
PHYSICAL REVIEW VOLUME 158, NUMBER 2 |0 JUNE 1967

High-Temperature Expansions for the Classical Heisenberg Model.
I. Spin Correlation Function*
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The diagrammatic representation of the erst nine coefficients for loose-packed lattices and the first eight
coeKcients for close-packed lattices in a high-temperature series expansion of the zero-held spin correlation
function (Sy.S, )p is presented. This calculation exploits the order-of-magnitude simpli6cations which
occur in treating the quantum-mechanical spin operators in the Heisenberg model as isotropically inter-
acting classical vectors of length PS(S+1)j'~. This semiclassical approximation —the "classical" Heisen-
berg model —appears to be excellent for some critical properties of interest if S&-,. A recursion relation is
seen to obviate the need to consider the sizeable classes of disconnected diagrams and diagrams containing
articulation points. The utility of the high-temperature series for (Sr S,)s is discussed. It contains informa-
tion which is relevant to current experiments and is not contained in the high-temperature expansions for
the thermodynamic functions (e.g. , susceptibility, specific heat), as well as providing an efficient method
of extending the series for all the thermodynamic functions together. As an example of the applicability of
the series expansion of (Sr S,)s to obtain information concerning the short-range magnetic order to be
expected for T& T„acalculation of the elastic paramagnetic neutron-scattering cross section for normal
cubic spinels with nearest-neighbor A-J3 and B-B exchange interactions is given, and contact is made with
experiments on MnCr204.

I. INTRODUCTION

ERIES expansions of the thermodynamic functions
~

~ ~

~

~

in powers of I/T have long served as standards
by which to judge various approximation techniques,
such as the molecular-Geld approximation, the Bethe-
Peierls-Weiss cluster approximation, and the several
Green's-function decoupling procedures. ' Even for tem-
perature as low as the critical temperature T„it is
generally felt that the most reliable information is that
obtained by extrapolation from the first few terms of
high-temperature series expansions. Considerable e6ort
along these lines has been directed toward using the
high-temperature expansion of the zero-Geld suscepti-
bility x to estimate both the location of the critical
singularity T.,' 4 and the form of the divergence of x
as T—+T, from above. ' 7 The Grst few terms of the
corresponding high-temperature series for the zero-field
magnetic specihc heat C, entropy S, and internal
energy U have also been computed.

The motivation for considering the spin correlation
function (Sr S, )e rather than the customary quantities
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is that (Sr S, )e not only yields all of the thermo-

dynamic functions, 'but also provides information which
is relevant to current experiments and is not obtainable
from the thermodynamic functions:

(1) (Sr S, )e contains information. concerning the
location of the critical temperature T, for substances
which order to a spin configuration other than ferro-
magnetic. ' Substantial improvement over previous esti-
mates of T. for normal cubic spinels possessing both
A-8 and B-B nearest. -neighbor Heisenberg exchange
interactions has been obtained as follows: Instead of
deGning T. as the temperature at which ordinary
susceptibility diverges, one defines T, as the temper-
ature at which the maximum "generalized Fourier
amPlitude" of (Sr S, )e diverges. 's This generalized
Fourier amplitude is just the usual Fourier amplitude,
suitably generalized for lattices with more than one

spin per unit cell. In the special case where ferro-
magnetism is expected, the divergent Fourier amplitude
is essentially X.

(2) (Sr S, )e contains information concerning the
type of long-range magnetic ordering to be expected
for T & T,.' Previous applications of the high-temper-
ature series to the study of critical phenomena have
assumed the type of ordering to be given at the outset

As an example of the applicability of the series expansion of
&Sy Sg&p to obtain the corresponding high-temperature series
expansion of the zero-field magnetic susceptibility, see H. E.
Stanley, following paper, Phys. Rev. 158, 546 (1967).

9 K. Dwight, T. A. Kaplan, H. E. Stanley, and N. Menyuk,
M.I.T. Lincoln Laboratory Solid State Research Report No. 4,
DDC 613961, 1964 (unpublished) .

