro-
magnetism is expected, the divergent Fourier amplitude
is essentially x.

(2) {S;S,)s contains information concerning the
type of long-range magnetic ordering to be expected
for T < T..1 Previous applications of the high-temper-
ature series to the study of critical phenomena have
assumed the type of ordering to be given at the outset

8 As an example of the applicability of the series expansion of
< S;+S;>p to obtain the corresponding high-temperature series
expansion of the zero-field magnetic susceptibility, see H. E.
Stanley, following paper, Phys. Rev. 158, 546 (1967).

9 K. Dwight, T. A. Kaplan, H. E. Stanley, and N. Menyuk,
M.L.T. Lincoln Laboratory Solid State Research Report No. 4,
DDC 613961, 1964 (unpublished).

10T, A. Kaplan, H. E. Stanley, K. Dwight, and N. Menyuk,
J. Appl. Phys. 36, 1129 (1965).
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and, furthermore, have been restricted to only two
types of ordering—ferromagnetic and antiferromag-
netic.'7 Thus this previous work is not applicable to
the class of substances which order at 7'= T to a spiral
spin configuration. A method has recently been sug-
gested! for determining the type of magnetic ordering
to be expected for a given model Hamiltonian, based
not on the divergence to o« of x but rather on the
essential physical fact that as the ordering temperature
is approached from above, the spin correlation function
(Ss+S; )s becomes long range. The preliminary results
suggest that this new approach will give reasonably
definitive answers to the question of the type of order-
ing. 1t

(3) (S;+S,) contains the information about the
short-range magnetic order for 7'> T, needed to com-
pute the diffuse paramagnetic neutron-scattering cross
section.’? The utility of the #ime-dependent spin-spin
correlation function (S;(#)+S,(0) )s has for several
years been recognized, particularly because of the fact
that its Fourier transform in space and time is pro-
portional to the inelastic neutron-scattering cross sec-
tion. Saenz has argued that for thermal neutrons of
wavelength ~1A and all but the smallest scattering
angles, one may restrict oneself to a calculation of the
time-independent (static) correlation function (S-S, )s.8
The elastic paramagnetic neutron-scattering cross sec-
tion was recently calculated from the high-temperature
expansion of (S;-S, ) for a Heisenberg-model Hamil-
tonian, and reasonable quantitative agreement with
the experimental results for several chromium spinels
was obtained for temperatures well above 7'.12

In the following section we shall describe a high-
temperature series expansion for the zero-field static
spin correlation function which is valid both quantum
mechanically and classically. In Sec. III, the simplifi-
cations of the classical Heisenberg model are exploited
to obtain the diagrammatic representation of the first
nine coefficients in the expansion for loose-packed
lattices and the first eight coefficients for close-packed
lattices. As an example of the applicability of the series
expansion of (S;+S, )s to provide information concern-
ing the short-range magnetic order to be expected for
T>T.,acalculation of the elastic paramagnetic neutron
cross section for a normal cubic spinel with nearest-
neighbor A-B and B-B exchange interactions is pre-
sented in Sec. IV. The cross section for successive
truncations of the series expansion is plotted as a
function of scattering angle for MnCr,O,, and contact
is made with recent experimental results.

11 The results indicate that correlation corrections to the pre-
dictions of the molecular-field approximation (which corresponds
to calculating only the first term of the high-temperature series
expansion) can have significant effects on the type of long-range
magnetic ordering.

2 K. Dwight, N. Menyuk, and T. A. Kaplan, J. Appl. Phys.
36, 1090 (1965).

13 A, W. Saenz, Phys. Rev. 119, 1542 (1960).
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II. SERIES EXPANSION OF THE SPIN
CORRELATION FUNCTION

Recently Stanley and Kaplan' (SK) have discussed
a high-temperature series expansion
trace Sy S, @ (—1)¢
= [o4

trace ¢ %€ el

B 1

of the zero-field static spin correlation function (S;-S, )
between spins S; and S, localized on the sites f and g.
Here 8=1/kT and 3C is the spin Hamiltonian in zero
magnetic field.

