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The zero-point phonon vibrations in a paramagnetic crystal are shown to give rise to an effective ion-ion
coupling. Expressions are derived for ion-energy transitions 6 both greater and less than the phonon-cuto8
energy 5~0. In the former case, the coupling is short range, falling o8 as (Aaoo//25) 2~&"2p«& 2t wherer. ' is the
ion-ion separation distance and a the lattice constant. In the latter case, a slowly decreasing oscillatory range
dependence is obtained. When the ionic separation is greater than the phonon wavelength appropriate to the
transition energy 6 (i.e., when X&hv, //'6, where v, is the sound velocity), the coupling due to trans-
verse phonons falls off very slowly, (A/hv~)'Leos (r;, A/br&) ]/r;;, where ~~ is the transverse sound velocity,
a result similar to that of McMahon and Silsbee. Finally, in the limit of vanishing 6, our results go over
smoothly to a range dependence similar to that found by Sugihara, and Aminov and Kochelaev, ~1/Rs.
Numerical estimates are made for the strength of the coupling coefFicient.

I. INTRODUCTION

T was Sugihara' who 6rst proposed that two spatially
.. separated paramagnetic ions could be coupled to-
gether by the virtual emission of a phonon at one site
and its subsequent reabsorption at another site. Sugi-
hara's treatment made no allowance for a change in

energy of the paramagnetic ion during this phonon-
exchange process. Allowance for an energy change,
termed "retardation, " was included in a calculation by
Aminov and Kochelaev, 2 though only in a qualitative
manner, A subsequent paper by McMahon and Silsbee'
examined these terms in more detail, but did not
separate out the contributions from transverse and
longitudinal phonons.

In this paper wc shaH examine the CGects of re-
tardation on phonon-induccd ion-ion coupling for two
quite different limits, In the first case, we shall consider
the "extreme" retardation limit where the paramagnetic
ion's change in energy 6 exceeds the band pass or
maximum phonon frequency ficoQ. This limit, which has
apparently not been investigated, is important for
energy transfer in solids, though it vill turn out that
the interaction will be one of very short range. In the
other limit, when 6 is less than the maximum phonon
energy, we 6nd a long-range oscillatory interaction
similar to that found in Refs. 2 and 3. This latter result
reduces smoothly to that found by Sugihara' in the
limit that 6~0.

For both limits, we treat only the coupling between
identical ions, involving identical energy changes on
either ion. If the ion pair's total energy is not con-
served in the interaction process (i.e., if the reduction
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ln cncrgy 6 Rt oIlc loIi ls not exactly compensated by
a corresponding increase in energy of 6 at the other
lon), then the emitted (absorbed) phonon must differ
in energy from the absorbed (emitted) phonon in order
to compensate for this energy mismatch. It is not di%-
cult to show that interference terms reduce the proba-
bility of this process to zero. Only emission and absorp-
tion of identical phonons can lead to a nonvanishing
ion —ion interaction. The case of lack-of-energy con-
servation in ion—ion interactions is treated by Dexter
and in a recent paper by one of us' (R.O.). In that
paper, there is also given a brief summary of the results
to be derived here in the limit of extreme retardation.

In Sec. II we formulate the ion—ion interaction
process via vll tuRl phoIlon cmisslo11 RIid Rbsorptlon.
Section III treats the extreme retardation limit ~&~Q
and Sec. IV the weak {or in-band) retardation region,
6&A~Q. Section V concludes with a nUmcrica1 estimate
for the CGectivcness of this coupling mechanism, and a
discussion of some examples where it is expected to
be important.

The origin of the proposed ion —ion coupling lies in
the creation (destruction) of a phonon at the site of one
paramagnetic ion and the destruction (creation) of the
same phonon at the site of another ion. This "phonon
exchange" is very similar to the well-known example
of "photon exchange" which leads to the usual Cou-
lombic interaction between charged particles. ' Ke begin
with an expression for the one-phonon orbit-lattice
interaction RppI'opl'1Rtc to R paramagnetic loIi Rt thc
center of the jth octahedron of ligand charges:

X,= g g V(I„l)C(I„J,~),q(1„,~),

g V(1.,1)C(r„~,~),()(r.„-~),( —I)-.
l=2, 4,6 m=Q, +1,

'D. L. Dexter, J. Chem. Phys. 21, 836 (1953};Phys. Rev.
126, 1962 (1962).