' T. A. Kaplan, H. E. Stanley, K. Dwight, and N. Menyuk,
J. Appl. Phys. 36, 1129 (1965).
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and, furthermore, have been restricted to only two
types of ordering —ferromagnetic and antiferromag-
netic. ' ' Thus this previous work is not applicable to
the class of substances which order at T = T. to a spiral
spin configuration. A method has recently been sug-
gested' for determining the type of magnetic ordering
to be expected for a given model Hamiltonian, based
not on the divergence to ~ of g but rather on the
essential physical fact that as the ordering temperature
is approached from above, the spin correlation function
(Sr S, )ti becomes long range. The preliminary results
suggest that this new approach will give reasonably
definitive answers to the question of the type of order-
ing 11

(3) (Sr S, )p contains the information about the
short-range magnetic order for T) T, needed to com-
pute the diffuse paramagnetic neutron-scattering cross
section. ' The utility of the time depended-t spin-spin
correlation function (Sr(t) S,(0) )s has for several
years been recognized, particularly because of the fact
that its Fourier transform in space and time is pro-
portional to the inelastic neutron-scattering cross sec-
tion. Saenz has argued that for thermal neutrons of
wavelength ~1A. and all but the smallest scattering
angles, one may restrict oneself to a calculation of the
time indepemde-lt (static) correlation function (Sr S,)~."
The elastic paramagnetic neutron-scattering cross sec-
tion was recently calculated from the high-temperature
expansion of (Sr S, )~ for a Heisenberg-model Hamil-
tonian, and reasonable quantitative agreement with
the experimental results for several chromium spinels
was obtained for temperatures well above T,."

In the following section we shall describe a high-
temperature series expansion for the zero-field static
spin correlation function which is valid both quantum
mechanically and classically. In Sec. III, the simplifi-
cations of the classical Heisenberg model are exploited
to obtain the diagrammatic representation of the first
nine coefficients in the expansion for loose-packed
lattices and the first eight coefficients for close-packed
lattices. As an example of the applicability of the series
expansion of (Sr S, )~ to provide information concern-
ing the short-range magnetic order to be expected for
T& T„acalculation of the elastic paramagnetic neutron
cross section for a normal cubic spinel with nearest-
neighbor 3-8 and B-B exchange interactions is pre-
sented in Sec. IV. The cross section for successive
truncations of the series expansion is plotted as a
function of scattering angle for MnCr204, and contact
is made with recent experimental results.

"The results indicate that correlation corrections to the pre-
dictions of the molecular-field approximation (which corresponds
to calculating only the first term of the high-temperature series
expansion) can have significant effects on the type of long-range
magnetic ordering.

12 K. Dwight, N. Menyuk, and T. A. Kapl. an, J. Appl. Phys.
36, 1090 (1965).

"A. V(. Saenz, Phys. Rev. 119, 1542 (1960).

II. SERIES EXPANSION OF THE SPIN
CORRELATION FUNCTION

o'aP&—I &

a=o &
(2)

where vi =—(Sr.s,3!'), p =—(3C ), and (8)—= trace
8/trace 1 denotes the P=O thermal average of the
operator 8. Rushbrooke and Wood (RW)' have ex-
plained in detail a diagrammatic representation of the
moments p = P~ti (d), and SK have outlined a
diagrammatic representation of the coefficients o, ~ and p~.

Since BC= +;,J,,S,'S, —=Q,,O... vi= (Sy. S,X') is a
sum of averages (Sr S,+0,, ) of. a product of t factors
0,; and one factor S~ S,. For each of the 1 factors 0,;
in the product, SK draw a straight line connecting
sites i and j; for the factor Sf S„awavy "correlation"
line connects the given fixed sites f and g. The collection
of these (3+1) lines corresponding to the entire product
is the diagram d associated with that product. Thus
vi=gqvi(d), and we have obtained a diagrammatic
representation of O.i gqn&(d), w—-ith

ni(d) =-vi(d) —Q Q'nv. (d.)t'ai v(db),
k=o d~, dy

as may be proved from Eq. (2) by induction. The
restricted summation g' is over all partitions of d
into diagrams d„di, such that the sum d,+dq=d.
Equations (2) and (3) are valid quantum mechanically
as well as classically.

III. CLASSICAL CALCULATION

Although the development of the preceding section
is valid for the quantum-mechanical Heisenberg model,
the order-of-magnitude simplifications which occur in
any explicit calculation when one treats the non-
commuting quantum-mechanical spin operators occur-
ring in the Heisenberg Hamiltonian K = —P,,J,,S; S,
as commuting vectors of length 8, where S' =—5(&+1),
suggest that many more terms in the series can be
obtained "classically" than "quantum mechanically. "
Moreover, SK argued that Nsefut results in the critical
region (T—T,) could be obtained from this classical
Heisenberg model or "infinite-spin approximation, " the

"H. E. Stanley and T. A. Kaplan, Phys. Rev. Letters 16, 981
(1966).