The coefficients «; occurring in Eq. (1) satisfy the
recursion relation

1—1
ar=v— Y, (l) Qfbi—ts (2)
r=0 \k
where v;= (§;-S,3!), pn=(3C"), and (O)=trace
O/trace 1 denotes the 8=0 thermal average of the
operator 0. Rushbrooke and Wood (RW)? have ex-
plained in detail a diagrammatic representation of the
moments g, = Zd,um(d) , and SK have outlined a
diagrammatic representation of the coefficients a; and »;.
Since 3= Zij]ijSi'SjE ZijOijy vi=(S;S,C) is a
sum of averages (S;+S,][]0s;) of a product of 7 factors
0;; and one factor S;+S,. For each of the [ factors Oy
in the product, SK draw a straight line connecting
sites 7 and j; for the factor S;-S,, a wavy “correlation”
line connects the given fixed sites f and g. The collection
of these (/41) lines corresponding to the entire product
is the diagram d associated with that product. Thus
vi= 2 ai(d), and we have obtained a diagrammatic

representation of a;= Y_aei(d), with

-1

cald) =ni(d) = 2 27 e d)ms(d),  (3)
k=0 da db
as may be proved from Eq. (2) by induction. The
restricted summation )/ is over all partitions of d
into diagrams d,, d such that the sum d,+dy=d.
Equations (2) and (3) are valid quantum mechanically
as well as classically.

III. CLASSICAL CALCULATION

Although the development of the preceding section
is valid for the quantum-mechanical Heisenberg model,
the order-of-magnitude simplifications which occur in
any explicit calculation when one treats the non-
commuting quantum-mechanical spin operators occur-
ring in the Heisenberg Hamiltonian 30=— > _;;J;;8;+S;
as commuting vectors of length S, where 8¢ =.S(S+1),
suggest that many more terms in the series can be
obtained ‘‘classically” than “quantum mechanically.”
Moreover, SK argued that useful results in the critical
region (7T=2T,) could be obtained from this classical
Heisenberg model or “infinite-spin approximation,” the

“H. E. Stanley and T. A. Kaplan, Phys. Rev. Letters 16, 981
(1966).
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errors in various critical properties of interest being
small and decreasing rapidly with S—for example,
the errors in the extrapolated estimates of T./S for
cubic lattices are only ~49%, for S=1 and ~19, for
S=5/2.15

The utility of the diagrammatic representation de-

scribed above is that «;(d) depends only upon the
topology of the diagram d, and not upon the angles
between the lines. Thus for a given order / one need
calculate only the different a;(7), where 7 indexes the
“topological type” of diagram d. Although there are
many different topological types of diagrams with /
straight lines and one wavy line which might po-
tentially contribute to a;, SK showed that «;(r) is
zero for a large majority of these types. The only
“classical diagrams” or diagrams which do contribute
to the classical calculation were found to be those
which are at the same time both stars'® and continuous
paths.” Thus one can ignore all diagrams which contain
one or more articulation points (trees), all disconnected
diagrams,’® and all diagrams which contain one or
more “odd vertices” (vertices at which an odd number
of lines meet).

5 The errors in the extrapolated estimates of 7./8* for the
common {wo-dimensional lattices are much larger, since here
T.»/8~2—1/8% [See H. E. Stanley and T. A. Kaplan, Phys.
Rev. Letters 17, 913 (1966); J. Appl. Phys. 38, 975 (1967);
H. E. Stanley (unpublished).] To be sure, the errorsin quantities
pertaining to other temperature domains may not be small: e.g.,
the ground-state energy is proportional to S(S41) classically,
to S? quantum mechanically.

16 By standard definition, a ‘“‘star’” is a connected graph which
contains no articulation points. An articulation point has the
property that if all the lines to it are cut the graph becomes dis-
connected; that is, it becomes possible to separate the points of
the graph in two or more groups such that there is no line joining
a point of one group with a point of the other. Excluding nonstar
graphs is thus equivalent to excluding disconnected graphs and
tree graphs. See, e.g., G. E. Uhlenbeck and G. W. Ford, in Studies
in Statistical Mechanics, edited by J. DeBoer and G. E. Uhlen-
beck (North-Holland Publishing Company, Amsterdam, 1962),

. 125.

Py A continuous path is one which can be entirely traced out
(using every straight line once and only once) from vertex f to
vertex g without lifting one’s pencil from the paper. This implies
that a noncontinuous path has at least one “odd vertex”—i.e., a
vertex at which an odd number of lines meet. The odd vertex
will contribute an_odd number of spin vectors to the integrand of
vi(d), so that »;(d) =0. Similarly, u;(d) =0 for d noncontinuous,
so that from Eq. (3) it is easy to see that a;(d) =0.