5 R. Orbach, in Proceedings of the John Hopkins Conference
on Optical Spectroscopy, September, 1966 (to be published).6%'. Heitler, The Quantum Theory of EaCiation (Oxford Uni-
versity Press, Oxford, England, 1957), p. 231.
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Here, V(F;„1)is an interaction constant with units of
energy, appropriate to the ith irreducible representa-
tion of the octahedral group. The C(F;gl, m) and
Q(I',„m);are, respectively, linear combinations of
Racah's CE~ ——Q„I4'/(2l+1)]'~'Vp(n) and the nor-
mal modes of vibration (divided by a, the lattice

constant), transforming as the mth subvector of the
F;, irreducible representation of the octahedral group.
The C(F;gl, m), are given in a number of papers'
and will not be reproduced here. The Q(F,„m);are
listed below for later use. For simplicity of notation,
we write

Q(I';, m);= Q(i/a) P/2Mce(k, s) 5'~'$bg, ,e'~'&' bg, ,+—e '"'~'jRg (F m) (2)
k, s

where the sum is over all wave vectors and polarization indices k and s, respectively. In Eq. (2), M is the mass
of the crystal, 5a&(k, s) the energy of the phonon with wave vector k and polarization index s, bz, , the destruction

. operator for the same phonon, and Rq, ,(F;„m)is given below for the various terms appropriate to an octahedral
ligand environment:

R~,,(Fs„tl) =-,'L2e'(k, s) sink, a—e (k, s) sink, a —e&(k, s) sink„aj,

Rq, ,(Fs„e)=sv3Le*(k, s) sink, a—e&(k, s) sink„a],

Rq, ,(Fs„1)= —iL+(3/2)]l e&(k, s) sink, a+e*(k, s) sink„a+ie'(k, s) sink, a+ie (k, s) sink, aj,
Rq, ,(Fs„O)=iV3I e*(k, s) sink„a+e&(k, s) sink, aj,

R~,,(Fs„—1) =il Q(3/2)]l e&(k, s) sink, a+e'(k, s) sink„a—ie*(k, s) sink, a —ie*(k, s) sink, aj, (3)

eff

&j,j'*I& lj*,j'*)&j*,j'*I&'lj*,j'&
AW SM

where e (k, s) is the nth component of the (unit)
polarization vector for the phonon of wave vector k
and polarization index s. The expressions given in (2)
a,nd (3) are very similar to those of Van Vlecks and,
in the long-wavelength limit, k a((1, reduce to those
given by Schawlow et al.' and independently by Blume
and Orbach. ~

We write the single-ion orbit-lattice coupling in the
manner of (1) in order to separate out phonon from
spin contributions. This separation is, in general, not
valid if retardation e8ects are significant, i.e., if a
change in electronic energy 6 occurs at a given ion
"during" the phonon-exchange process. Then, the ion-
ion coupling constants will be shown to be functions
of the change in ionic energy.

To be more specific, we consider the effective Hamil-
tonian constructed from the use of (1) in second order
at ion sites j and j'. Because retardation is important,
we specify that the ions at r; and r, are initially in
the states

I
j*& and

I j'), respectively. "After" the
process of phonon exchange, the ions are found to be
in states

I j) and
I
j'*), respectively. We assume the

energy difference between
I
j*) and

I j) equals that
between

I
j'*) and

I
j'), and we denote it by A. The

effective ion —ion coupling Hamiltonian for an exchange
of phonons of energy fun is then of the form