Recently Stanley and Kaplan" (SK) have discussed
a high-temperature series expansion

trace SJ S,e t~ ~ (—1)'
n,p'

trace e ~+
l,=o lt

of the zero-field static spin correlation function (S& S, )&

between spins Sr and S, localized on the sites f and g.
Here P =1/kT and 3C is the spin Hamiltonian in zero
magnetic field.

The coefficients n& occurring in Eq. (1) satisfy the
recursion relation
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errors in various critical properties of interest being
small and decreasing rapidly with 5—for example,
the errors in the extrapolated estimates of T,/S for
cubic lattices are only ~4% for S=1 and ~1'Po for
S=S/2"

The utility of the diagrammatic representation de-
scribed above is that n&(d) depends only upon the
topology of the diagram d, and not upon the angles
between the lines. Thus for a given order / one need
calculate only the different n&(r), where r indexes the
"topological type" of diagram d. Although there are
many diferent topological types of diagrams with l
straight lines and one wavy line which might po-
tentially contribute to n&, SK showed that rr&(r) is
zero for a large majority of these types. The only
"classical diagrams" or diagrams which do contribute
to the classical calculation were found to be those
which are at the same time both stars" and continuous
paths. '7 Thus one can ignore all diagrams which contain
one or more articulation points (trees), all disconnected
diagrams, " and all diagrams which contain one or
more "odd vertices" (vertices at which an odd number
of lines meet) .
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'SThe errors in the extrapolated estimates of Tj8' for the
comm~in t~o-dirnensiona/ lattices are much larger, since here
T,o&/S'~2 —1/8'. LSee H. E. Stanley and T. A. Kaplan, Phys.
Rev. Letters 1'7, 913 (1966); J. Appl. Phys. 38, 975 (1967);
H. E. Stanley (unpublished). jTo be sure, the errors in quantities
pertaining to other temperature domains may not be small: e.g. ,
the ground-state energy is proportional to S(S+1) classically,
to S' quantum mechanically.

"By standard definition, a "star" is a connected graph which
contains no articulation points. An articulation point has the
property that if all the lines to it are cut the graph becomes dis-
connected; that is, it becomes possible to separate the points of
the graph in two or more groups such that there is no line joining
a point of one group with a point of the other. Excluding nonstar
graphs is thus equivalent to excluding disconnected graphs and
tree graphs. See, e.g, , G. E. Uhlenbeck and G. W. Ford, in Steadies
in Statistica/ Mechanics, edited by J. DeBoer and G. E. Uhlen-
beck (North-Holland Publishing Company, Amsterdam, 1962),
p. 125.

"A continuous path is one which can be entirely traced out
(using every straight line once and only once) from vertex f to
vertex g without lifting one's pencil from the paper. This implies
that a noncontinuous path has at least one "odd vertex" —i.e. , a
vertex at which an odd number of lines meet. The odd vertex
will contribute an odd number of spin vectors to the integrand of
v&(d), so that v&(d) =0. Similarly, p, &(d) =0 for d noncontinuous,
so that from Eq. (3) it is easy to see that n~(d) =0.

"Our method of calculating y directly from the SK diagram-
matic representation of the spin correlation function (Ref. 8) is
simpler than using the RW moment expansion to calculate x,
largely because the two sizeable classes of disconnected diagrams
and, classically, diagrams with articulation points contribute to
their moment expansion and not to our Eq. (3). Our method is
also less susceptible to careless errors than the RW moment
method because one can partition diagrams into their subdia-
grams t as required for Eq. (3) of the SK method j more easily
than one can determine all possible ways of putting subdiagrams
together into larger diagrams (as required to count the number of
occurrences for the RW disconnected diagrams). (See Appendix
A. ) Recently Wood and Rushbrooke /Phys, Rev, Letters 17, 307
(1966)j have obtained —for the fcc, bcc, and sc lattices —eight
terms in the susceptibility series for the classical Heisenberg
model using the RW moment expansion. Our calculation of the
susceptibility for general lattices (presented in Ref. 8) agrees
term by term with Wood and Rushbrooke when we specialize to
the class of three-dimensional cubic lattices they considered.

Fro. 1.The diagrams (l:v-) contributing to the high-tempera-
ture series expansion for (Sf Sg)p through order /=6 and their
corresponding Lnt(r) j.

