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Orientational Ordering in Solid Hydrogen

G. M. BELL

Department of 3IIathematics, Chelsea College of Science and Technology, London, England

AND

W. M. FAIRBAIRN

Department of Physics, The University, Lancaster, England

(Received 27 January 1967)

A model for solid orthohydrogen in the temperature range of the observed second-order transition is
considered. The lattice structure is taken to be hexagonal close packed and the quadrupole-quadrupole
interaction energy is minimized with respect to parameters de6ning a self-consistent set of one-particle
rotational wave functions, with J=1.Values of the ground-state energy are deduced when, respectively,
(i) all lattice sites are equivalent, and (ii) superlattice ordering occurs in planes perpendicular to an axis
of threefold symmetry of the crystal. In the latter case, a zeroth-order statistical treatment of the free
energy is given using an orthogonal set of rotational wave functions, approximately consistent with the
ground-state wave functions. It is found that a second-order transition occurs at 2.9'K and that the change
in entropy per orthohydrogen molecule over the transition range is k ln3, in accordance with experiment.

r. Dt TRODUcxrom

t' ~HE cooperative phenomenon observed in the
. temperature range 1—3'K in specific-heat measure-

ments" and in nuclear-magnetic-resonance experi-
ments' ' with solid hydrogen having a high concen-
tration of orthohydrogen has been the subject of various
theoretical investigations' '; the previous papers by the
present authors (Ref. 7) will be referred to as I, II, and
III. Because the cooperative behavior of the molecules
in the crystal is due to the orthocomponent, it is con-
venient to start with a theoretical analysis of a system
composed of pure orthohydrogen. The dilution problem
(i.e., the effect of the paracomponent) can be investi-
gated after a realistic model has been obtained for
solid orthohydrogen.

It has been pointed out" " that previous theoretical
analyses using a fixed axis of quantization are not
necessarily self-consistent in the sense that the axially
symmetric 6eld assumed at all lattice sites might not
always be identical with the field calculated by sum-

ming over the interactions between pairs of molecules

' R. W. Hill and B.W. A. Ricketson, Phil. Mag. 45, 277 (1954).' G. Ahlers and W. H. Orttung, Phys. Rev. 133, A1642 (1964) .
3 F. Reif and E. M. Purcell, Phys. Rev. 91, 631 (1953).
4 G. W. Smith and R. M. Housley, Phys. Rev. 11/, 732 (1960).' S. A. Dickson and H. Meyer, Phys. Rev. 138, A1293 (1965).
s K. Tomita, Proc. Phys. Soc. (London) A68, 214 (1955).' G. M. Bell and W. M. Fairbairn, Mol. Phys. 4, 481 (1961);

5, 605 (1962); 8, 497 (1964). Referred to as I, II, and III, re-
spectively, in the text.

8 A. Danielian, Phys. Rev. 138, A282 (1965).
The change in lattice structure from hcp to fcc which has

been found in measurements of the infrared absorption spectrum
fM. Clouter and H. P. Gush, Phys. Rev. Letters 15, 200 (1965)$
and in x-ray diffraction studies )R. L. Mills and A. F. Schuch,
Phys. Rev. Letters 15, 722 (1965)] of solid hydrogen occurs at
a lower temperature than the cooperative ordering transition
which is discussed in this paper, and should therefore be discussed
separately."J.C. Raich and H. M. James, Phys. Rev. Letters 16, 173
(1966)."G. M. Bell and W. M. Fairbairn, in Proceedings of the Con-
ference on the Many-Body Problem, Manchester, 1964 (unpub-
lished) .
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for an orientationally ordered distribution. Raich and
James's have reported a method for obtaining a self-
consistent internal 6eld by minimizing the configura-
tional free energy (for fixed temperature) with respect
to the rotational molecular wave functions in the cry-
stal. The wave function for a molecule on a particular
lattice site is expanded in terms of a complete set of
orthonormal solutions of the time-independent
Schrodinger equation which contains the self-consistent
single-particle potential (the internal Geld) . The
coeKcients in the expansion (truncated, in practice) of
the wave function are used as discrete variables for the
minimization of the free energy.