&j,j'* I &~' lj j')(j,j' l3-'~ lj*j'&
D~ fLM

Here,
I j,j'*)represents the product spin states

I j) I
j'*),

and the ~~ appearing in the denominator depend
on whether phonon emission or absorption is occurring
in the first matrix element of each term. The next step
is to sum (4) over all phonons of wave vector k and
polarization index s. For the particular mth subvector
of the ith irreducible representation in (1), this leads to

X rr' =+V, (F'gl) Vp(F'gl )
t, s~

X&j,j"I C,'(F;g, ™)I1',j'&

x&j,j Ic,(F,„)lj*,j'&

25ce(k, s)
X

2Mre(k, s) a' 6'—Pre(k, s) )'

X cos(k r;;.)R~„(F;„m)R~,,(F;„—m), (5)

where r,y = r, —r,'. Expression (5) serves as the start-
ing point of our investigation into the phonon-induced
ion—ion coupling. Note that all reference to the phonon-
occupation numbers has canceled out of (5), leaving
only the effect of zero-point vibrations. This is an
exact result, true in the presence of retardation, as well
as in its absence. It remains, now, to evaluate the sum
over phonon coordinates k and s for the two extremes
discussed in the Introduction.

III. EXTREME RETARDATlON& 6))L)p

In this section, we evaluate (5) for ion-transition
energies 6 greater than the maximum phonon energy

r M. Blurne and R. Orhach, Phys. Rev. 12/, 1587 11962&.
J. H. Van Vleck, J. Chem. Phys. 7', 72 (1939); Phys. Rev. SV, 426 (1940).

9A. L. Schawlow, A. H. Piksis, and S. Sugano, Phys. Rev. 122, 1469 (1961).
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Pro. 1.The coor-
dinate system used
for the calculation of
the phonon-induced
ion-ion interaction.
The z direction is
taken parallel to the
line' joining the two
ions, and e~, e~„e~,
label the directions
of polarization of the
longitudinal and
transverse branches,
respectively.

case of i =3, m=e. The curly bracket in (5) becomes

—3' [e'(k, s) sink, a —e"(k, s) sink„a]'
43II '

), 6' —[fuv(k, s)]'
(7)

For simplicity we shall choose the k, direction parallel
to the line connecting the two ions r, . The simplest
way we have found to evaluate (7) is to expand the
denominator in powers of P&u(k, s)]'/LV and then to
evaluate the resulting expression term by term. For
longitudinal phonons, (7) becomes

(~0, 2n

g —,(k sink, a —k„sink„a)'
4Ma2lV „(5 I, k2

fuego. To accomplish this, it is necessary to assume a
specific form for the phonon-dispersion law &a(k, s).
For simplicity we choose the form

oP =(uo, ' [sin'-', (k,a) +sin'-', (k„a)+sin'-', (k,a) ], (6)

where the subscript s labels the longitudinal and trans-
verse branches. This result is appropriate for a simple
cubic lattice with nearest-neighbor coupling only. The
reason for the necessity of specifying a dispersion law
comes from the singular character of the denominator in
(5) when f)cu =A. Using (6) (and Not a Debye approxi-
mation) we see this occurs for complex k. Hence, from
(5), the interaction will be short range and, as we
shall show, falls of'f as exp{(—2r, ,'/u) 1n(26/f)coo) I.
This result might have been anticipated since the
coupling requires that a, frequency co=A/5 be trans-
mitted by a lattice which cuts off its propagating wave
character at cu=~o((h/A. To be explicit, consider the

X[(sin'-,'k,a) + (sin'-', k„a)+ (sin'-,'k, a) ]"cos(k,r,,')

This expression can be integrated in a straightforward,
if tedious, manner. Two types of terms obtain, according
to whether r;; differs from or equals ea. In the former
case, for r;, /a))1, the above expression integrates to
(longitudinal phonons)

9' 1 a2 't

, +o
4s.ply rD ' r, ,') (9a)

In the latter case, when r,; =eu, special attention
must be given to the last term in the second square
brackets of (8). To the lowest order in SMO~/6, this
part of (8) becomes (longitudinal phonons)

