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Optical Exciton-Magnon Absorption in MnFs'

D, D. SELL,t R. L. GREENE, AND ROBERT M. WHITE/.

Department of I"hysics, Stanford University, Stanford, California
(Received 22 December 1966)

We present the results of a detailed theoretical and experimental investigation of the 'AJ, to 'T~, optical
absorption in MnF~. This transition is one in which a spin-wave sideband was identified in an earlier com-
munication. A collective-mode theory of the excitations associated with the Mn'+ ions is developed. Exci-
tations within the orbital ground-electronic state correspond to the familiar spin waves, while excitations
involving the excited electronic states correspond to Frenkel excitons. The symmetry of these excitations
is determined and is employed to develop the selection rules for optical absorption. It is shown that the
two magnetic dipole absorptions in 0. polarization (denoted E1 and B2) correspond to the excitation of
k=0 excitons. It is also shown that the three sideband absorptions (denoted m1, o-1, and 0.2) correspond
to processes in which an exciton with a wave vector in the vicinity of the Brillouin zone is generated simul-
taneously with a spin wave of opposite wave vector. The theoretical position, shape, temperature de-
pendence, and magnetic 6eld dependence of these sidebands is shown to agree well with observation, The
application of the theory to other transitions in MnF2 and to other magnetic materials is briefly discussed.

I. INTRODUCTION

t 3HE optical and far-infrared spectra of magnetically.. .ordered materials have been under intensive in-
vestigation in recent years. ' For the most part these
spectra have been interpreted within the framework of
crystalline-held theory by assuming that the magnetic
(exchange) interactions effecting a single ion can be
replaced by an average magnetic field. This so-called
molecular-field approximation has been fairly successful
in explaining line shifts and line splittings which occur
in some materials below the ordering temperature.
However, phenomena such as the appearance of extra
lines'' and anomalous intensity changes4 below the
ordering temperature are not adequately explained by
this simple theory. The extension of the theory by
Sugano and Tanabe' to include the fluctuations in the
exchange held was only moderately successful in ex-
plaining the anomalous phenomena.

In most of these early optical studies, no attempt
was made to consider in detail the collective excitations,
i.e., the spin waves (magnons) and excitons. The work
of Sievers and Tinkham, 5 and Richards' in the far
infrared is an exception. They measured the exchange
resonances of many magnetic materials and were able
to predict the positions, temperature shifts, and mag-
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netic field behavior of these resonances on the basis of
spin-wave theory. Other authors'7' have considered
the effects of magnons and excitons in optical spectra.
However, this work has been of a more qualitative
nature.

Within the past two years, several experiments have
been performed which have conclusively demonstrated
the importance of spin waves and excitons in the spectra
of magnetic materials. Halley and Silvera in anti-
ferromagnetic FeF~ and Allen, Loudon, and Richards'0
in antiferromagnetic MnF2 have found far-infrared
transitions which have been interpreted as two-magnon
absorption. Greene, et a/. ," have shown that a transi-
tion in the visible spectrum of MnF2 is a spin-wave
sideband (exciton-magnon absorption). The sideband
indentihcation in MnF2 has been confirmed by magnetic
held"" and stress" studies. In addition, more recent
work has identified spin-wave sidebands in other mag-
netic materials" " ' and Raman scattering from spin
waves in FeF2 has been observed. "
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Tela 5, 2877 (1964) [English transl. : Soviet Phys. —Solid State
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Litvinenko, Zh. Eksperim. i Teor, Piz. 47, 1733 (1965) [English
transl. : Soviet Phys. —JETP 20, 1165 (1965)].
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TABLE I. Propertiesa of the 6AIg to TI, ( G) sharp-line absorption spectrum in MnF& at 2.2'K.

Line

Position at 2.2'K

(.m-)
Dipole Peak-absorption Oscillator

character strength (cm ') strength

Full width
at half-

maximum
(cm-')

Z'1
E2
7r1
01
02

18 418.35~0.06
18 435.30~0.06
18 460.01~0.16
18 475.77a0. 10
18 483.97~0.13

5427. 86
5422. 87
5415.61.
5410.99
5408. 59

0.71
0.45
1.7
3.0
3, 3

1 2X10—11

8.7X10-»
7.1 X10-»
4.7X10-11
6.8X10 "

0.49
0.58

12.0
3.2
5.0

a In the previously reported data (Refs. 11 and 12) the relative positions of the lines were correct; however, the absolute positions were incorrect because of
a calibration error.

Two possible interactions have been proposed to
explain these phenomena. Bailey and Silvera' ascribe
the interaction to an odd-parity crystalline field pro-
duced at one ion due to the spin-dependent electric
quadrupole moments of the neighboring ions. Tanabe,
Moriya, and Sugano" proposed a mechanism coming
from a combined effect of atomic electric dipole mo-
ments and off-diagonal exchange interactions. Both
theories are special cases of an earlier theory proposed
by Dexter" to explain the electric dipole absorption
by pairs of ions first observed by Varsanyi and Dieke"
in PrC13.

In this paper we extend and discuss in more detail
our work on the optical absorption in MnF2. Brief
accounts of some of this work have been given pre-
viously. """The room-temperature optical absorption
spectrum of MnF2 is shown" in Fig. 1. In this paper we
shall restrict ourselves to the 'A~, to 'T~, ('G) absorp-
tion. The sharp structure for this transition at 2.2'K
is shown in Fig. 2. The properties of the fine structure
lines are summarized in Table I. In Ref. 11 we showed
that the lines labeled E1 and E2 are pure electronic
transitions. The band o-1 was shown to be a spin-wave
sideband (exciton-magnon absorption) associated with
E1. This association was based on the shape, tempera-
ture-dependent shift, and position of o.1 relative to E1.
In this paper we show that z1 and o-2 are also spin-wave
sidebands. In Ref. 12 we described the magnetic field
behavior of these lines. A single-ion model was proposed
to explain the results and an excited-state g value was
obtained.

This paper is organized as follows: First (Sec. II)
the experimental results are presented. Next, the theory
is developed (Secs. III to VI) and a detailed discussion
of the experimental results is given (Sec. VII). In
Sec. III a detailed crystal-field calculation is carried
out which enables us to identify the two magnetic
dipole lines E1 and E2. In Sec. IV the nature of the

' Y. Tanabe, T. Moriya, and S. Sugano, Phys. Rev. Letters
15, 1023 (1965)'.

D. L. Dexter, Phys. Rev. 126, 1962 (1962).'F. Varsanyi and G. H. Dieke, Phys. Rev. Letters 7, 442
(1961).' R. L. Greene, D. D. Sell, and R. M. %hite, Proceedings of
the Conference on Optical Properties of Ions in Crystals, Johns
Hopkins University, 1966 (to be published).

'3 Data of J. W. Stout, J. Chem. Phys. 31, 709 (1959}.

Frenkel excitions in MnF2 is discussed. The spin-wave
properties of MnF2, as they apply to our problem,
are discussed in Sec. V. The interaction leading to the
exciton-magnon process is discussed in Sec. VI. Basic-
ally, this is an elaboration of earlier work with par-
ticular emphasis on the collective nature of the excita-
tions. The symmetry of the excitons and magnons is
determined and employed to determine the selection
rules for the sideband absorption. In Sec. VII we

give a detailed discussion of the shape, stress depen-
dence, temperature dependence and Zeeman behavior
of the sidebands x.1, o-1, and o-2. In Sec. VIII we brieQy
consider the application of our results to sidebands in
other systems.