For complete generality, these coeKcients should be
independent for each lattice site, but to de6ne a solvable
problem one must stipulate relations between the
coeKcients for different subsets of lattice sites. In other
words, a possible superlattice ordering must be proposed
and the possibility of transitions from the disordered
high-temperature state into such an ordered state can
then be investigated. This is restrictive in the sense
that all possible superlattices should be considered to
obtain a final result.

The analysis of the present paper is similar in that it
produces a self-consistent set of wave functions and in
that each possible superlattice ordering should be
considered separately. However, we may decide whether
any particular self-consistent superlattice ordering is
likely to produce a second-order transition by evalu-
ating the configurational energy in the completely
ordered state and by requiring that this latter state
has a symmetry which permits a second-order transi-
tion.

Firstly, we determine the form of the con6gurational
energy due to the quadrupole-quadrupole interaction
between nearest-neighbor molecules in the crystal,
under the restriction that all molecules are in the J= 1
state, but all lattice sites are allowed to be inequivalent.
The axis of quantization is arbitrary for each lattice
530
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where the molecule occupies the site i and M =0, &1.
It should be noted that the reference axis for the angles
H, , iti; in (2.1) is arbitrary: This is the direction which
defines the quantum number M. If the reference axis
is rotated to a new position, described by the spherical
polar angles (H0, &0) with respect to the original axis,
then the wave function becomes

g cM '(i) FUr (H, ', y, '),

where
CM' (Z) = g SM'M (HO, 4t'Oi 0) CM(Z) i

X)&') being the usual three-dimensional representation of
the rotation group Es. Thus, as expected, the rotation
of the reference axis alters the expectation value of M
but leaves J unchanged.

On normalizing fz4(z) we can write

c z(i) =e"- sinn sinp,

c,(i) cosn, =

cz(i) = e"+ sinn cosp, (2.2)

where, since the over-all phase is arbitrary, we have
chosen co to be real. Also we can impose the restrictions
0&n&(~/2), 0&p&(~/2), —~&8 &~, —~&8„&~.
If, and only if, either P= (zr/4) and (8++8 ) = &zr or
n=0 then f~(i) is of the form FM(H, iti) with respect

"The calculations are being extended to the superlattice struc-
ture Pcu21 considered by Raich and James (Ref. 10) and previ-
ously, using a Axed axis of quantization, by Bell and Fairbairn
[II and III (Ref. 7) g.

site. This energy is minimized for a hcp lattice when

(i) all sites are equivalent, (ii) superlattice ordering
occurs in planes perpendicular to an axis of threefold
symmetry of the crystal, " the minimization de6ning
consistent axes of quantization at each lattice site. The
former case reproduces a result which could be obtained
by using a fixed axis of quantization, but the second
case gives an ordered state with energy much lower
than any found for orientational distributions in
models using a 6xed quantization axis.

The zeroth-order theory of the second-order transi-
tion into this state is discussed, using a simpli6ed model
which is de6ned in Sec. IV, below. We 6nd that this
transition occurs at a temperature of 2.91'K, in close
agreement with the extrapolated value of the critical
temperature determined by Smith and Housley. 4

II. THE CONFIGURATIONAL ENERGY

The rotational wave function pz4 for a molecule of
orthohydrogen can be approximated well at low tem-
peratures by the function which describes a rigid
rotator with spin J= 1.We can write

Pz4 (z) =g cM(i) F&M(H;, P;), (2.1)

to an axis defined by the angles Ln, x0(zr —H++H ) j and
therefore represents a molecule in a pure 3f=0 state.
Thus the molecule of orthohydrogen is only in a pure
M=O state with respect to some axis if c ~———c~* with
respect to any, and therefore every, axis. A special case
of this arises when n =0 so that the molecule has M =0
with respect to the initial axis.