3fi2 Ol
2n

Q —,[k, sink, a —ky sink„a]'
43'a262 „6k k2

( 1)eX, {cos[(ea —r,,') k,]+cos[(ea+r,,') k,]}

where It is understood that v;;.&0 in the last line and

p, = (1/iver) g(1/k') D, sink, a —k„sink„u]'.
k

, , ( —~)"""
( ), (&b)

For transverse phonons we adopt the coordinate system shown in Fig. 1. In a manner identical to the derivation
of (9a) and (9b), and in the limit that r;,'/a))1, (7) reduces to

{Q ( —3fPyg, ./4pg'6') (—1)"~'~'~'($(g /2h) '"~'~'~'} —(9f),'/4~ph') [—(1/r, ) +O(a'/reap') ], (10)
i=1,2

where

y~,. ——i))r 'g[e~(k, t,) sink, a —e~(k, t;) sink„a]'.
k

This is a remarkable result for it shows that to this
order in (fuuo, /6) the power-law terms in (1/r,y)
exactly cancel when the contributions from the longi-
tudinal (9a) and two transverse (10) phonons are
added. The cancellation of these terms is model-
independent since it arises from the neglect of fi~ as

comps, red to 6 in the denominator of (7). There are
terms of higher order in (Acro, /6) in (7), entering as
(1/r, ;)'(Ruo, /6)', but these can be shown to exactly
cancel if coo~

——coo&. In general this is not the case. How-
ever, as we shall show in Sec. V, the magnitude of the
phonon-induced spin —spin coupling coefficients at near-
neighbor distances are of the order of the electric
quadrupole-quadrupole interaction which falls off as
(1/r;; )'. Hence these higher-order terms which survive

the ca,ncellation occurring between (9a) and (10) are
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negligible in practice and will not be considered further
here. Finally, then, all that remains of (7) is simply

Z(3&'v/4"'~') (-1)" ' (& ../2A)'" " (»)

where

y, = (1/N) +Le'(k, s) sink, //
—e&(k, s) sink„a]'.

This result can easily be rewritten in the exponential
form mentioned earlier in the first part of this section.
One may evaluate the other terms summed in the
curly bracket of (5) in a similar manner. In each case,
the lowest-order power-law terms cancel when the
contributions of transverse and longitudinal phonons
are added. The results are listed below for each value
of i and re, including the above result (11) for com-

pleteness:

i=3,

( ]r]2/4p~6g2) ( 1)r//~/a(g& /2Q) [2(r// /a) —4].

0;

/, : (—fi'/2pa'6') ( —1)"//'/'(5(sod/2A) ['['//"' ']; (12a)
(u(k, s) =[/, k (14)

IV. 'cIN-BAND)) LIMIT, A&ha)0

We evaluate (5) in this section for ion-transition
energies 6 less than the maximum phonon energy fi~o.
The principal contributions to K,gi'™will come from
phonons of energy Ro~~, as can be seen from the
form of (5). If we assume the phonon-frequency sur-
faces are smoothly varying in the vicinity of this
energy, it turns out that the coupling Hamiltonian
will be relatively insensitive to the periodic character
of the frequency-wave-vector dependence. This was
not the case for the extreme retardation limit because
of the need for complex k necessary for equality of
Ace and A. The lack of need for an explicitly periodic
form for ~(k, s) simplifies the computation of the
"in-band" terms greatly. We shall assume in what
follows a linear dependence of cu(k, s) on k. The quanti-
tative error introduced by this assumption will not be
great for 6 significantly less than Acro and will enable
us to display some very interesting physical conse-
quences of the in-band phonon-induced ion—ion cou-
pling. We take

i=3 m=e
and define a "resonance" wave vector k~' for each
phonon branch by

(3fi2y[/4p/i~+2) (—1)"7/'/&($(go]/2g) "//'/';

(3&'v /4pa'~') (—1)"""(&~«i/») '"""
t ~ (3/2+ /4p+5g2) ( 1)r//&/a(g& /2A) 2r/q~/a.