Thus to find tr& classically we must (i) enumerate
all classical diagrams of / straight lines and one wavy
correlation line; (ii) calculate the average vi(d); (iii) use
the recursion relation in Eq. (3) to get n&(d) .

Step (i) requires finding all continuous paths which
are free of articulation points, and the results through
order /=8 are shown in Figs. 1—4. Figure 5 includes the
order /=9 diagrams required for loose-packed lattices.
We have represented each diagram by the notation
(t:r), where / is the number of straight lines and r
indexes the topological type of diagram. We notice
that the number of diagrams required for a given order
/ increases very rapidly with /; for 3= 1, 2, ~ ~ ~, 8, there
are 1, 1, 2, 3, 8, 17, 47, 123 classical "correlation function
diagrams" of 1 straight lines and one wavy line. These
numbers are roughly an order of magnitude smaller
than the corresponding numbers of quantum-mechani-
cal correlation function diagrams. Moreover, if we
restrict the range of the exchange interaction to nearest
neighbors only, and also exclude the close-packed (e.g. ,
plane triangular and face-centered cubic) lattices, we
need consider only 1, 1, 2, 2, 5, 8, 20, 35 classical
diagrams. "

The enormous labor required to perform step (ii)
when the spin operators do not commute is the primary

'9 This very marked reduction arises from the well-known fact
that for the loose-packed lattices one can ignore all diagrams
containing polygons with an odd number of straight lines. For
example, triangles can be ignored since it is impossible to find
three sites in the loose-packed lattices such that all three are
nearest neighbors of one another.
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required to extend the high-
temperature expansion to order
l =7 and the corresponding
Pu7irl j. only the first 20 dia-
grams (r =1—20) contribute
for loose-packed lattices with
nearest-neighbor interactions.
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where P(d) and P(d) are, respectively, the number of
permutations of the straight lines in d and d, and the
bracketed quantities [v] and [p] denote v and p, with
all factors —2J;, and S,(S~+1) omitted. RW have
described in detail a straightforward method of ob-
taining the requisite moments p&ir (d) .' Especially useful
is their Theorem I, which simplifies still further the
calculation of a trace for the more "open" diagrams
(e.g. , an eight-sided polygon) by relating it to the
trace of a lower-order diagram.

Step (iii), applying the recursion relation in Eq. (3)
to get n&(d), is not difficult. All that is required is to
partition the diagram d into all subdiagrams d, and d~

such that their sum d,+ds ——d, since the calculation of
Lvi(d)]= p d

L~i+r(d)],
P(d)
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1792 896 Fro. 3.The 35 diagrams (8:7) and
the corresponding t n8(r) j which are
needed to extend the high-tempera-
ture series to order l=8 for the re-
stricted class of loose-packed lattices
with interactions only between near-
est neighbors.
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reason any extension of the quantum-mechanical high-

temperature expansion is impractical. ' However, for the
classical calculation the averages required for (ii) are
simple (in fact, there exists no single limiting factor
prohibiting the extension of the classical series) . More-
over, a theorem similar to Theorem IV of RW was
found to be very helpful because it allows one to express

vi(d) in terms of corresponding y~r(d):
Theorem A. If d is the R% moment diagram obtained

from d by replacing the wavy correlation line in d by a
straight line, then
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(8:v } needed for order / =8 if close-
packed (e.g. , plane triangular and face-
centered cubic) lattices are to be in-
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the requisite nz(d, ) and pI &(d~) will already have
been carried out in the course of ob taining o ~, , l' & l."
Use of the recursion relation would not be necessary
if one were to choose a diferent diagrammatic represen-
tation of the spin correlation function (one closely akin

To be sure, the moments pI q (db) corresponding to a parti-
tioning d =d +db such that db is either disconnected or contains
an articulation point vill contribute to the recursion relation in
Kq. (3) . Although such moments pI & (db) will not yet have been
obtained! in the course of using Theorem A to obtain nI 2(d) g,
their evaluation is very simple: If a diagram d (with m straight
lines) may be partitioned into subdiagrams d&, d2 (with m&, m2
lines, respectively) which ar'e either disconnected or else have
only one point in commoii (an articulation point), then p (d) =
(mi/m1im2. )16tn (dl)22m (d2).

to the RW moment expansion), but then one would
be required to count the number of occurrences of
disconnected diagrams and diagrams with articulation
points —a cumbersome procedure.