The energy due to the interaction between the electric
quadrupole moments Q of molecules on sites i and j is
of the form

z4i(ij) = Q A(mr, mz.'r, ,)B„,(i)B„,(j)
fs]m2

x F4 —(~1+iiil) (H4i'i 4'4i') i (2 3)
where

A(mg, mz'. r;;)
= (20zr/9) (70zr) '"(—1)~'+"' C(224; m&mz) x,

Bm(Z) Q CM~ (Z) CM(Z) FZM~ FZiiiFZMJOi

x= 6Q'/25r

and (r;;, H;;, 4ti;;) define the length and orientation of the
line joining the centres of the two molecules, the axis
of reference still remaining arbitrary. The total quad-
rupole energy of the assembly of molecules is obtained
from (2.3) by summing over all pairs (i, j). It is
realistic to limit this summation to nearest neighbors
for which r;; =ro, thus obtaining

Eo=-', Q g A(mr, mZ. ro)B,(i) Q B,(j)
j(n,n)

&& F4.—( i+ 2)(H'f 4"i) (2 4)

This equation determines the energy of the system due
to the electric quadrupole interaction between ortho-
hydrogen molecules in terms of the rotational wave
function of each molecule, and of the lattice parameters.
All orientations are de6ned relative to an arbitrary
axis, so that (2.4) is invariant under rotation of the
axis of reference.

III. SELF-CONSISTENT ORIENTATIONAL
ORDERING

The expression (2.4) which determines the configura-
tional energy of the system of N molecules is a com-
plicated function of degree four in 3Ã complex variables
cM(i), i=1, 2, ~ ~, 1V and 3II= —1, 0, 1. By the nor-
malization condition and by (2.2) it is, in fact, a func-
tion of the 4X real variables n, , P;, H (i), 8+(zr) with
i=1, ~ ~ ., E. Because of the mathematical dif6culties
involved in minimizing this function —the task is even
greater when the free energy is considered —it is un-
avoidable that some type of spatial ordering be assumed.
The stability of various superlattices is examined at
T=O'K using Eq, and the transition from the high-
temperature disordered state into such an ordered
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n= sin '(2/Q7) =49' 6'. Thus the configuration,
which has minimum energy at T=O'K subject to the
constraint that all lattice sites are equivalent, has all
molecules in the state M=O with respect to an axis
making an angle sin-'(2/Q7) with the c axis. This
value obtained for Eg is lower than that found pre-
viously (7+iV/12) for a fixed axis of quantization, but
not as low as that obtained below with spatial ordering
present.

The simplest type of spatial ordering for the hcp
structure is of the layer type, with the superlattice
structure formed by planes perpendicular to the c axis.
This amounts to taking the two sites in the unit cell
to be inequivalent. The molecules in alternate planes
are on equivalent lattice sites, and we introduce two

2). On writing
cosa.A, cl(k)

onfigurational

state is investigated using the configurational free
energy of the assembly, The former is considered in
this section, the latter problem being investigated in
Secs. IV—VI using a zeroth-order statistical approxi-
mation.

To demonstrate the method, we examine first the
simple case in which all sites on the lattice are equi-
valent. There is no spatial ordering an.d cM(i) is, there-
fore, independent of i. Using (2.2) with the same values
of n, p, 8+ and 5 for all i, a straightforward calculation
gives

Eo/S= T'~x{13 sin'n+2 sin'a sin'P cos'P

—16 sin'm+8 sin'a cos'n sinP cosP COSA+4},

+104 sinnl cosnl slnclz coscl2[cosPi cosP2 cosh (Xl—Xz—X) + slllPi slnP2 cos~ (Xi—X2+X)

—cosPl slnPz cos2 (Xi+Xz—X) —slllPi cosPz cosy (Xi+f2+~) j}) (3 1)

where'=(ll++&l ), thecaxisof thehcpstructurebeing distinct sets of coefficients cl&r&' and c~&

chosen as reference axis. On minimizing with respect to c l&"&=- exp[i' (fz)] sinaq slnP&„c0&~'=
the three variables (n, P, )l), the value Eo= —xX is exp[i'+(k)$ sinni, COSP&„&=1, 2, the c
obtained: This corresponds to p=zr/4, X= +zr and energy for X lattice sites is given by

L~o/S= & sx{ g 27(13 sin4nq+2 sin4&zl. Cos'Pl, sin'Pl. —16 sin'n&, +8 sin'aq cos'nl. COSPl, sinPl. Coshq+4)
k=1,2