II. EXPERIMENTAL DETAILS

A. Procedures and Apparatus

Single crystals of MnF2 were grown at Stanford
University by R. Feigelson. Manganese metal (cation
impurities less than 34 ppm) was reacted with hydro-
Quoric acid to produce MnF2 powder which was then
melted in an HF atmosphere. This feed material was
transferred to a vacuum-baked, high-purity graphite
crucible and was grown by a modified Bridgman tech-
nique under a steep temperature gradient in a purified
argon atmosphere. Crystals were also obtained from
Semi-Elements. Semiquantitative spectroscopic analy-
sis by American Spectrographic Laboratories indicated
that no cation impurities were present in concentra-
tions greater than 100 ppm in any of the samples used
for these experiments. For such crystals the absorption
spectrum did not exhibit any sample dependence. A
7-mm absorption path was used to obtain the spectrum
shown in Fig. 2.

Absorption measurements were made by shining light
from a PER X-76 high-pressure, xenon short arc lamp
through the crystal onto the slits of a spectrometer. A
Spex model 1700 scanning spectrometer was used in
6rst order for line-shape studies. Signals were detected
by an EMI 9558 (S-20) photomultiplier. A Jarrell-Ash
1-m Kbert scanning spectrometer was used in tenth
order, and a Bausch and Lomb dual grating spectro-
graph in erst order to accurately measure line positions.
Line positions on the spectroscopic plates were measured
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with a Grant comparator. Standard reference lines
were superimposed on the spectra for calibration. The
resolution was approximately 0.1 cm ' and the line
positions could be determined to approximately +0.1
cm '.

For temperatures below 4.2'K the sample was im-
mersed in liquid helium. Sample temperatures between
4.2 and 77'K were obtained by boiling liquid helium
in a storage Dewar and blowing the cold helium gas
over the sample. Stable temperatures (+0.2'K) were
maintained for several minutes by controlling the elec-
trical power used to boil the helium. Temperatures
below 20'K were measured with a carbon resistor to
an accuracy of &0.1'K; temperatures above 20'K were
measured with a copper versus gold-cobalt" thermo-
couple to an accuracy of &0.2'K. In each case the
temperature sensing element was glued to the sample
with General Electric 7031 varnish.

Oriented samples were used for the polarization
studies. Since MnF& is birefringent it was quite easy to
accurately align the polarizer by using the sample as a
wave plate between two crossed polarizers. Polariza-
tion discrimination of better than 100 to 1 was ob-
tained.
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B. Experimental Results

As mentioned in the Sec. I, we shall concentrate
upon the five spectral lines shown in Fig. 2. This is the
sharp line structure at 2.2'K of transitions from the
sAr, ground state to the lowest-4Tr, ('G) excited state
for a 7-mm thick single crystal of MnF&. The lines are
strongly polarized. Four lines, Ei, E2, o.1, and o.2
appear in o polarization (SJ c, $C

~~ c), and s.1 ap-
pears in s polarization (8 ~~ c, 3!J c). Here 8 and 3!
are the electric and magnetic vectors of the light and c
is the optic axis of the crystal (z axis). In n polariza-
tion (GJ c, 3!J c), only lines o.l and o2 are observed.
Thus, for lines xi, oi, and o-2 the electric vector of
the light must be the important perturbation and these
are electric-dipole transitions. Similarly, we see that
the optical-magnetic field direction determines the
properties of E1 and A2, thus, these are magnetic-
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FIG. 2. Sharp line structure of 'A&, to 'Tjg absorption at 2.2'K.
The solid and dashed curves denote 0- and ~ polarizations, re-
spectively.

III. CRYSTAL-FIELD THEORY

A. Crystal Field in MnF2

dipole transitions. The properties of these lines are
summarized in Table I.

As the temperature increases the peak. -absorption
strengths decrease and the lines broaden and shift.
The broadening of Ei and E2 is especially severe. The
widths increase from approximately 0.5 cm ' at 2.2'K
to approximately 8 cm ' at 30'K and the peak ab-
sorption becomes so weak that the line positions can-
not be determined accurately. " Lines xi, o.i, and o.2
do not change as drastically with temperature but
become too weak to be observed at approximately
65'K. However, at approximately 33'K, lines o-1 and o.2
coalesce into a single broad line, thus 30'K is a practical
upper temperature limit for high-resolution studies of
these lines. The temperature shift of lines Ei and E2
has also been studied by Yen, Imbusch, and Huber. "
The shifts of xi, o-1, and o-2 relative to Ei and E2 are
discussed in detail in Sec. VII.C.

In a 10.0-kOe 6eld parallel to the s axis lines Ei
and E2 split by 1.71&0.05 cm '; lines mi, o.1, and o.2
show no apparent splitting or shifting. Both lines Ei
and E2 split into equal intensity components which are
symmetrical about the zero-field positions to within our
experimental accuracy. Fields of comparable strength
applied perpendicular to the s axis have no effect upon
any of these lines.

3000 4000 5000 6000
WAVELENGTH, ANGSTROM

Fxo. 1.Absorption spectrum of MnF2 at room temperature,
The excited cubic crystal-Geld states for the respective transitions
are shown. (After J. K. Stout, Ref. 23).

'4R. L. Powell, M. D. Bunch, and R, J. Corruccini, Cryo-
genics 1, 139 (1961).

In this section we consider the effect of the crystalline
field upon the energy levels of the Mn'+ ion. Our
motivation for this is to explain the existence and
characteristics of lines E1 and E2 and to determine the

ss W. M. Yen, G. Inrbusch, and D. Huber (to be published) .
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would be equally good. If we use this latter convention
and replace I'„by J.„, our Hamiltonian agrees with
that of Dietz, et al. Our coeKcients in Eq. (3.2) are
related to theirs by Ci ——(37+5)/2 and Cs ——(1'+2 ) /2.

Collecting thc thrcc terms th.c elective HaQliltonlan
for the 'T~, state for an ion on sublattice 1 is

l60 CUBIC + SPIN- + EXCHANGE + ORTHORHOMBIC
FIE L 0 ORBIT F IE LO

I20—

80—

Although we have values for the exchange Geld and the
spin-orbit coupling it is dificult to obtain independent
estimates of C& and C2. Thus, we must adjust C& and C&

to obtain eigenstates which account for the observed
properties of lines Ei and E2.