As an illustrative example, we carry out the calcu-
lation of the contribution to n4 arising from the diagram
d in Fig. 1 of topological type (4:3). In part (a) of
Fig. 6, Theorem A is used to relate Lv4(d)] to the
corresponding Lps(d) ], where P(d) =4!/2! and P(d) =
5!/3!. To facilitate the evaluation. of the moment
/ps(d)], we observe that since the integral over all
spins except one, say Sf, is independent of the orien-
tation of Sf, we can choose a s axis to be along Sf,
i.e., Sf=(0, 0, Sf). Then the integrand (Sr S,)'Sr
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Fxo. 5. The 96 diagrams (9:&) required for loose-packed lattices in ninth order.
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S„S,S~ becomes simply

Sr,'Sg,'Sg, Sv, Sv;,
J=S,Q, Z

and the integral factors into the "single-spin averages"
shown on the second line of Fig. 6(a). These vanish
whenever a spin is raised to an odd power (e.g. , if

j=x or y, (5,5;)=0). If all the spins are raised to
even powers, then the single-spin averages may be
evaluated in closed form:

P (k+ i+ggg+ ss)

Part (b) of Fig. 6 illustrates step (iii) —how to use

the recursion relation to finally obtain the contribution
to n4 from diagram (4:3). All partitions of diagram

(4:3) besides the two shown in part (b) of Fig. 6 are
such that ns(d, ) and p~ s(ds) are both zero.

[n this fashion we calculated all of the cr~(r) required
for any lattice through order /=8, and the results of
this calculation are given in Figs. 1—4. Figure 5 repre-
sents an extension to order /=9 for the loose-packed
lattices only. For nearest-neighbor (n.n. ) interactions
and equivalent spins, the numbers fn~(r)] given to
the right of each diagram are in fact just the cr&(r)

without any of the factors (—2J) and S'=S(5+1);
the n~(r) can be obtained from the relation

a((r) = S'(—2 JS') 'Lu((r) ].
For other than n.n. interactions, we need to carry

along the factors J;;; for inequivalent spins we need to
distinguish Ss =-5,(S+1) and Ss—= 5,(5+1)."The

(a)
f

", (p( ) -
5 gs f s(pQ )

9 9

5 5!
gr gi pr pi

= —.20 ~ —~ —=—I I 4
5 5 3 5

(b)

a, (Q )-v„(()

-(~) a, ( I) f, (()
-(",), (Q) f, (ii)

1 ro. 6. (a) Application of Theorem A to obtain Lvg(d) g for the
diagram d= (4:3) (see Fig. 1) from the corresponding moment
['pg(d)g. (b) Application of the recursion relation Eq. (3), to
obtain the contribution to n4 from diagram (4:3) .
"Inequivalent spins (a different magnetic moment on different

sites) can be allowed for by renormalizing all spin vectors to unit
vectors and all exchange integrals J;; to J;;=. S;S,J;;.,

numerical values of the Lcr~(r)] in Figs. 1—5 are un-
affected, but Eq. (6) is no longer valid. The n~(r) can
nevertheless be obtained from the Ln&(r)] almost by
inspection. For example, if we wish to calculate the
high-temperature series expansion for a normal cubic
spinel lattice with Heisenberg exchange interactions
J~ ~ between n.n. 8-site cations, and Jg g between
3- and 8-site cations which are nearest neighbors, we
need to distinguish diferent magnitudes of the exchange
interactions, J~ ~ and Jg ~, and also different magni-
tudes 5~ and SL, of the spin magnetic moments on the
A and B sites. Thus, ar(1) = Sr'Jr„erg(1)=

2 Jf

graf'g,

'/3, etc. , where f, g may be either A or B
sites.

IV. EXAMPLE: PARAMAGNETIC NEUTRON
SCATTERING

Normal Cubic Spinel with Nearest-Neighbor
A-8 and B-BInteractions

We now apply the diagrammatic representation of
the classical coefFicients o, ~ to obtain to order /=4
the high-temperature expansion of the paramagnetic
neutron-scattering cross section for a normal cubic
spinel lattice with Heisenberg exchange interactions
J~ ~ between n.n. 8-site cations, and J~ ~ between
n.n. 3- and 8-site cations. For a powder sample above
the critical temperature, f'sg(20) cc Fsr'(q)Fg, where Pe
and F~ are the incident and magnetically scattered
neutron fluxes, 28 is the scattering angle (related to q
via 4gr slng=hq), and

F- (q) =Z j,j.g.~.&s., s.) j.«.;).
v, mp

Here js(x) =—(sinx)/x, g„is the g factor, f„(q) is the
form factor, ~ „&—=R„„—R

„

is the site-separation
vector, and E„„denotesa vector to the vth site in the
eth unit cell.