—26(9 sin'ni sin'n& —6 sin'ni —6 sin'n2+4+2 sin'ni sin'a2 sinPl cosPl sinPz cosP2 COSA)

where X= {ll+(1)—5 (1) }—{&l+(2)—&l (2) I. For fixed
values of al, P&„ the expression (3.1) is a minimum when
Costi= COSX2= —COSA= —1 alld Cosh(hi+Xz+X) =
—cos-,'(Xl—Xz&X) =1. These relations have the solu-
tion Xl——X2

——zr and X= 2zr (or, equivalently, Xi——Xz
———zr

and X= —2zr). On minimizing further with respect to
n&, P&, the minimum energy is obtained when P&

——zr/4
and 433 sin'n&, = 244 (i.e., cz&~47' 13') for f& = 1, 2. This
minimum value is Eg= —3.143yS, which is much
lower than that attained in the orderings discussed
previously.

Using the values obtained for Xi, Xz, Pl, and Pz, the
ordered state of the system is one in which each mole-
cule is in the M=O state with respect to an axis. This
is inclined at the angle o.~=0.2= n= 47' 13' to the c axis
for all molecules but, because ) =2m. , the axis for the
molecules in one set of planes is on the opposite side of
the c axis (rotated through 180' about the c axis)
to that for the molecules in the alternate planes. For
this ground-state configuration, every molecule is in a
definite state. On lowering the temperature, the transi-
tion from the high-temperature state, which is com-
pletely disordered, to the ground state is accompanied
by an entropy loss of k ln3 per orthomolecule (k being
Boltzmann's constant), as has been found experi-
mentally. ' Many previous theoretical orientational
orderings have failed to satisfy this criterion.

IV. SIMPLIFIED MODEL

Ke have indicated above the existence af a low-

energy spatially ordered state at T=O'K. To discuss

the system at finite temperatures we require the con-
6gurational free energy. For convenience, and to obtain
appropriate mathematical expressions for the free
energy in the two phases under consideration, we use a
simplified model in which the axes of the orthomolecules
in the ordered phase are inclined at the angle 45' to the
c axis rather than at the angle u= 47' 13' derived above.
This simpli6cation allows the use of the same set of
axes for the disordered phase and for both sets of
planes in the ordered phase. This right-handed set of
rectangular axes consists of the two quantization axes
(01 and 02) for the sets of alternate planes and the
direction (03) perpendicular to both of them, this
third axis lying in the plane normal to the c axis.

Let E~, S2, and X3 designate the numbers of mole-
cules on the lattice which are oriented along the axes
01, 02, and 03, respectively. If S&(~), S2(~), and S3(~)

designate the corresponding numbers of molecules on
sublattice k, then the completely ordered phase is
degned by g (1) &g g (2) or +2(1) &g + (2) This
state has con6gurational energy E@= —3.115XE, which
corresponds to an error of less than 1%, compared
with the ordering using axes inclined at angle a =47' 13'
obtained in Sec. III.

At nonzero temperatures, the minimum energy state
is disturbed by thermal motion and all types of nearest-
neighbor pairs occur in proportions determined by the
equilibrium conditions. Let the unit vector u,; represent
the direction, specified by polar angles 0,; and p;;,
from site i to nearest-neighbor site j, and let zc&,l(u, ,)
denote the interaction energy of a pair of molecules,
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the molecules on sites 2 and j being respectively oriented along the (quantization) axes Ok and OI(h, I=—1, 2, 3) .
Then, from (2.3),

W11(uij)/X= k)&P4 (COSOij) COS4&jbij —6P4 (COSOij) COS2$(j+2P4(COSOij) q

w„(u,;)/X= —'—P'(cosO, ,) cos44;,+-'P'(cosO, ,) cos2$,j+-', P (cosO, ,),
w22(u;;) /x= 4P4(cos8;;),

W12(ll j)/X —W21(u, j)/y= —
k 2P4 (COSO;1) COS4$'1+2 P4(COSO 1) )

w12(uij)/x=w21(u;j)/g= 6P4 (cosO, j) cos2$;1—2Pi(cosO;j),

w23(u 'j) /x w22 (U 'j) /x = — ', Pi (co-sO;, ) cos2$,;—2P4(cosO;;) . (4.1)

It is convenient to list here the directions from a given site i to its twelve nearest-neighbor sites j; these are