40—

(4G)
Ig0 (l2)

"8 ( I)

~7 ~s (6)

B. Lines Z1 a,nd E2

%c are concerned with transitions from the 'A~, to
4', . We begin by considering the 'A~ state. In lowest
order the orthorhombic Geld does not aGect this state
since it is an orbital singlet. The spin-orbit coupling
between the levels of this multiplet vanishes for the
same reason (J.=O). The exchange-field splits the
state into its six 8, components. Therefore, for sub-
lattice 1 the ground state is ski, (—,') and for sublattice
2 it is sAr, (—ss). These levels are denoted by ~ g& in
Fig. 5. LThe levels denoted by

~
m) are the 'Ai, (ss)

and 'Ai, (—s) levels for the two sublattices. j
The transitions between 'A~, and 'Tj, are elcctric-

dipole forbidden because both states have even parity.
They are also spin forbidden (8= ss to S=ss) but this
is relaxed by spin-orbit coupling between the ground
and excited states. Since only the 'Ti, (1, —,') couples to
'Ai, (ss), the ground state~ for sublattice 1 (consider-
ing only the lowest-lying 'Trg state) is

DVve shall discuss the results for sublattice 1. The cor-
responding results for sublattice 2 are quite obvious. $
Using the spin-orbit parameter $~400 cm ' and hE=
18400 cm ', we see that the admixture of 4Ti, (1, —,')
into

~ g) is approximately 0.03. The fact that this
mixing is rather small will be important when we dis-
cuss the mechanisms which cause sidebands in Sec. VI.
This also gives an indication why the observed lines
are so weak.

Bearing in mind that the optical magnetic perturba-
tion is PK (L+28), it is not difficult to see that for
sublattice 1 the strength of the o.-polarized lines (3!

~ ~
c)

is proportional to the 'Ti, (1, s) admixture in the
excited states and that m lines depend upon admixtures
of 4Ti, (0, ss) or 'Ti, (1, i). By using the Hamiltonian
in Eq. (3.3) and Clogston s basis functions it is found
that the twelve states of 4T~, decouple into the two
sets, one leading to 0 lines, the other to x lines. In
general, there couM be six magnetic dipole lines in the

~ R. M. Macfarlane (private communication).

El

—l60—

Fzo 4. Splitting of the 4T1g state in Mnrm. The levels denoted
by solid lines are coupled to the ground state by 0-polarized
(X I~ s) transitions. Those denoted by dashed lines couple in
x polarization.

0 spectrum and also six in the + but no line can appear
in both polarizations. In the actual spectrum only two
lines in cJ polarization are strong enough to be observed.
There are two factors affecting the observed strength:
(1) The parameters in the Hamiltonian may be such
that the transition strength is small for some eigen-
states, i.e., small admixture of

~
1, —,'). (2) Some excited

states may be so broad, because of lifetime broadening
for example, that the transitions are not detected.

Using Eq. (3.3) and Clogston's wave functions as a
basis, we have diagonalized the two 6&(6 submatrices
for various values of the parameters Cy and C2. The
results for C~ ——70 cm ' and C2 ——18 cm ' shown in
Fig. 4 are in reasonably good agreement with observa-
tion. For these parameters there are two lines in 0
polarization separated by 17 cm ' with an intensity
ratio (E1 to E2) of 4. The observed intensity ratio
is 1.3. We must be cautious in ascribing significance
to these numerical values, since we have neglected
CGccts which will alter the quantitative results. It is
signihcant though that the excited states which are
observed are near the bottom of the twelve-level mani-
fold, with the state for Ej being the lowest lying excited
state for 0 polarization.

In their stress studies Diets, Misetich, and Guggen-
heim" considered only the 2X2 submatrix of

~
1, —',)

and
~

—1, ss& which are coupled by the orthorhombic
Geld and neglected the (first order) mixing via spin-
orbit coupling. They found that this model was ade-
quate to explain their stress results. Ke have pursued
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SUBLATTICE I

Ms= S-I
)e

MS=S-I
(m

Ms=s
)g

NO FIELD HplZ HpllZ

SUBLATTICE 2

g'P Hp(s-I) Ms--(s-I)

gPHp(S-I M =-(S-I)

gPHpS

NO FIELD Hpl Z Hp ll Z

PHp(s-I)

g PHp(s- I)

-gPHpS

changed. The linear shifts depend upon the matrix
elements of the form (e I

I.++2S+
~
e). By inspecting

the six functions for o. polarization, we 6nd that all
such matrix elements vanish. The similar diagonal
matrix elements of

I g) also vanish. The state ) e)
could show a small quadratic 6eld dependence due to
second-order coupling (to the six w polarization states);
however, this is not observed.

For an external 6eld parallel to the s axis we de6ne
a g value in terms of the level shift

FIG S. The eGect of an external magnetic 6eld Bo upon the single-
ion energy levels.

the larger problem in order to obtain some idea of the
nature of the other states in the 'Ty, manifold.

For our discussions we shaH assume that
~
e) ha, s

M, =-, . This is not a poor approximation silK:e it is
the

I 1, —,') character of the excited state
~ e) which

causes the transitions E1 and E2.
We should brieQy note that the observed lines E1

and E2 are quite narrow, being approximately 0.5 cm '
wide at 2.2'K. It is rather unusual for a pure material
to exhibit such sharp lines. The width that is observed
can be attributed to two sources: (1) Local strains
within the crystal cause inhomogeneous broadening
that probably accounts for most of the width at 2.2'K.
Experimentally, it is found that the width is slightly
crystal dependent and that it can be decreased by
careful crystal preparation. (2) The finite lifetime of
the ionic states leads to homogeneous broadening. Yen,
et at. ,

" have studied the temperature dependence of
the width of these lines; they find that the lines broaden
quite rapidly as the temperature is increa, sed and that
this broadening results from a magnon Raman process
which is the analog of the familiar phonon Raman
broadening. [The reason why E2 is broader than E1
at 2.2'K may be that

~
e(E2) ) is lifetime-broadened

by a direct phonon or magnon transition to
~
e(E1) ).$

It is important that these pure transitions are sharp
lines for it is their width that determines the sensi-
tivity with which we can "probe" the system. For
example, the sidebands lose their sharp features as
the temperature is increased. It is the broadening of
the excited state which causes this loss of resolution.

Let us now consider the Zeeman splitting of these
lines. Unlike the usual case in a nonmagnetic system
where a magnetic 6eld lifts degeneracies within the
ion, the levels in a magnetic crystal are already non-
degenerate. The observed line-splitting results be-
cause the magnetic field aGects the two sublattices dif-
ferently as shown in Fig. 5. At present we are concerned
with the two states

I g) and
~
e) where we use the latter

symbol to denote either of the two 6nal states asso-
ciated with lines E1 and E2.

In a field perpendicular to the s axis,
~ g) and

I e)
are unaffected and the transition energies are un-

It is easily seen from Fig. 5 that the lines should split
synixnetrically about the zero-fieM position, as is ob-
served, and should split by an amount

Bi=2PHp ) gS—
g (S—1) t. (3.6)

Assuming a ground state" g=2.00 and using the ob-
served splitting of 1.71+0.05 cm ' in a 10.0 koe field,
we obtain' g'=2.11&0.04 for both E1 and E2. For
the crystal-field parameters used the calculated value
is approximately 2.4.

This completes our discussion of the lines E1 and
E2 except for one point. We have taken account of the
different circumstances for ions on the two sublattices,
but we have not considered the fact that all the ions
on a sublattice are equivalent and that the excitation
may hop from one ion to another. This is discussed in
Sec. IV where it is shown that the single-ion description
of lines E1 and E2 is justified (because of special cir-
cumstances in MnFs) .

IV. EXCITON THEORY

The concept of excitons is not a familiar one in the
study of sharp optical spectra of transition-metal ions
in solids. The main reason for this is that usually the
transition metal ion, call it the active ion, is imbedded
in a host material having no optical structure in the
region of study. It is meaningful to speak of exciting
a siege ion since the active ion cannot easily transfer
its energy to the rest of the crystal.