To obtain a high-temperature series expansion of
the function Fsr'(q) in Eq. (7) from the diagrammatic
representation of the corresponding high-temperature
series expansion of the spin correlation function(S„„.S „)~,we must sum the contribution a~(r) of each
diRerent topological type of diagram over all sites ev
and mp. This procedure is very lengthy and is certainly
the limiting factor in how far one can carry the expan-
sion. Dweight et a/. "published the quantum-mechanical
calculation to order /=3; in Appendix 8 we express
Fsrs(q) for a sPinel with n.n. A Band B Binteractions--
through order /=4 within the classical Heisenberg
model.

Manganese Chromite

Hastings and Corliss" have studied the behavior of
the broad liquid-type peak in the cubic spinel MnCr~04,
and found that it persisted at temperatures as high as
several times the critical temperature. Recently, Dwight
et a/. " were able to obtain agreement with the room-

"J.M. Hastings and L.M. Corliss, Phys. Rev. 120, 556 (1962).
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Fio. 7. Successive truncstions at orders l=0, 1, ~ ~, 4 of the high-temperature expansion of Eq. (7) for the paramagnetic elastic
neutron scattering cross section at a temperature T= 1.2 T~—100'K. To specialize to Mncr204, me have chosen m, =—4J~&5&/3 J&~S&
to have the value 1.8, Sg and S~ to be 5 and 3, xespectively, and the magnetic moments on the 8 and 8 sites to be 4.7 and 3.0 I ~,
respectively (i.e., the g factor on the A sites is 1.8/, not 2).

temperature (7=300'K—7 T,) pattern of Hastings and
Corliss from a truncation of the high-temperature ex-
pansion Eq. (1) at order 3=1. At lower temperatures,
however, the convergence of the terms of the order
3=3 quantum-mechanical calculation is poor. We 6nd
that, through order /= 3, the predictions of the classical
Heisenberg model diGer only slightly from those of
the quantum-mechanical Heisenberg model. Conse-
quently, there is some reason to believe that an ex-
tension of the series to higher order for the classical
Heisenberg model will give meaningful results for
MnCr204.

In Fig. 7 we plot the successive truncations 1=0, 1,
~ ~ ., 4 of the high-temperature expansion of the para-
magnetic neutron-scattering cioss section against scat-
tering angle 28 for Mncrs04 af a temperaflre only oee-
third of room temperature. We see that the truncations
at orders 1, 2, and 3 do not seem to be converging for
the amplitude of the peak at 28—13 . Addition of the
fourth-order term serves to suggest that the limiting
value of the amplitude may lie somewhere in between
75 and 80—an accuracy of ~7%. On the other hand,
convergence of the 6rst four truncations at 28—25' is
poor, suggesting the calculation of more terms may bc
useful.

V. SUMMARY

of length 8 to obtain the diagrammatic representation
of the 6rst nine codFicients 0.~ for loose-packed lattices
Rnd thc 6rst eight Ag fo1 close-packed lattices ln thc
high-temperature expansion fEq. (1)] of the zero-field
spin correlation function (Sr 8, )s. The utility of the
series expansion of (Sr.8, )s was illustrated by a calcu-
lation of the elastic paramagnetic neutron cross section
and contact was made with experimental measure-
ments" on Mncr204. The present calculation is applied
elsewheres to obtain the corresponding high-temper-
ature series expansion of the zero-field susceptibility X.
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APPENDIX A: RELATION TO
RUSHBROOKE-WOOD MOMENT EXPANSION

e have tak en advantage of the simpli6cations which There are essentially two differences between the
result lf onc treats thc spin opclatols as classical vectors method used here and the moment expansion of the
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partition function Z—=Tr e &+ used by RVP:

(1) We utilize a recursion relation, which leads to a
marked reduction in the number of diagrams.