where

(12b)

k/, ' =A/Sr. . (15)

We shall drop the superscript s in what follows for
convenience, reinserting the mode label only in our
final results. Using (14) and (15), Eq. (5) reduces to

y, =X '+Le*(k, s) sink, a —e&(k, s) sink„a$';
k

i=5, m=o

(3]]P+ &/p+2A2) ( 1) r~'~'&/a($& /2g) 2r/~ &/u. '

(3]ri2+ &/p//2+2) ( 1)r&/~/a(~ /2Q) 2r//~/u ~

(3fPy '/pa'6') (—1) '/' (Iti(aoi /2A) '" /".
where

(13a)

y, '=A/ '+Le*(k, s) insk„a+e"(k) s) sink, aj';

and

i=5 m=&1

( 3f2/gp+2A2) ( 1)r//&/a(~ /2g) [2(r//~/ai —4] .

/i ( 3'/16.pa'6') ( —1—) "//' (Acuoi, /2A) ' "//' '
( —3'/16pa'LV) ( —1) "//'/~(5coo/ /2A) [""//'/~] '].

(13b)

It should be noted that (12a) and (13b) have con-
siderably longer ranges than (12b) or (13a), though
of course even these fall off rapidly for very large
r//. /a. At nearer distances, however, for the case of
strong orbit-lattice coupling, it may' well be the case
that (12a) and (13b), corresponding to i=3, m=8
andi =5, m= &1 type terms, are important. Numerical
estimates for the strength of this part of the ion—ion
interaction are given in Sec. V.

1 cos(k, r, /. ) (2e' ake'k, a e&k„—a)'—
4 k' —kg'

(17)

For longitudinal phonons this reduces to

u' cos(k, r,, ) (2k/ —k '—k„'-)'
18

4 ], k'(k' —kz')

This sum can be converted into an integral and, assum-

ing s;;))a, is easily evaluated using polar coordinates.
Inserting the result into (16), we find (16) to be

1 + cos(k r;, )
3IIa'V ' k k' —kg'

XE]...(I';0, r/i) R, ,, (1';g—/r/) . (16)

Consistent with the assumption (14), we shall, in what
follows, adopt the long-wavelength form for the
R], , (1';0, m), defined in. (3). It is, in fact, possible to
solve (16) exactly without this assumption, but identi-
cal results are obtained when the long-wavelength ap-
proximation is made in the final result. We shall
evaluate (16) for the interesting case of i=3, m=8 ex-

plicitly below. Our results will diGer from those of
Sugihara in the limit 6—+0 for this case, though an
identical result to his will obtain for the case of m=e.
Because of our differing conclusions regarding m=0,
we go through the calculation in some detail here.
We must evaluate, taking k,

~ ~
r,,',
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equal to

i=3, m=0

kg'—cos(kttr, ,')—
4~pvg' r;,'

(longitudinal phonons)

6k' sin(kt, r, ,')
(r, ,')

Again, a slower fall-off than (r;, ) ' is obtained when

r;, )1/kg Xg. It is interesting to note that if we set
vt=vt (as done by Sugihara' and Aminov and Kocha-
laev') and add (21) to (19), the last two terms in

both expressions cancel and we are left with

24 54
, cos(kttr;; ) + sin(kyar, t')

rtt' ' kz r,;

12 sin(kt)r, ,')
k~(rtt') 'Sxpvg2

54
[1—cos(kt, r,t') ] .

ktt'(r;, )'
This is an interesting result in that, for r;, )1/kt,
the phonon wavelength corresponding to the ion-

transition energy 6, the ion —ion interaction falls off

very slowly as cos( kyar, ,') /r, ,'. This results in an ex-

tremely long-range coupling. Though we shall show

the coefficient to be rather small, the extreme range
of the interaction may make it significant in many
practica) cases. In the opposite limit, r;; ((1/kq, which

corresponds to that of zero retardation, (19) reduces to

3/4~pvP(r, ; ) '. (20)

This result should be compared with that of Sugihara'
which predicted a (1/r;, ')"' behavior for thei =3, t)t=—0

term. Ke see that this is not the case, and we shall

show that the characteristic (1/r, ,')' behavior obtains
for all i and m in the limit that r, , (1/kt, . A similar
conclusion was also reached by Aminor and Kochelaev'
in the zero-retardation limit.