(a) on the same sublattice:

8'j= (~/6), (~/2), (5~/6) 4'j= —(~/4) (3~/4)

(b) on the other sublattice:

8,;= cos—'(1/V3), p;;= (2r/4), (52r/4) (2 sites);

(6 sites);

(4 sites) .n= tan '(2v2/v3)

1Vkk(12) (u;; ) + g»kl("'(u, ,') = 1Vk('&,
Z&k

»kk" (u;,')+ Q»lk""(u;,') =»k"', ail j'. (5.3)

It should be noted that wkl(u, ;) =wkl( —u, ,) denotes
the interaction of the same pair as wlk(u, ,). Hence,
since by (3.1) wkl(u, ,) =wlk(u;, ), it is necessary for
consistency that wkl(u;, ) = wkl( —u, ;) . Equations (4.1)
satisfy this criterion since the changes 8;j—+7t.—0;;,
p, ,—&2r+(t;; leave the expressions on the right-hand side
unaltered.

Adding the two relations of (5.3),
2»kk(12) (U, ) + Q f »kl(12) (u, ,) +» lk(12) (U, , ) j

Z&k
V. THE CONFIGURATIONAL ENERGY

AND FREE ENERGY all j'. (5.4)

8;,= cos '( —1/2%3), g, j=(2—( /4), (3 /4) —,— —(2(/4), (2—(5 /4)

Let »k ("&(u,,), »k ("'(u, ) denote the numbers of
k-/ nearest-neighbor pairs at orientation u;j with both
sites on sublattices 1 and 2, respectively. Note the
identities

The configurational energy, which we assume is due
solely to quadrupole-quadrupole interactions, is given
by

3 3 6

» ("&(—u .) =» ("'(u )

1Vkl(22) (—u;, ) =1Vlk'"'(u, ,),
(5.1) &o=2 Z Z Z {»»""(u')+»kl""(u'j) }wkl(u'j)

k=1 Z=1 j=l

where both sides of each relation refer to identical types
of pairs. Also, let »kl(12)(u;,') denote the number of
k-l nearest-neighbor pairs at orientation u, j with the
molecules in the k and l states on sublattices 1 and 2,
respectively. %hen the number of lattice sites is large
these pair numbers obey the conditions

1V (")(u )+ g» (")(u")=1V (')
Zgk

»kk""(u, ,)+ Q jVkl""(u,,) =»k"', ail j; (5.2)
Z&k

+ g g g»„,(")(u;,') wkl(u;, '), (5.5)
k=i Z=i @=i

where the summations with respect to j and j' are
respectively over the nearest neighbors of a given site
in the same sublattice and the other sublattice. The
factor —, multiplying the first term corrects for the
double counting of each pair in summing over all k, l,
and j inside a given snblattice Lsee (5.1)j. Substituting
from (5.2) and (5.4) in (5.5), and using (5.1), the
configurational energy may be transformed to

3 6 6

E(j= g 1Vk2k+ Y~ g g f»k, " (u,,) +»kl" (u, ;) }ski(u, ;)+ g g g»kl""(u, ; ) kkl(u;j ), (5.6)

where

k(Z k&Z jj'=i

kk 2 {Q Wkk(uij) + g Wkk(uij') j yl k=1, 2, 3

kkl (Ui j) Wkl (ui j) 2wkk (Ui j) 2wll(ui j) klk (lli j) 1 (5.7)
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and o&&(u~p) is defined similarly. It will prove useful to
define averaged energies,

6 6
1 / 1' 1

6k& c&k o ~ tie&(u~&') p ck& &Lk o ~ ko&(u& '&)

From (4.1) and (4.2),

~& ——og
———91X/96,

o&,
——3X/2,

e&,2 = —13eu/27,

(5 8)

o3
——7X/8,

e&3
——o23

———33X/128)

e&,
' ——e»' ———13'&3/27. (5.9)

VI. ZEROTH-ORDER THEORY OF THE
TRANSITION

Since the evaluation of gq presents formidable
problems, we utilize the most elementary approach,
that of the zeroth-order approximation in which it is
assumed that the distribution within each sublattice is
random so that

fq={(2N) j'/ ll {N~"' N""'j.
k=1

(6 1)

The equilibrium orientation distribution of the
molecules on the lattice is found by minimizing the
Helmholtz free energy

Fq Eq T——Sq = Eq—kT—lngq, (5.10)

where g@ is the number of ways, consistent with given
values of the nearest-neighbor pair numbers occurring
in the expression (5.5) for Eq, of arranging given num-

bers NI, (') and XI,(') of molecules in the states k=1, 2, 3
on the sublattices.