18 Our method of calculating x directly from the SK diagram-
matic representation of the spin correlation function (Ref. 8) is
simpler than using the RW moment expansion to calculate x,
largely because the two sizeable classes of disconnected diagrams
and, classically, diagrams with articulation points contribute to
their moment expansion and not to our Eq. (3). Our method is
also less susceptible to careless errors than the RW moment
method because one can partition diagrams into their subdia-
grams [as required for Eq. (3) of the SK method] more easily
than one can determine all possible ways of putting subdiagrams
together into larger diagrams (as required to count the number of
occurrences for the RW disconnected diagrams). (See Appendix
A.) Recently Wood and Rushbrooke [Phys. Rev.Letters 17, 307
(1966) ] have obtained—for the fcc, bee, and sc lattices—eight
terms in the susceptibility series for the classical Heisenberg
model using the RW moment expansion. Our calculation of the
susceptibility for general lattices (presented in Ref. 8) agrees
term by term with Wood and Rushbrooke when we specialize to
the class of three-dimensional cubic lattices they considered.
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Thus to find «; classically we must (i) enumerate
all classical diagrams of / straight lines and one wavy
correlation line; (ii) calculate the average v;(d) ; (iii) use
the recursion relation in Eq. (3) to get a;(d).

Step (i) requires finding all continuous paths which
are free of articulation points, and the results through
order /=8 are shown in Figs. 1-4. Figure 5 includes the
order /=9 diagrams required for loose-packed lattices.
We have represented each diagram by the notation
(l:7), where I is the number of straight lines and =
indexes the topological type of diagram. We notice
that the number of diagrams required for a given order
I increases very rapidly with /; for /=1, 2, -+, 8 there
arel,1,2, 3,8, 17,47, 123 classical “correlation function
diagrams” of / straight lines and one wavy line. These
numbers are roughly an order of magnitude smaller
than the corresponding numbers of quantum-mechani-
cal correlation function diagrams. Moreover, if we
restrict the range of the exchange interaction to nearest
neighbors only, and also exclude the close-packed (e.g.,
plane triangular and face-centered cubic) lattices, we
need consider only 1, 1, 2, 2, 5 8 20, 35 classical
diagrams.®?

The enormous labor required to perform step (ii)
when the spin operators do not commute is the primary

19 This very marked reduction arises from the well-known fact
that for the loose-packed lattices one can ignore all diagrams
containing polygons with an odd number of straight lines. For
example, triangles can be ignored since it is impossible to find
three sites in the loose-packed lattices such that all three are
nearest neighbors of one another.
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reason any extension of the quantum-mechanical high-
temperature expansion is impractical.® However, for the
classical calculation the averages required for (ii) are
simple (in fact, there exists no single limiting factor
prohibiting the extension of the classical series). More-
over, a theorem similar to Theorem IV of RW was
found to be very helpful because it allows one to express
»i(d) in terms of corresponding uzy:(d):

Theorem A. 1f d is the RW moment diagram obtained
from d_by replacing the wavy correlation line in d by a
straight line, then
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s O % a0 O e (-
e <) g e [ s LD
o O] oe > en [
s (O en O] e [P
o O e oG o D
oo O e e O W e O
D% o O 8 o=
w[ % w0 O 8 e[

where P(d) and P(d) are, respectively, the number of
permutations of the straight lines in d and d, and the
bracketed quantities [¥] and [u] denote » and u with
all factors —2J;; and S;(S;+1) omitted. RW have
described in detail a straightforward method of ob-
taining the requisite moments uz;(d) .2 Especially useful
is their Theorem I, which simplifies still further the
calculation of a trace for the more ‘“open” diagrams
(e.g., an eight-sided polygon) by relating it to the
trace of a lower-order diagram.

Step (iii), applying the recursion relation in Eq. (3)
to get a;(d), is not difficult. All that is required is to
partition the diagram d into all subdiagrams d, and d,
such that their sum d,~+ds=d, since the calculation of
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Z179
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F1c. 4.The 88 additional diagrams
(8:7) needed for order /=8 if close-
packed (e.g., plane triangular and face-
centered cubic) lattices are to be in-
cluded.