In crystals with higher concentrations of active ions,
pair effects become important. For example, in con-
centrated ruby, " coupled near-neighbor pairs of Cr'+
ions cause new structure and in KZnF3 pairs" of MrP+
ions give rise to absorption lines much stx'onger than
those of the single ions. For such systems it is meaning-
less to speak of single-ion excitations. The two ions
are coupled so strongly that if one ion is initially

"The value g=2.00 for the ground state of Mn'+ in ZnF2 has
been measured by M. Tinkham LProc. Roy. Soc. (I,ondon) A236,
535 (1956)g. We expect the same value for the ground state in
MnPg.

'0 This value depends upon the assignment M, =3/2 for the
state I e).

"A. L. Schawlow D. L. Wood, and A. M. Clogston, Phys.
Rev. Letters 3, 271 1959)."J. Ferguson, H. J. Guggenheim, and Y. Tanahe, J. Appl.
Phys. 36, 1046 (1965); Phys. Rev. Letters 14, 737 (1965); J.
Phys. Soc. Japan 21, 692 (1966).
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excited it quickly shares the excitation with the other
ion and consequently we speak of excited states of the
pair Th. e strength of the coupling is the criterion for
determining when two ions must be treated as a pair.
Typically, coupling energies greater than a few wave
numbers will lead to observable optical effects.

In the limiting case of a pure crystal we cannot speak
of single ions or of pairs. We must consider the col-
lective excitations of the whole crystal, i.e., excitons.
There are two limiting approximations of excitons. "
In the weak-binding limit we have the Wannier exci-
tons. These are bound electron-hole pairs which can
propagate. The other limiting case is the one we are
concerned with in this study. This is the tight-binding
approximation in which the binding within the ion is
much greater than the binding between ions. This is
usually referred to as a Frenkel exciton. Unlike the
Wannier exciton, the electrons remain tightly bound
to a given ion and it is the ionic excitation that propa-
gates. Since the inter-ion coupling is relatively small,
the optical spectra of such systems are usually qualita-
tively similar to the corresponding spectra of dilute
crystals. Nevertheless, there are significant differences
which we shall discuss in the following sections.

Before we continue, let us briefly digress to describe
the Brillouin zone in crystals with the rutile structure.
The unit cell shown in Fig. 3 is also the primitive
Bravais lattice because both the body-centered ion
and a corner ion are associated with one lattice point.
Thus, the generators of reciprocal space are ai*= i2~/a,
ao*——y2m/a, and ag=z2x/c and the Brillouin zone is
a simple tetragonal cell with corners at &m/a, &or/c!,
&~/c. We note that this is still true in the ordered
magnetic state. In other words, the chemical primitive
cell is also the magnetic primitive cell.

A. Simyle Exciton Model

electron Wannier functions. This effectively separates
the problem into two parts. The first part is a compli-
cated ligand field problem of finding the wavefunctions
of a magnetic ion including all crystalline interactions
except the interactions between the magnetic ions. In
principle, this can be done by forming the Wannier
functions from Bloch functions which are themselves
solutions to the Hartree-Fock equation. The effects
of the nonmagnetic intervening ions are included here.
Since we shall not be concerned with the detailed
nature of the wave function, we shall assume that this
portion of the problem has been solved and that it has
yielded the wave functions which we introduce below.
We can think of the wave functions discussed in Sec. III
as zero-order approximation to these Wannier wave
functions. The remaining problem of the interaction
between the magnetic ions is now greatly simplified,
since the complicated ligand-field effects have been
included in the wave functions.

We shall use a formalism appropriate for crystals
with rutile structures. We consider a crystal with
periodic boundary conditions containing E-unit cells.
Each cell contains two inequivalent magnetic ions
(as well as the nonmagnetic intervening ions) at
centers of symmetry, and each magnetic ion has h

optically active electrons. We further assume that the
crystal is rigid and we thus ignore the effects of phonons.

Suppose as a zero-order approximation that the
ions do not interact and that each ion is described by a
Hamiltonian K„„, where ep, refers to the pth ion site
of the eth unit cell. Furthermore, assume that X „
has only two eigenstates, a ground state

l g„„) and an
excited state

l e„„).
Using the convention that capital letters refer to

states of the crystal and small letters refer to single-
ion states, the wave function of the ground state of
the entire crystal is

We first consider a simple modep4 for Frenkel ex-
citons which will illustrate their basic properties. This
will also provide a basis for our discussion of excitons
in MnF2 and will introduce the formalism which we
will use to describe the exciton-magnon interaction.
We shall not attempt to treat this problem with com-
plete rigor, for such a discussion would be beyond the
scope of this work.

The various methods of handling the inter-ion
coupling in systems such as MnF2 are discussed by
Anderson" in his work in superexchange, which is a
rather similar problem. He points out that it is very
important to begin with the proper single-ion wave
functions which, in this case, are products of one-

lG&=l ~ II IIg..&,
n=l p=1

(4 l)

and that for the excited state in which the eath ion is
excited is

l~..&=l ~, II;, (4.2)
JVQRp

The operator 2 antisymmetrizes the crystal wave func-
tions to insure that the exclusion principle is obeyed
and that the electrons are indistinguishable. The initial
single-ion wave functions dictate its form.

If we now include the interaction energy V„„,;„be-
tween the ep, th and the jvth ions, the Hamiltonian for
the entire crystal is

"D.L. Dexter and R. S. Knox, Excitons (Interscience Pub-
lishers, Inc. , ¹wYork, 1965).

'4 See for example, A. S. Davydov, Theory of Molecntar Exc~tons
(McGraw-Hill Book Company, Inc. , New York, 1962); or J.
Jortner, S. A. Rice, and J.L. Katz, J. Chem. Phys. 42, 309 (1965)."P. W. Anderson, 3IIagnetism, edited by G. T. Rado and H.
Suhl (Academic Press Inc. , New York, 1963),Vol. I.

N 2

n=1 p=l n, j=l p, v=1

or using a shorthand notation,

X=Ko+&,

(4.3a)

(4.3b)
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where U„„,„„is defined to be zero. It is not necessary
for this development to know the origin of the inter-
action V, however, the Coulomb interaction probably
provides most of this coupling even though other
mechanisms may also contribute. Such problems have
been discussed recently by Gondaira and Tanabe. "

The form of this Hamiltonian clearly illustrates two
shortcomings of the wave functions

l E„„).They do
not possess the translational symmetry of the crystal,
and they are not eigenstates of the Hamiltonian when
the U terms are included. The first problem is solved by
introducing linear combinations of these wave func-
tions called single-site, or sublattice, excitons

l
EI'k) = 1V '~' Q exp(ik r„„) l E„„),

n=1
(4 4)

which are irreducible representations of the trans-
lational symmetry group (i.e., Bloch functions). The
vector r„„denotes the position of the eath ion, and k
is a reciprocal lattice vector in the first Brillouin zone.
In addition, these wave functions simplify the diago-
nalization of the Hamiltonian because states with dif-
ferent k's are not coupled. (We neglect the small
coupling between the excited and ground states for
k=0.)