Np&&"'(ll, ,) = 1',"'N&"'/(g'1V),

NJ, P'& (u;&) = Ny&" N$&'&/(g~N),

N&, &&"& (u & ) = N&, &'&1V&&'&/(-', N) . (6 2)

Since these are now independent ofj and j', respectively,
the configurational energy will depend only on the
averaged interaction energies e~, e~~, and e~~'. lt is also
assumed that the ordered state is symmetrical with
respect to the two sublattices in a way consistent with
the known low-energy state Si("——S2("=-',S and with
the relations a~3

——&2~, &~3' ——&23' between the averaged
interaction energies. Accordingly we set

g ~(1) —g 2(2) g~(2) —g 0) @30)—ga(2) —&gs

and define parameters 0- and c by

o = 2(N&&'& —Ng&'&)/(N —N3),

= 2 (N2&'& —N2&'&) /(lV —N3),

c= (1V—21V3&'&) /N

= (1V—2N3&'&) /1V= (N N3) /N. —

(6 3)

(6.4)

Here 0- is the ordering parameter, and at 0.=0 the dis-
tributions or the two sublattices are identical. The
low-energy state is specified by O=c=1. Substituting
(6.2) in (5.6) and using definitions (6.4) we obtain.

Also, from the assumption of randomness, the pair
numbers are given by

Eq/N= e3+c(oy—o3)+2c {(1—o' ) @&2+(1+o ) e&2 j+6c(1—c) (a&3+@&3 ) .

From (6.1) and (6.4), the configurational entropy is given by

Sq/N= —k[c inc+(1—c) ln(1 —c)+c{-,'(1+o) ln(1+o) + —,'(1—o.) ln(1 —o) —ln2j].

For equilibrium Fq must have a stationary value so that, using (5.10), (6.1), (6.4), and (6.5),

BFq
&

1+a' o&g
—

Ey2
(NkT) ' =-', c ln —3c'o =0

80- 1—0 kT

(6.5a)

(6.5b)

(6.6a)

, BFq c
(NkT) —' = ln +-,'(1+o) ln-', (1+o)+-,'(1—o) ln-,'(1—o)

Bc 1—c

+ (k T)-'[~&—o3+3c{(1—a') o&g+ (1+a ) oy2 j+6(1 2c) (o&3+6y3 )]. (6.6b)

At T= oa, the only solution of (6.6) is o=0, c=a
which represents the completely disordered state

N&&'& = 1V2&'& = N3&'& = 1V&&'& = Np&'& = Ng&'& = N/6.

If the expression for ln[(1+a.)/(1 —o)] supplied by
(6.6a) is substituted in (6.6b), if both relations are
simplified, and if the values (5.9) are used for the inter-
action energies, then we obtain the pair of simultaneous

equations

ln[(1+o) /(1 —o )]—(40x/3k T) co=0, (6.7a)

ln{-,'c/(1 —c) j+(63'/16kT) (c—3) = —xa ln(1 —a').

(6.7b)

Since the left-hand side of (6.7b) is a monotonic
increasing function of c while the right-hand side is
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never less than zero, the least possible value of c is —'„
attained only at cr=0. The solution 0.=-0, c= —,

' is clearly
a possible one at all values of T, and any other solutions
must exist in symmetrical pairs, since if O-p, cp is such a
solution then so is —O-p, cp. For a given value of c, it is
easy to show that solutions other than 0 =—0 of (6.7a)
exist only when

20xc& 3k T. (6.8)

Hence the only temperature at which a second-order
transition can occur by the separation of a pair of other
solutions from the solution 0.=0, c=-', is found by
inserting c=-,'in (6.8) and this we denote by T„so
that

T,= (20x/3k) (-', ) = 40X/9k= 2.9'K (6.9)

(taking 4X= 2.615k) . Also since the maximum value of
c is 1 it follows from (6.8) that the solution 0 = 0, c=-,'
is unique for T) ~ T,. It can be shown that, in fact, the
solution o.=0, c= 3 is unique where T) T, and also is
stable in the sense of giving the least value of Fq, while
the pair of solutions which separate at T= T, are stable
for T& T,. Hence T, is a second-order transition tem-
perature. Since the proof of these points requires some
rather tedious algebra, it has been placed in the Appen-
dix.