50 OD -lre2
51 OD -89
52 O(> -898
53 O[> -%’I-‘-;
55[]2 34048

the requisite ax(d,) and w;x(dy) will already have
been carried out in the course of obtaining ay, ¥’ <1.2
Use of the recursion relation would not be necessary
if one were to choose a different diagrammatic represen-
tation of the spin correlation function (one closely akin

2 To be sure, the moments ui-+(ds) corresponding to a parti-
tioning d= da—i—db such that dy is either dlsconnected or contains
an articulation point will contribute to the recursion relation in
Eq. (3). Although such moments u;_x(dy) will zot yet have been
obtained [in the course of using Theorem A to obtain a;(d)],
their evaluation is very simple: If a diagram d (with m straight
lines) may be partitioned into subdiagrams di, dy (with my, me
lines, respectively) which are either disconnected or else have
only one point in common (an articulation point), then ux(d) =
(m !/ mylma?) iy (A1) pmg (d2) .
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to the RW moment expansion), but then one would
be required to count the number of occurrences of
disconnected diagrams and diagrams with articulation
points—a cumbersome procedure.

As an illustrative example, we carry out the calcu-
lation of the contribution to a4 arising from the diagram
d in Fig. 1 of topological type (4:3). In part (a) of
Fig. 6, Theorem A is used to relate [v4(d)] to the
corresponding [us(d) ], where P(d) =4!/2! and P(d) =
51/3l. To facilitate the evaluation of the moment
[us(d)], we observe that since the integral over all
spins except one, say Sy, is independent of the orien-
tation of Sy, we can choose a 2 axis to be along Sy;
ie., S;=(0,0, S;). Then the integrand (S;-S,)*S;-
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S,S,°S, becomes simply
Z S1S05*S0iSpe S iy

=z.Y,z
and the integral factors into the “single-spin averages”
shown on the second line of Fig. 6(a). These vanish
whenever a spin is raised to an odd power (e.g., if
j=x or y, (5.5;)=0). If all the spins are raised to
even powers, then the single-spin averages may be
evaluated in closed form:

T'(k+3)T(4+3) T (m+3)
T(k+l4+m+3)

Part (b) of Fig. 6 illustrates step (iii)—how to use
the recursion relation to finally obtain the contribution
to a4 from diagram (4:3). All partitions of diagram
(4:3) besides the two shown in part (b) of Fig. 6 are
such that ax(d,) and p;_1(dy) are both zero.

[n this fashion we calculated all of the a;(r) required
for any lattice through order /=8, and the results of
this calculation are given in Figs. 1-4. Figure 5 repre-
sents an extension to order /=9 for the loose-packed
lattices only. For nearest-neighbor (n.n.) interactions
and equivalent spins, the numbers [a;(7)] given to
the right of each diagram are in fact just the au(r)
without any of the factors (—2J) and S8*=S(S+1);
the a;(7) can be obtained from the relation

a(r) =S’2(-—2]S'2) Law(r)]. (6)

For other than n.n. interactions, we need to carry
along the factors J;; for inequivalent spins we need to
distinguish S2 =5:(S;+1) and Sp=S;(S;4+1).2 The

(S S S )= (2m)~* (5)

'I'

f
o<l 24

"
[&,]1¢1]
|
A
)

[
[8,0{%2)
n
(@]

(b)

ay (<) = v <
-4 e, () #s (<)
'(g)az (<1)F'2(“)

¥16. 6. (a) Application of Theorem A to obtain [»s(d)] for the
diagram d= (4:3) (see Fig. 1) from the corresponding moment
[zs(d)]. (b) Application of the recursion relation Eq. (3), to
obtain the contribution to ey from diagram (4:3).

2 Inequivalent spins (a different magnetic moment on different
sites) can be allowed for by renormalizing all spin vectors to unit
vectors and all exchange integrals Ji; to Jij = 8:S;Jij.
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numerical values of the [a;(7)] in Figs. 1-5 are un-
affected, but Eq. (6) is no longer valid. The a;(7) can
nevertheless be obtained from the [«;(r)] almost by
inspection. For example, if we wish to calculate the
high-temperature series expansion for a normal cubic
spinel lattice with Heisenberg exchange interactions
Js_p between n.n. B-site cations, and J4_p between
A- and B-site cations which are nearest neighbors, we
need to distinguish different magnitudes of the exchange
interactions, Jp.p and J4_p, and also different magni-
tudes S4 and Sp of the spin magnetic moments on the
A and B sites. Thus, o(1)=827s, ax(l)=
—27J7,8728,2/3, etc., where f, g may be either 4 or B
sites.