The matrix elements of the Hamiltonian are

where

(EI'k
l

Se
l
E"k)=8„„W(E)+U„,(k), (4.5)

W(E) (Ep], l
K

l Epj, ) (4.6)

is the energy of the crystal when one ion is excited,
and W(E) contains the so-called band-shift energy.
The diagonal term

V&g(k) =g (e.ggpg l V.g,pg l
5'g.gt;pr) cos(k r.~) (4.8)

n-I

measure the excitation transfer between ions on the
same sublattice and ions on opposite sublattices, re-
spectively. From the invariance of the matrix elements
in Eqs. (4.7) and (4.8) under inversion and transla-
tion it is easy to show that the U„„(k) are real and
that Vq~(k) = V&z(k). For the rutile structure and the
types of transitions that we are considering it is also
true that Vu(k) = V22(k). This can be shown from
symmetry arguments similar to those to be discussed
in Sec. VI.

The 6' in these expressions is a permutation operator.
For two-electron operators it leads to two types of
matrix elements. In the direct term, the 2h electrons
in the bra and the ket have the same arbitrary posi-

"K. Gondaira, and Y. Tanabt:, J. Phys. Soc. Japan 21, 1527
(&966).

U (k) =Z &'go. l U-.-I5g-"o) - (k'-) (47)
n=l

and the off-diagonal term

tions. In the exchange terms (there are h' such terms)
one pair of electrons is interchanged between the ion
sites and a minus sign is introduced.

Hence, Eq. (4.5) reduces to a 2&(2 matrix for each
value of k. The eigenvalues give the exciton band
energies

W+(k) =W(E) +Vu(k) +Vgg(k), (4.9)

while the exciton wave functions are

l
E+k) =%2—'0 E'k)Wl E'k)] (4 10)

The important points of this development are the
following. The eigenstates, Eq. (4.10), are linear equally
weighted combinations of sublattice excitons. The exci-
tation is spread evenly throughout the crystal and it
may be found with equal probability at any ion site.
The eigenmodes, Eq. (4.9), form two k dependent
bands reQecting the existence of two inequivalent types
of ion sites. In general, the two bands are nonde-
generate if Vq2(k) does not vanish. The splitting be-
tween the bands for k=0, called the Davydov split-
ting, is twice the intersublattice coupling energy.

B. Excitons in MnF2

In this section we apply this exciton formalism to
MnF&. The ions in our model only have two energy
levels. How can this model be applied to the Mn'+ ion
which has many excited states of the 3d' configuration?
As a first approximation we can neglect the coupling
between nondegenerate ionic states which have energy
separations large compared to the inter-ion coupling
because the mixing between such states is small. In
this approximation the exciton effects are treated inde-
pendently for each excited state of the ion. This ap-
proximation is not completely justifiable for the exciton
bands associated with lines Ej and E2 because these
bands have nearly the same energy. Nevertheless, we
are almost forced to accept it since higher-order ap-
proximations become exceedingly complicated.

In MnF2 all the optical transitions of interest are
spin-forbidden. For such transitions the intersublattice
coupling Vr~(k) is vanishingly small. This can be seen
intuitively from an argument given by Moriya. ' For
spin-forbidden transitions, the s component of the
total-spin-angular momentum changes by 2 when the
excitation jumps from one sublattice to the other. Such
a process requires spin-orbit coupling to the ground
state, hence, with other things being equal, this cou-
pling is relatively weak compared to the intrasublattice
coupling.

The same conclusion is reached by estimating the
magnitudes of Uu(k) and Vi~(k) . First of all consider
the direct terms of Eqs. (4.7) and (4.8). Since the
Mn'+ ions are at centers of symmetry, the lowest
multipole coupling (a,ssuming V is the Coulomb inter-
action) is quadrupole-quadrupole coupling. The matrix
"T. Moriya, J. Phys. Soc. Japan 21, 926 (1966).
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elements include a spin sum as well as the spatial inte-
gration. Since V is spin-independent, the spin sum
dictates that the spin of each electron must be the same
for the ground and excited states. To accomplish this,
spin-orbit coupling between the ground and excited
state must be invoked and the matrix elements are
reduced by a factor of CV„/W(g]', or approximately
10'. Using arguments similar to Dexter's, ~ we estimate
that the contributions of the direct interaction to V»
and V~2 are much smaller than one wave number.

The exchange terms must be treated differently for
inter- and intrasublattice coupling. Spin-orbit coupling
must be invoked to satisfy the spin sum for V~2 but
not for V», hence, we expect V» to be larger than Vi~

by approximately the factor given above. It is reason-
able to expect the exchange contribution of V» to be
comparable to the observed excited state exchange
interactions of Mn'+ pairs" which are typically a few
wave numbers. To sum up, the coupling V~2 is van-
ishingly small, and the exchange contribution to V»
is estimated to be a few wave numbers.

In this special case with V~2=0 the properties of the
excitons are greatly simplified. The reason for this is
that the sublattice excitons become eigenstates of the
system. This is very important because the excitation
only resides on equivalent sites whereas in the general
case it is evenly distributed between the two inequiva-
lent sublattices.

It is easily seen that there will be no observable exci-
ton effects for pure electronic absorption such as lines
E'1 and E2. Since light has a very long wavelength on
the atomic scale and since k is conserved, these are
transitions which create k~0 excitons. There can be
no Davydov splitting because V~2(0) 0. The selection
rules for absorption are the same as for a single ion.
For example, for a magnetic dipole transition the matrix
element is"

&E'1
I ~ I ~)=C~(1)/&] 2 &e-~ I t.~ I g-i&

The underlying reason why the pure electronic ab-
sorption can be described by a single-ion model is the
fact that the excitation resides on a sublattice. When the
excitations have no wave nature, it is immaterial
whether the excitation resides on many equivalent ions
or on one ion. This provides a sound theoretical basis
for the single-ion description of these phenomena and
presents guide lines for determining when single-ion
descriptions are appropriate in other concentrated
systems.

On the other hand, exciton effects are important for
nonzero k. Even though Vj2=0, the exciton will have
a k-dependent energy as long as V» does not also
vanish. We have direct experimental evidence of this
in our sideband data. The separation between lines
Ej and 0-1 is 2.6 cm ' greater than the maximum
magnon energy because the zone-boundary excitons
have a greater energy than those at the zone center.

Considering only the erst and third near neighbors
(second neighbors are on opposite subla, ttice) in Eq.
(4.9), the dispersion relation for excitons on either
sublattice is

W(k) = W(E) +E~ cosk, c

+E3 (cosk,a+cosk„a). (4.13)

From symmetry arguments similar to those presented
in Sec. VI it can be shown that the x and y dispersion
parameters must be the same. This also follows directly
from group theory since the energy bands of a crystal
must have the symmetry of the point group. Un-
fortunately, we cannot be sure that Eq. (4.13) ade-

quately describes the exciton bands associated with
Ii 1 and E2, because the dispersion is rather sensitive
to higher-order corrections resulting from the close
proximity of the twelve levels of the 4T&, state. In-
cluding these corrections quickly makes the problem
intractable, therefore, we accept Eq. (4.13) as a semi-

quantitative representation of the true dispersion.

=~(1)&e» I v» I g ~&, (4.11)

=NILLY &eo. I ~o.*
I eo.&-a&co. I ~o.' I ao.&7 (4»)

This is equivalent to the result obtained in Sec. III.