(2) We focus on the spin correlation function.
(1) Wood and Rushbrooke were required (by their

moment-expansion method) to count the number of
occurrences of two sizeable classes of diagrams —dis-
connected diagrams and diagrams containing articu-
lation. points (trees). ' " We were required to count
only about half as many diagrams (only the star
diagrams), the counting problem associated with the
trees and disconnected diagrams having been taken
into account by our use of the recursion relation in
Eq. (3). In a sense the disconnected diagrams are
"considered" when, we partition the connected diagrams
as required by the recursion relation. Clearly we never
need even "consider" the trees; moreover, the process
of partitioning the connected diagrams is simpler than
that of counting the number of occurrences of dis-
connected diagrams. The possibility of using a recursion
relation to obviate the need to count sizeable classes
of diagrams does rot require that one obtain x from the
spin correlation function —we have also proved such a
recursion relation for the cumulants X~ in the high-
temperature expansion

lnZ g), ,P'.
Z=D

Thus, if one wishes to calculate only the susceptibility,
the relative simplicity of our work compared to the
RW moment expansion arises solely from our use of a
recursion relation.

(2) Consideration of the spin correlation function
was motivated not as a more efficient method for ob-
taining x(~ ps(So. Sii)e) but because there is much
more information, relevant to recent experiments, con-
tained in (Sr S, )s than in x. (See discussion in Sec. I.)
%e have found that the diagrammatic representation
for (Sr S, )e is the same as that required for x alone;
we have felt that it is sensible to record this diagram-
matic representation because of the additional infor-
mation contained therein, e.g. , information concerning
the short-range magnetic order to be expected for
T)T, (as measured by the elastic paramagnetic neu-
tron-scattering cross section), information concerning
the type of long-range magnetic ordering to be expected
for T & T, (as measured by neutron diffraction), and
information concerning the location of T, for substances
which order to a spiral spin configuration.

APPENDIX B: HIGH-TEMPERATURE EXPAN-
SION OF THE PARAMAGNETIC NEUTRON-

SCATTERING CROSS SECTION

Here we obtain through order /=4 the high-temper-
ature expansion

PMs(q) —=g f'&x'
Z=O

of the paramagnetic neutron-scattering function in Eq.
(7) for a general cubic spinel lattice with nearest-
neighbor A-8 and 8-8 interactions. Here x —=

J~e8~8e/kT, and the f'i are the coeKcients to be
evaluated. To simplify the expressions for the li, we
define A =gaff S&, B—=gaff Sa, U =——JeeSa/ JgsSz, and
g„—=jo(qaQn); a—= ao/8 denotes s the cubic cell edge.

f'o= 2A'+4B',

fi —16(
——UB'$g+2A B(»),

is ——(32/3) f(2U'+3) B'$s+6UAB$»+2A'(is+ (2U'+4) B'$sg+6UABfsi+ (2A'+ U'B'+2Bs) (ss+2Bs(go+As) ]
l s ( —64/——9) L(20+1.4U') UB'$g+ (22.8+20U') AB)»+8UA fig+8(U +4) UB f 4+ (3Q+22Us) AB(gi

+(13A'+26B'+6U'B') UP»+ (2U'+20) UB'$4o+10UA'pg4+4(U'+5) ABf~s+4(U'+5) UB'g

+(14U'+20) ABtsg+2U(A'+2B') pg4+(U'+4) UB'fis+12AB)io+4AB/gi j,
(16/27) L( 48 5Ug+628 8U +403 2)B $g+(419 2U +1612 8) UABf»+(120U'+86 4)

+ (124.8U'+1504U'+649. 6)B'egg+ (483.2U'+2323. 2) UAB) i+ (448U'+548 8) A'P

+ (150.4U'+1296U'+644 8) B'fog+4(32U'+260U'+139. 2) B'&go+ (360U'+438 4) As), g

+8(32U'+176) UAB(os+32(7U'+45U'+24) B'/as+16(39U'+168) UABtgo+32(3U'+5) As(gs

+16(U4+18Us+1Q) B'fog+8(10Ug+83U +46)B /is+32(6U'+39) UABbo+32(2Ug+21) UABPg,

+64(U'+4) As)is+16 ( Ug+10Us+17) B'fog+32 (3U'+8) A'/go+32 ( U'+ 9U'+8) Bs(

+32(U +9U'+9) Bsgiog+16(7U'+24) UAB(107+8(7U'+12) A'piss+64(U'+2) B'giso+96UABtiss

+8(6As+ U B +6B ) kiss+64B piss+32 UABkiso+64A 64o+16B (iso+16(A'+B )pmoj.