IV. EXAMPLE: PARAMAGNETIC NEUTRON
SCATTERING

Normal Cubic Spinel with Nearest-Neighbor
A-B and B-B Interactions

We now apply the diagrammatic representation of
the classical coefficients a; to obtain to order I=4
the high-temperature expansion of the paramagnetic
neutron-scattering cross section for a normal cubic
spinel lattice with Heisenberg exchange interactions
Jp_p between n.n. B-site cations, and J,_p between
n.n. A- and B-site cations. For a powder sample above
the critical temperature, Fr(26) « Fa?(q)Fo, where Fo
and Fu are the incident and magnetically scattered
neutron fluxes, 26 is the scattering angle (related to ¢
via 4 sinf=»\gq), and

PMZ(Q) :vafngvgu <SnV'Smu >ﬁj0(9'77bvm“)~ O
v, my
Here jo(x) = (sinx) /x, g, is the g factor, f,(¢q) is the
form factor, =,,”*=R,,—R,, is the site-separation
vector, and R,, denotes a vector to the »th site in the
nth unit cell.

To obtain a high-temperature series expansion of
the function Fp?(¢) in Eq. (7) from the diagrammatic
representation of the corresponding high-temperature
series expansion of the spin correlation function
(S, Sy Y, we must sum the contribution a;(7) of each
different topological type of diagram over all sites ny
and myu. This procedure is very lengthy and is certainly
the limiting factor in how far one can carry the expan-
sion. Dweight ef al.*? published the quantum-mechanical
calculation to order /=3; in Appendix B we express
Fa*(g) for a spinel with n.n. 4-B and B-B interactions
through order /=4 within the classical Heisenberg
model.

Manganese Chromite

Hastings and Corliss® have studied the behavior of
the broad liquid-type peak in the cubic spinel MnCr;Oy,
and found that it persisted at temperatures as high as
several times the critical temperature. Recently, Dwight
et al.® were able to obtain agreement with the room-

22 J, M. Hastings and L. M. Corliss, Phys. Rev. 126, 556 (1962).
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F16. 7. Successive truncations at orders /=0, 1, --+, 4 of the high-temperature expansion of Eq. (7) for the paramagnetic elastic
neutron scattering cross section at a temperature T'=1.2 T32100°K. To specialize to MnCr;Os, we have chosen #=4JppSp/3J 4554
to have the value 1.8, S4 and Sp to be 5 and 3, respectively, and the magnetic moments on the 4 and B sites to be 4.7 and 3.0 up,

respectively (i.e., the g factor on the 4 sites is 1.87, not 2).

temperature (7 =300°K=277.) pattern of Hastings and
Corliss from a truncation of the high-temperature ex-
pansion Eq. (1) at order /=1. At lower temperatures,
however, the convergence of the terms of the order
1=3 quantum-mechanical calculation is poor. We find
that, through order /=3, the predictions of the classical
Heisenberg model differ only slightly from those of
the quantum-mechanical Heisenberg model. Conse-
quently, there is some reason to believe that an ex-
tension of the series to higher order for the classical
Heisenberg model will give meaningful results for
MHCI‘204.

In Fig. 7 we plot the successive truncations /=0, 1,
«++, 4 of the high-temperature expansion of the para-
magnetic neutron-scattering cross section against scat-
tering angle 26 for MnCryO4 af a femperature only one-
third of room temperature. We see that the truncations
at orders 1, 2, and 3 do not seem to be converging for
the amplitude of the peak at 202213°. Addition of the
fourth-order term serves to suggest that the limiting
value of the amplitude may lie somewhere in between
75 and 80—an accuracy of ~79%,. On the other hand,
convergence of the first four truncations at 202225° is
poor, suggesting the calculation of more terms may be
useful.

V. SUMMARY

We have taken advantage of the simplifications which
result if one treats the spin operators as classical vectors

of length S to obtain the diagrammatic representation
of the first nine coefficients «; for loose-packed lattices
and the first eight «; for close-packed lattices in the
high-temperature expansion [Eq. (1) ] of the zero-field
spin correlation function (S;-S,)s. The utility of the
series expansion of (S;-S,)s was illustrated by a calcu-
lation of the elastic paramagnetic neutron cross section
and contact was made with experimental measure-
ments* on MnCr,O4 The present calculation is applied
elsewhere® to obtain the corresponding high-temper-
ature series expansion of the zero-field susceptibility x.
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APPENDIX A: RELATION TO
RUSHBROOKE-WOOD MOMENT EXPANSION

There are essentially two differences between the
method used here and the moment expansion of the
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partition function Z=Tr ¢ used by RW3:

(1) We utilize a recursion relation, which leads to a
marked reduction in the number of diagrams.

(2) We focus on the spin correlation function.