"D.L. Dexter, J. Chem. Phys. 21, 836 (1953).
~' De6ne A(k&0) =0 and A(k=0) = l.

where pp~ is the single-ion magnetic dipole moment
operator for the arbitrary site 01.

The response to external perturbations is the same
as that calculated from a single-ion model. Consider, for
example, an external magnetic field IIp along the s
axis. The energy shift AS'& for excitons on sublattice p
is k-independent and is given by

aW =Pa,C&Z lrI g I„„*+2S„„
I
Z lr&]

V. SPIN WAVES IN MnF2

A. Sjpin-Wave Dispersion

The antiferromagnetic properties of MnF2 can be
described by various approximations. For the tem-
peratures of interest in these experiments (T(-', T~)
the spin-wave approximation has been found to be
extremely accurate. The theory has been discussed in
great detail in the literature. '4' We shall only sketch
it here for later reference and discuss those aspects
which pertain directly to our optical studies.

We take as our Hamiltonian

X=X.+X.+X.,
' See for example, P. %. Anderson, Phys. Rev. 86, 694 (1952);

R. Kubo, Phys. Rev. 87, 568 (1952); O. Nagai and A. Yoshimori,
Progr. Theoret. Phys. (Kyoto) 2S, 595 {1961)."J.Van Kranendonk and J. H, Van Vleck, Rev, Mod, Phys,
30) 1 (1958),
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where

R.= —J&[Q s,'s;+ g s,'sp] —J2+s; s;,

~.= -(gw. )/2s[Z(s; ) +Z(s') ],

x,=gpss, [Ps;*+ps; ]. (5.2)

Here S is the spin of a manganese ion, and i and j
refer to the spin-up (1) and spin-down (2) sublattices,
respectively.

In the exchange term X„we consider nearest-
neighbor (J') and next, -nearest-neighbor (J2) exchange,
and the sums are over the appropriate neighbor pairs.
The anisotropy field Hz phenomenologically represents
the uniaxial anisotropy which in MnF2 arises primarily
from dipolar interactions. 4' The Zeeman energy for an
external magnetic 6eld IIO along the s axis is given by
K,. The g value is that appropriate for the ground
state of the Mn~+ ion in the concentrated system.

This Hamiltonian is now expressed in terms of the
spin-wave normal modes. This is accomplished by first
expressing the spin operator in terms of spin-deviation
operators a; and b; satisfying boson commutation rela-
tions. Sublattice spin-wave operators ai, and b) are then
introduced by Fourier transforming the spin-deviation
operators. Due to the exchange interaction these sub-
lattice spin waves are coupled together. This coupling
is diagonalized by transforming to new modes nk and Pk.
Retaining only quadratic terms, the Hamiltonian then
becomes

keg[&1k(&k &k+2)+&2k(Pk 4k+2)]p (53)

and
X cos(-,'ak„) cos(-,'ck, ) (5.5)

ok= (gPHg/2SZ2 ) J2 )) —(2Z)Jr/Zgg) sin'-', (k,c). (5.6)

Here Z'(=2) and Z'(=8) are the number of nearest-
and next-nearest neighbors, respectively. The factor
(1+0.073/2S) takes account of the fact that even in
the ground state there are small deviations from com-
plete alignment.

B. Magnetic Parameters in MnF2

The magnetic parameters of MnF2 have been meas-
ured by a variety of experiments. The Weel tempera-

4 F. Eever, Phys. Rev. 87, 608 (1952).

where the dispersion is given by

kcVlk, 2k=2SZ&
~
J2

~
(1+0.073/2s)

X[(1+&k)2 yk2]1/2+gP~O (54)
with

yk=Z2 'g exp(ik ') =cos(-,'ak, )

ture is 67.34'K.4' Magnetic susceptibility measurements
by Trapp and Stout44 combined with a low-temperature
antiferromagnetic resonance measurement by Johnson
and Nethercot4' yield H"=0.737 cm ' (1.06'K) and
J''= —1.22 cm ' ( —1.76'K). Neutron-scattering ex-

periments by Okazaki et a/. ,
" when combined with

the above values of J~ and Hg, yieM Jq=0.22 cm '
(0.32'K). Neutron scattering also puts an upper bound
of 0.035 cm ' on the exchange coupling between nearest
neighbors along the x and y axes (Ja). Thus, it is
quite justifiable to neglect it. We note that the inter-
sublattice exchange J2, coupling the body-centered ion
to the eight corner ions of the unit cell, is antiferro-
magnetic, whereas the intrasublattice exchange J~,
coupling the nearest neighbors along the s axis, is
ferromagnetic.

The spin-wave dispersion obtained by using these
parameters in Kq. (5.4) is shown in Fig. 6. The two
directions shown, k parallel to s and k parallel to x,
are the two extreme cases. All curves for other direc-
tions of k fall between these two.
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FiG. 6. Spin-wave dispersion in MnF2 for the parameters
J1=0.22 cm (0.32'K), J2 = —1.22 cm (—1.76'K), and
a„=O.737 cm-1 (1.O6'K) .

' P. Heller, Phys. Rev. 146, 403 (1966).
44 Charles Trapp and J. W. Stout, Phys. Rev. Letters 10, 157

(1963).
45 F. M. Johnson and A. H. Nethercot, Jr., Phys. Rev. 114,

7o5 (1959).
4'A. Okazaki, K. C. Turber6eld, and R. W. H. Stevenson,

Phys. Letters 8, 9 (1964).

C. Spin-Wave Renormalization

The spin-wave theory described above is only ap-
propriate for zero temperature. As the temperature
increases from zero we must consider the quartic and
higher-order terms in nk and I'k which appear in the
Hamiltonian. These terms correspond to spin-wave
scattering with the result that the energy of a given
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spin-wave mode depends upon the thermal occupation
of the other modes. This can be described by defining
a renormalization factor Ex(T) such that the energy
of a mode is

I.OO— D cr2

vg(T) =Rg(T) vg, (5.7)
0.99—

where vk is the energy for T=o.
Our optical data provides one of the most stringent

experimental tests of renormalization in an antiferro-
magnet; thus, it is important to obtain accurate
theoretical values for E~(T) . A meaningful com-
parison can be made in MnF~ since the magnetic
parameters are well known. One of us4~ has calculated
the renormalization in MnF~ for several diferent spin-
wave approximations. We shall review these results for
later use in Sec. VII.

First of all, assume only intersublattice exchange J2
(neglect Jr and H~). Expressing the spin operators in
terms of the n&, 's and Pz's and carrying the expansion
to fourth order, the diagonal terms in the Hamiltonian
are

X =Ep+2+vtBg —2(2ZsJsS V) gvgvg tsgtsg . (5.8)
k kk/

Following Bloch, the free energy is minimized with
respect to (mq). It is found that (eq) has a boson ther-
mal distribution with a renormalized energy 'vz(T)
which depends upon temperature,

R(T) =vg(T)/vj, =1—(ZsjsS'E)-'Qvj, (ng ). (5.9)

0.98

0.97—

O

N

O
~ O.96—
K
LLI

0

0.95—

0.94—

This says that the spin-wave energies are renormalized
by the total-spin-wave energy. Since (n& ) depe'ds
upon v&. (T) this is an implicit equation. We note that
in this approximation the renormalization factor is in-
dependent of k. It is not valid to transform the sum
to an integral and extend the integral to infinity for
this overestimates the spin-wave energy. Therefore,
the sum is evaluated numerically to appropriately take
account of Brillouin-zone effects. The result of this
calculation is indicated by the curve marked R' in
Fig. 7.