For transverse phonons we again adopt the co-
ordinate system shown in Fig. 1. In this case, (17)
is found to vanish for the polarization t~, and, for t2

to equal,

i =3, m=9 (transverse phonons)

9 kq sin(kyar, ,') 5 cos(kyar, ;.)
rjj'

+

1 2ktP cos

(kyar;t.

.)
Sv-pv' r;,'

3kt( sin(kyar, ;.)
jj '

3 cos(kyar, , )

rjj ' (22)

—[3/8tr pv'(r, ,') '], (23)

which again displays the characteristic (1/r, ,') de-

pendence of the phonon-induced ion —ion coupling,
In general, vtAvt and we should expect that (21)

will dominate (19) since vt(vt. In addition, the fact
that k~'&kg' also enhances the importance of the
transverse contribution over the longitudinal at long

distances.
It is a straightforward, but very tedious, matter to

compute the magnitude of (16) for the four other

values of i and m. For simplicity we define

F~(') = [(k~')) ' cos(k~(')r, ,') /r, ;.];
F2('& = [kg(') sin(kt((') r;; ) /(r;, ') ']
F,&'& =[cos(k &'&r, ,')/(r )'7

F4&'& = [sin(kg(t)r ') /kt((t) (r,; ) 4];

Fv" = I [1—cos(k~"rtt ) 7/(k~")'(rtt )'I (24)

This result is identical with that of McMahon and

Silsbee. ' Again, in the zero-retardation limit, where

r,t'«1/k~, Eq. (21) reduces to

12+, , [1—cos(kyar, , )] . (21) Then, using the coordinate system shown in Fig. 1,
we obtain the following values for the integral (1()):

i=3

i=3

i=5 )

i=5,

m=e

(1/4v. pvP) [P)(»—6P2(t) 24Pt(»+54P4(t) 54P5(»]

tj. 0;
(9/StrpvP) [P2'"+5P "&—12F4&"+12F,&'&]

(3/4~( v P) [ F(»+3P ('& —3F ('&]. —
(3/16~pvP) [P,(')+P, ('&].

(3/16tr)&v 2) [P (t)+5P (t) 1 2P4(t)+12P (t)].

(3/tr)&v2) [P (l) 3P (t)+3P (t)] ~

(3/4tr)&vP) [P2(»+Pt(t)] ~

t2. ( 3/47rpvp) —[F2'"+5Ft("—12Ft&"+12F,&'&];

(3/trpvP) [F &'&+SF &'& —12F &'&+12F &"]

(3/Str pv P) [F ) "&—2'(') —
2F g(')].

(3/StrpvP) [P)(t)—SP2(t) —40Pt(t)+96tP(t) —96P (t)]
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V. NUMERICAL ESTIMATES FOR X gg'

The importance of X,«'™will depend greatly on the
particular system under investigation. The range of
significant interaction for X,~g', in the limit of ex-
treme retardation, will clearly depend on the ratio of
the ion-transition energy 6 to the maximum phonon
energy Ru5. The coeKcients of the powers of (fr~«/2d )
appearing in this limit, as given by (5), (12), and (13),
are of the form

P'2/2/pg5+2 (26)

where V' represents the factors contained in the first
four terms of (5), and is related to the square of the
strength of the crystalline electric field. Thus, for iron
group (3d) ions, V may be of the order of 10' cm ',
whereas for rare earths it will be more like ~100 cm '.
In both cases, the coupling introduced by X,«' may
be responsible for energy transfer between ions spatially
separated from one another. It has been shown by

' P. de Gennes, J. Phys. Radium 23, 630 (1962).