It is important to note that from (6.1) and (6.4) the
orientational entropy k lngg has the value kE ln3 in
the high-temperature state g=0, c=a, while in the
low-energy state 0-= c= 1 at T= 0 it has the value zero.
Hence the change in entropy per molecule of ortho-
hydrogen is k ln3 over the transition region.

VII. DISCUSSION

The earliest theory, due to Tomita, ' failed to satisfy
condition (1) and we showed in I' that the "orienta-
tional transition" he postulated does not occur. It
was proved there that a model like Tomita's with no
spatial order is equivalent to an Ising model ferro-
magnet in an "equivalent" external field which is a
linear function of the temperature. Any transition
which may occur is of the first order and is due to the
equivalent field passing through the value zero at a
temperature below the second-order transition tem-

A theory of the second-order or A. transition in solid
orthohydrogen should satisfy three conditions:

(1) The low-temperature state has a symmetry
attainable by a second-order transition from the high-
temperature state.

(2) The change in the entropy per orthohydrogen
molecule over the transition range is equal to the
observed value of k ln3 ' (this condition can possibly be
ielaxed at lower mole fractions of orthohydrogen) .'

(3) The calcula, ted transition temperature should be
of the same order of magnitude as the experimental
one.

perature of the corresponding symmetrical or zero-field
Ising model. (The first-order transition temperature
obtained by Raich and James" in their discussion of an
fcc model for solid orthohydrogen can easily be calcu-
lated in this way. ) We concluded that the second-order
transition in solid orthohydrogen is probably due to
the onset of spatial ordering, and in II and III7 dis-
cussed a type of ordering with two equivalent sublattices
reached by a second-order transition. The same model
based on single-particle rotational wave functions with
quantization axis parallel to a threefold symmetry
axis of the hcp lattice was used by Danielian, ' who
agreed that the transition is due to sublattice ordering.
However, he demonstrated that the completely ordered
state of II and III' lies slightly above the lowest quad-
rupole-quadrupole lattice energy state. Neither the
theory in II and III nor that of Danielian' satisfies
condition (2). In the former case a half and in the
latter two-thirds of the sites are occupied in the ground
state by molecules for which M= %1, where 3f is the
component along the symmetry axis of the rotational
quantum number J, equal to 1 for orthohydrogen at
low temperatures. Hence the changes in entropy per
orthohydrogen molecule are, respectively, —,'kln2 and
~3kln2, less than the required value kln3. Also an
error was made both in II and III and in Danielian,
because the value of x used was too large by a factor of
four. The transition temperatures obtained should thus
be divided by four and are then much lower than Smith
and Housley's' estimate for pure orthohydrogen.

An improved treatment of the ground state is thus
desirable, and this has been attempted in the present
paper. We assume that in the temperature range where
the X transition in solid hydrogen is observed the lattice
is of the hcp type, and that the transition represents the
onset of spatial ordering with two equivalent sublattices
consisting of layers perpendicular to an axis of threefold
symmetry. Instead of using single-particle orientational
wave functions for 7=1 with arbitrary axes, we have
carried out a variational process and minimized the
quadrupole-quadrupole energy of the completed ordered
state with respect to the axes of the wave functions.
The ground-state energy produced is considerably lower
than that of Danielian, —3.14'Ã as compared with
—9yS/8. Also the single-particle orien. tational wave
functions of the molecules on the two sublattices have
no degeneracy in the ground state so that condition (2)
is now satisfied. To derive a transition temperature, we
have used an orthogonal set of rotational wave func-
tions of which two are approximately equivalent to the
ground-state wave functions in the respective sub-
lattices. With a zeroth-order statistical approximation,
we find a second-order transition at 2.9'K so that
conditions (1) and (3) are also satisfied. The calculated
transition temperature is very close to Smith and
Housley's' extrapolated experimental value of 3.0'K
for pure orthohydrogen, but this close agreement may
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be fortuitous, since the zeroth-order statistical method
gives rather high transition temperatures. "The accu-
rate second-order transition temperature for our model
is thus probably less than 3'K. This may be due to
using wave functions in the statistical theory which are
only approximately equivalent to the true ground-state
single-particle wave functions, to the fact that a product
of single-particle wave functions is itself an approxima-
tion, to inaccuracies in the lattice parameters assumed
for pure orthohydrogen, to the neglect of interactions
other than those of nearest-neighbor quadrupole-
quadrupole type, and to the possible occurrence of a
more complicated sublattice structure than that
assumed.