Low" has carried out the procedure outlined above
including J~, J2, and B~. He finds

0.93— M(T)
M(0)

0.92—
0 IO 20

TEMPERATURE ('K )

FIG. 7. The observed and calculated renormalization factors
for MnF2. The optical data are plotted as solid circles for lines
a1 and 0.2 and as X's for line xi. The antiferromagnetic resonance
(AFMR) and sublattice magnetization 3f(T)/M(O) data are
also shown. The theoretical curves are denoted by R~, R,',and
R,'. For R' only J& is considered. For R,'(ir=as/o) and
R,'(k=6./c), Jq, Jg, and H~ are included.

where
(5.10)

and yq and eq are defined above in Eqs. (5.5) and (5.6) .
prom Eq. (5.4) we see that the quantity within the
square bracket is the zero-temperature spin-wave
energy. Thus, except for the factor a.q, Eq. (5.10) has

47 R. M. %hite, Phys. Letters 19, 453 (1965).
48 Micheline Bloch, Phys. Rev. Letters 9, 286 (1962).
4' G. G. Low, Inelastic Scattering of neutrons (International

Atomic Energy Agency, Vienna, 1965), p. 453.

the same form as Eq. (5.9) . In this case the renormaliza-
tion factor depends upon k. Equation (5.10) has been
evaluated for spin waves at X(k, =7r/a, k„=k, =0) and
Z(k, =k„=0, k, =sr/c) . The results are indicated by
R,' and E,', respectively, in Fig. 7.

We note that all the R(T) fall reasonably close to
the normalized sublattice magnetization M(T)/M(0)
for the temperatures considered (T(30'K). It is an
interesting question whether there is a good physical
or theoretical reason for this or whether this is merely
an accident. The sublattice magnetization for an anti-
ferromagnet is given by (if zero-point deviations are
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neglected)

I M(T)/M(0) j=1—(1VS) 'Q(1+2ng') (tsar ). (5.12)

In a ferromagnet the situation is simpler since the ~i,'
term is absent. In that case we find that R(T) equals
M(T)/M(0) if we assume an "Einstein" spin-wave
spectrum with half the maximum spin-wave energy,
ZJS. For the antiferromagnet we cannot make such a
simple correspondence, but nevertheless, we see that
the forms of Eqs. (5.9) and (5.12) are similar and
furthermore the differences tend to be averaged out
by the sum over k.

D. Exciton Nature of Spin Waves

For this problem in which we deal with both spin
waves and excitons, it is important to emphasize the
exciton nature of a spin wave. One way of illustrating
this similarity is to show that the usual expression for
a spin wave can be cast into the form used in Sec. IV.A
to describe excitons. In the usual theory a spin wave
with wave vector k is that state formed when the
creation operator an't acts upon the vacuum state

I
vac)

We can transform from occupation space to ordinary
space by noting that uk~ is the Fourier transform of
o„~~ which in turn is proportional to S„i . If we assume
that the ground state is that of complete alignment""
then the sublattice magnon is given by

M'k) =a&t
I vac& =N us+ exp(—ik r») I M»» (5.13)

where
IM„,&=s„;

I
G&. (5.14)

That is, a spin wave is a phased linear superposition of
states in which one ion is excited from its aligned state
I g) with M. =S to the ("tipped") state

I
m)=S

I g)
with M, =S—1. We see immediately that a spin wave
is an exciton formed from the spin-degenerate ground
state of the ion. Thus, it is not surprising that two-
magnon and exciton-magnon absorption have similar
characteristics (since both are two-exciton processes).

VI. THEORY OF EXCITON-MAGNON
INTERACTIONS

In general, exciton-magnon interactions can lead to
transitions and energy shifts. We are primarily in-
terested in transitions corresponding to exciton-magnon
absorption. We find that this interaction is quite small,
and that we have a situation in which the coupling is
strong enough to cause observable transitions yet not
suKciently strong to appreciably distort the energies.

It will be seen that the interaction involving an exci-
ton and a magnon can be described in terms of the

'0 This approximation is discussed in Ref. 41. These authors
have shown that even. in the worst case when H~~O, this approxi-
mation is 93~/& correct.

~' E.D. Jones and K. B. JeGerts, Phys. Rev. j.35, Aj.277 (1.964) .
These authors have measured the zero-point deviation in MnF2
and have found it to be less than 1%.

interactions of pairs of ions even though the excitons
and magnons are spread throughout the laittce. Being
nonlocal excitations, however, the total interaction is
a (phased) linear combination of all pair interactions.

We can represent exciton-magnon absorption by the
simple diagram in Fig. 8. Initially, both ions are in
the ground state and a photon is present. The photon
is absorbed and 6nally, the ions are excited to states
I e) and

I
m), respectively. For two-magnon absorption

both ions are excited to the
I m) states. It is quite

obvious that these are closely related phenomena. The
basic questions for such transitions are the following:
(1) What mechanism can couple the transitions of
neighboring ions so that both are excited by a single
photon? (2) How can such transitions be electric-
dipole processes when both single-ion transitions are
parity forbidden?

In early discussions of exciton-magnon absorption
two seemingly dissimilar mechanisms were suggested
by Halley and Silvera' and by Tanabe, Moriya, and

Sugano" Allen, Loudon, and Richards" first pointed
out that these two mechanisms are quite similar and
that they are both special cases of an earlier theory
proposed by Dexter'0 to explain electric-dipole ab-
sorption by pairs of ions, which is clearly a closely
related problem.

Dexter used the Coulomb interaction to couple the
ions. As we have seen in our discussion of excitons
this leads to direct and exchange terms. Halley and
Silvera used the direct term together with spin-orbit
coupling but ignored the exchange term. Tanabe,
Moriya, and Sugano pointed out the importance of
the 'atter.

In. this section we describe the exciton-magnon inter-
action using the formalism of Sec. IV. We consider the
characteristics for both the direct and exchange
Coulomb interaction and discuss the relative importance
of these mechanisms.

INITIAI S TATE F IN AL STAT E

Ie&

&WW+

PHOTON

ION A ION B

Im&

Ig&

ION A ION B

I~ IG, 8. Schematic representation of exciton-magnon absorption in
terrors of the transjtions of a pair of ions,

A. Form of the Interaction

The Hamiltonian of a crystal including the electric-
dipole perturbation of an optical electric field 8 can
be written as

(6 1)

where P is the sum of the electric-dipole operators of
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all electrons, Ho is the sum of all single-ion Hamil-
tonians, and U is the total-interion Coulomb inter-
action. The eigenstates of Xo+V, obtained in the
Sec. IV, form the basis for perturbation theory. We
remember, however, that these are not exact eigen-
states since the matrix elements of U between non-
degenerate ionic states were neglected. These terms
are essential here for, in addition to the electric dipole
term, they constitute the perturbation which leads to
exciton-magnon absorption.