We have repeated our previous results for i =3, ms=0
in Eq. (25) for completeness. If we take 55 ——v, and
add our results for each of the individual va, lues of i
and m, our expressions reduce to those of McMahon
and Silsbee. ' We believe that the difterent coupling
and range behavior displayed in (25) for longitudinal
and transverse phonons warrants the presentation of
these results. Nevertheless, it is true that the physical
properties predicted by McMahon and Silsbee' for
phonon-induced spin —spin coupling are reproduced here.

A few remarks can be made concerning the relative
importance of the terms in (25) before numerical
estimates are given. First, in the limit that r,;.«1/k5, &'&

(zero retardation) all of the individual terms in (25)
fall off as (1/r;, )', and with coefficients in agreement
with those given by Aminov and Kochelaev. ' Next, in
the limit that r;; )1/kq't'& (first achieved for the trans-
verse-phonon branches, ti and t5) the i=5, no=&1
terms give the longest-range interaction, falling off
only as (kq~o)' cos(kq&'~r;;)/r, ;. Similarly, the longi-
tudinal-phonon contribution for i=3, m=0 also falls
off in this manner, though the requirement that
k~~'&&kg&'& reduces its magnitude compared to the
transverse i=5, ms=&1 term. Finally, the results pre-
sented in (25) do not take into account Quite-phonon
lifetimes. It is clear that at sufficiently long range
(r,; ~v,r„where r, is the lifetime of the kq~'& phonon)
this damping will convert the oscillatory character of
(25) into an exponentially damped result. Explicit
results are difficult to obtain, however, because of the
need for consideration of the detailed phonon-decay
mechanism. In general, it is not correct to simply insert
an imaginary wave vector in the denominator of (16),
as demonstrated for the Ruderman —Kittel interaction
by de Gennes. "One can certainly use (25) with safety,
however, in the limit that

~
r;;

~
(n,r, .

Dexter, ' Axe et al' "Brown et al "and Imbusch" that
quadrupole —quadrupole coupling may be the dominant
mechanism for energy transfer in a number of hosts.
This coupling is of the form

where c =c, co-——6, ci= —4, and c~=1. The quantity
e;, represents the dielectric constant appropriate to
the separation r, ; and (rP) is the mean-square radius
of the magnetic electron. It is interesting to compare
(26) and (27) for some specific cases. In ruby, for
example, Imbusch" has examined in detail the E~
energy-transfer process. Very roughly, 25~28fi~o for
Al&03'. Cr'+. This implies a very short range of inter-
action, even for a large coefficient (26) . Inserting values
for the coefficients appea, ring in (12) and (27) ap-
propriate to ruby, we find for the representative term
i=5, m=&1

Thus, though the coeKcient (26) is only a tenth of
the strength of the quadrupole —quadrupole coupling,
the two powers of (2A/Rm5) appearing in (28) at near-
neighbor distances cause the phonon-induced coupling
to dominate the electrostatic coupling. When r;;r&2a,
X,«'r™rapidly diminishes in importance.

For rare-earth ions, 6 may be somewhat smaller
than in the iron group series. However, the coupling
coefficients a,re undoubtedly considerably weaker so
that X,ff' in the extreme retardation limit will prob-
ably only be important for those cases where 6 lies

slightly above and close to Lro.
The in-band case is one where not only the electric-

quadrupole interaction but also the magnetic-dipole
coupling can seriously compete with X,fg'™.It has
been demonstrated by McMahon and Silsbee' that
for 6 0 the latter mechanism is comparable to 3C,ff'
As 6 increases, it is clear from (25) that the phonon-
induced coupling becomes larger in range, falling off
only as 1/r,;. when r;; exceeds 1/k~&'i. Hence, for
greater distances, X,gq' will dominate the dipolar
coup)ing. At present, we are unable to find a specific
material which exhibits this effect. We feel that the
explicit form given in (25) for this coupling may assist
in its identification.
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