(1) Wood and Rushbrooke were required (by their

moment-expansion method) to count the number of

occurrences of two sizeable classes of diagrams—dis-
connected diagrams and diagrams containing articu-
lation points (trees).®>® We were required to count
only about half as many diagrams (only the star
diagrams), the counting problem associated with the
trees and disconnected diagrams having been taken
into account by our use of the recursion relation in
Eq. (3). In a sense the disconnected diagrams are
“considered” when we partition the connected diagrams
as required by the recursion relation. Clearly we never
need even “consider” the trees; moreover, the process
of partitioning the connected diagrams is simpler than
that of counting the number of occurrences of dis-
connected diagrams. The possibility of using a recursion
relation to obviate the need to count sizeable classes
of diagrams does 7ot require that one obtain x from the
spin correlation function—we have also proved such a
recursion relation for the cumulants A; in the high-
temperature expansion

InZe 32N
=0

Thus, if one wishes to calculate only the susceptibility,
the relative simplicity of our work compared to the
RW moment expansion arises solely from our use of a
recursion relation.

Co= 244D,
$1=—16(UB%s+2ABtu),
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(2) Consideration of the spin correlation function
was motivated not as a more efficient method for ob-
taining x(« Yz (Sy-Sg)s) but because there is much
more information, relevant to recent experiments, con-
tained in (S;+S, )s than in x. (See discussion in Sec. 1.)
We have found that the diagrammatic representation
for (S;-S,)s is the same as that required for x alone;
we have felt that it is sensible to record this diagram-
matic representation because of the additional infor-
mation contained therein, e.g., information concerning
the short-range magnetic order to be expected for
T>T, (as measured by the elastic paramagnetic neu-
tron-scattering cross section), information concerning
the fype of long-range magnetic ordering to be expected
for T T, (as measured by neutron diffraction), and
information concerning the location of T, for substances
which order to a spiral spin configuration.

APPENDIX B: HIGH-TEMPERATURE EXPAN-
SION OF THE PARAMAGNETIC NEUTRON-
SCATTERING CROSS SECTION

Here we obtain through order /=4 the high-temper-
ature expansion

o2

Raé(=3 g

of the paramagnetic neutron-scattering function in Eq.
(7) for a general cubic spinel lattice with nearest-
neighbor A-B and B-B interactions. Here x =
JagSaSp/kT, and the {; are the coefficients to be
evaluated. To simplify the expressions for the ¢, we
define A EgAfASA, B EngBSB, U= JBBSB/]ABSA, and
£ =jo(gqav/n) ; a=a0/8 denotes % the cubic cell edge.

to= (32/3)[ (2U+3) B¥ts+6U A Bin+-2 A%+ (2UP+4) Bboy+-6U A B+ (2 A+ U2B+-2B) g+ 2 B+ A%ss],
3= (—64/9) [ (20-1.4U7?) UB%s+ (22.8+20U2) A Btyy+8U A219+8(U2+-4) UB2%p+ (30--22U2) A Bty
+ (1342426 B*+6U2B?) Ukg+ (2U2420) U B+ 10U A%4y+4(U+5) A Beg+4(U+5) U Bk
+ (14U2420) A Btsg+2U (A2+2B2) byt (U+4) U B+ 124 Btrs+-44 By,
o= (16/27) [ (—48.5U*+628.8024403.2) B%s+ (419.202+1612.8) U A By + (120U°+86.4) A%,
+ (124.8U%4150402+649.6) Byt (483 2U2-+2323.2) U A B+ (44872+548.8) A2%s,
+ (150 AU+ 1296 U2+ 644.8) BEsg+4 (32U260U24139.2) B2+ (360U2-+438.4) A%,
+8(32U24176) U A Byy+32 (TU4-45U7+24) Bksy+16 (39024 168) U A Btsg+32 (3U24-5) A%4,
+16(U*4-1812410) B%gu+8 (10048312 +46) Brg+32(6U2+39) U A Btrs+32 (2U2-+21) U A By
+64(U2+4) A2+ 16(U*1002417) Btsg+32 (3U2+-8) A2%g5+32 (UA+-9U2+8) Baog
+32(U*-9U2+9) B+ 16 (TU2+24) U A Btsg+8 (TUP12) A2t105+64(U22) B190--96U A Biras
+8(642+ U4B*+6B?) £1ys+64 Bo13s+-32U A By +64 A2E1s+ 16 B2yt 16 ( A2+ B2) o .