APPENDIX

First we investigate the possibility of solutions of
Eq. (6.7) other than 0=0, c=a in the temperature
range T& T,. Defining y=~~(3c—2), and T, by (6.9)
then, if 0 &0, Eq. (6.7a) gives

1 8Fq
SkT B(P 1—o-'

3C Tc

2T'

1 O'Fo 1+0 3T,co.
SkT Bo-Bc 1—o. T

(Asb)

1 O'Fq 1 3T, 189

NkT Bc' c(1—c) 2T 320

Hence, when a.=0, c=—'„

1 O'Fq, T—T,
SkT Ba' ' T

If a stationary point is to represent a possible
equilibrium state, it must give a minimum of the
Fo(a, c) surface. From (6.6) and (5.9),

T 1+a. 1 1+0.
y= ln —1& —ln —1,

2o Tc 1—a' 2o 1—o

(A1)

gk T Bo.2 BC2 ga Bc T 320T

(A6)

1+y 189T, 3 1+0
ln + y& 3y) —ln —3.

1—2y 320T 20 1 o

Since (3/20) in((1+0)/(1 —o) I
—3+—,

' ln(1 —0') is a
monotonic increasing function of o., it follows that

1+y 189T,
In + y) ——', ln(1 —o')

1—2y 320T
(A2)

for o-&0, and hence by symmetry for all o-@0. The
inequality (A2) shows that Eq. (6.7b) has no solutions
with T&T, and a.@0. Hence the state defined by
0 =0, c=—, (the disordered state) is the unique solution
of the equilibrium conditions for temperatures T& T,.

Secondly, for T( T„(6.7) can be solved for y and
o' as series in

(A3)

The erst-order terms are given by the simultaneous
equations

y= —5+-', o', 1149y/320 = -'0'

which have the solution, a good approximation when

(A4)y= 1605/223.o' = 11495/223,

'3 C. Bomb, Advan. Phys. 9, 245 (1960).

Thus the left-hand side of (6.7b), since y) 0 for 0 80,
satisfies the inequality

so that, where T) T„F@(0,s2) is a minimum. In co-
operative phenomena it is sometimes found that,
though a disordered state gives a minimum on the free-
energy surface down to a "second-order transition
temperature, " this transition is forestalled by a G.rst-
order transition at a higher temperature to a lower
minimum of the free energy. This cannot happen in
the present case, as we have shown that a =0, c=-', is
the unique stationary point of F@(a, c) when T) T.. .
Hence the disordered state is stable down to T= T,
and, again by (A6), it can be seen that it becomes a
saddle point on the surface F@(o,c) and hen. ce is un-

stable where T& T,. To complete the demonstration
that T, is a second-order transition temperature, it is
necessary to show that the pair of solutions which
separate at T= T, represent minima on the surface
Fo(a, c) just below T,. If only the terms of order 5

are retained in (AS), and (A4) is substituted, then

1 O'Fq 4'' 1532b

ÃkT Bo' 9 669 '

1 8 Fg 8 Pg t9 Fg 11498

Nk T Bo' Bt,"' Ba-Bc 160

Hence the pair of symmetrical solutions which separate
from a-=0, c= 3 at T= T, are stable just below T,. This,
of course, does not preclude a further transition, caused,
for example, by a change in lattice structure occurring
at a finite interval below T,.