In first order this perturbation does not lead to the
desired transition. This is easily seen since P can only
connect states di8ering by one excitation. The U and
P perturbations must be combined in second order to
form an effective Hamiltonian which connects the
ground state

l G) with the fLnal exciton-magnon (or
two magnon) state

l F). Consequently, the interaction
has the form

, (FII IU&(UIPIG&'"l '"l"=~'
W(G)-W(U)+a„

W(G) —W(U')

where the sum is over all intermediate states. The
energies of the ground and intermediate states of the
crystal are W(G) and W(U), respectively, and the
wave number of the photon absorbed is v. This is the
basic expression for our discussion of the exciton-
magnon interaction. From it, with the aid of crystal
symmetry, we obtain a detailed description of the
observed transitions.

Several characteristics of the interaction can be de-
termined from the form of Eq. (6.2). For centro-
symmetric crystals and 3d-electronic states the initial
and final states have even parity. As a result of this
and the fact that U is a two-electron scalar operator
and P is a one-electron vector operator,

l U) must be
an odd-parity exciton state and

l
U') must be a state

with one magnon and one odd-parity exciton. The odd-
parity exciton is formed from odd-parity single-ion
transitions such as those obtained by promoting one
3d electron to a p state. These odd states are high-

lying states; therefore, the energy denominators are
typically on the order of 10' cm '.

A second property of the interaction follows from
the conservation of quasimomentum in a periodic
system. Since the ground state has no quasimomentum,
the sum of the k vectors for the two final excitations
must vanish. Thus, for example, we have

(U
l
P

l I)=h(k")(0 l Po l g„) (6.3)
and

P'
I

ir
I U) =~(it+ Z' —Ir") P exp(ilr vol, 2)

x(c„~„,l V„,„, l o~„g„,&, (6.4)

where Po~ is the sum of the dipole operators of the

electrons at site 01, and 60~ „2 is a vector from site 01
to site e2.

The matrix elements in these expressions include
both spatial integrations and spin sums. Since V and
P do not operate in spin space, the spin sums lead
directly to several interesting results. Initially, let us
ignore spin-orbit coupling to the ground state. Then
l goi) has M, = —,',

l g„2) has M, = —2, and
l m„2) has

M, = ——,'. Equation (6.3) requires that (No~ l
have

M, = ~5. It is then clear that the direct term in Eq (6..4)
must vanish due to the fact that

l g„2) and
l m„s& have

different M, values. The exchaege terms, on the other
hand, can contribute provided

l eo~) has M, =-', . Thus,
we find that the absorption matrix element is non-
vanishing only if there is an electron exchange be-
tween opposite sublattices. Notice that neither the
direct nor the exchange terms can contribute if both
ions are on the same sublattice.

If spin-orbit coupling to the ground state is in-
cluded, the direct terms can contribute. In the matrix
elements in Eq. (6.4), for example, spin orthogonality
can be satisfied by two orders of spin-orbit coupling
to the ground state at site n2 and one order of coupling
in the odd states at site 01. We expand the Coulomb
interaction in multipole moments and find that the
lowest-order term is the interaction of the quadrupole
moment at site m2 with the dipole moment at 01. In
contrast with the exchange terms, this interaction
contributes when the two ions are on the same sub-
lattice as well as on opposite sublattices.

Since the direct and exchange interactions have quite
similar characteristics it is different to differentiate
between them experimentally. There is some evidence,
however, that the exchange interaction predominates
in MnF2. First of all, it is observed that two-magnon
absorption in MnF2 and FeF2 has comparable strength.
If this absorption results from the direct interaction,
it should be approximately four orders of magnitude
weaker in MnF2 because of the smaller spin-orbit
coupling to the ground state. ' Further evidence is
provided by the magnetic-field behavior of exciton-
magnon absorption in MnF2. The lines do not split
or shift in a magnetic field thus indicating, as we shall
see, that the excitons and magnon are on opposite
sublattices. "' This is in accord with the predictions of
the exchange interaction. But since the direct inter-
action permits intrasublattice coupling, we expect that
it would lead to lines that would split or broaden in a
magnetic field.

We conclude that the exchange interaction is more
important in MnF2. If there is a direct quadrupole-
dipole interaction, the resulting intrasublattice coupling
is unobservable in MnF~. Thus, we concentrate upon
intersublattice coupling.

Gondaira and Tanabe" have considered an additional
mechanism involving polar intermediate states which
are not included in this formalism. We shall not discuss
"'See note added In proof.
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their mechanism since we are primarily motivated to
describe the observed lines in MnF~, and the inter-
actions discussed here provide an adequate basis for
this.

If we restrict our attention to the case with inter-
actions between sublattices, there are two possible final

states (for each k), I
E'k; M' —k ) and

I
22k; M' —k).

These are eigenstates for the exciton, but for a general
k they are not eigenstates for the magnon. For the
final state

I
E'k; M2 k—), the complete expression for

Eq. (6.2) in terms of single-ion matrix elements is

given by

(E'k M' —k
I
R"'

I G) =Q exp(ik 501,n2) iB

X z. (c01222n2
I
I 01,n2 I

6 2401gn2) (2401
I

P01 I g01)+ (&01212n2 I
I Ol, n2 I

6 g0124n2) (24n2
I

Pn2
I gn2)

W(G) —W( U) +kcl

(c01 I P01
I 2401) (2401222n2

I
I Ol, n2 I

6 gOlgn2)+ (222n2 I
Pn2

I
24n2) (c0124n2

I
I 01 n2 I

6 g01gn2)

W(G) —W(U)
(6.5)

This result supports our assertion that the inter-
action can be described in terms of pair interactions.
The expression within the square brackets describes
the process shown in Fig. 8. It is the effective transition
electric-dipole moment of the pair of ions Oj. and n2.
This expression is equivalent to Dexter's" Eq. (5).
The total moment is the sum of pair moments,

(ek M' —k
I

X"'
I G) = 2 exp(ik SOl,n2) 8

n=l

X (c01222n2
I POl, n2 I

6 gOlgn2)p (6 6)

in which each term is multiplied by a phase factor which
accounts for the orientation of the pair. The sum ex-
tends over all sites on sublattice 2. Since Ppy, 2 de-
pends upon the overlap of the wave functions it is a
rapidly decreasing function of distance; therefore, it
is justifiable to truncate the sum to the neighboring
ions. The first and third nearest neighbors are auto-

matically excluded because they are on the same sub-
lattice. For the discussion of symmetry in the following
section we consider the eight second-nearest neighbors.

S. Symmetry and Selection Rules

In this section we shall simplify Eq. (6.6) by using
the symmetry of the MnF2 crystal. " The symmetry
operations appropriate to MnF2 are listed in Appendix
A. Let us begin by labeling the ions as shown in Fig. 3
and dining the following quantities. If the exciton
is on sublattice 1, we represent the jth component of
the matrix element of P"' for the pair of ions 0—e
by I'„~. If the exciton is on sublattice 2, we denote
this by Q„'. Also, we denote the jth component of the
total-effective-transition electric-dipole moment by 3fj

and 3f2~ for the respective cases. Then substituting
explicitly for 6pj4„& and restricting the sum to the eight
second-nearest neighbors, Eq. (6.6) becomes

Ml'(k) =exp(ik, c/2) I Pl& exp[i(k, —k„)a/2]+P2& exp[i(k, +k,) a/2)+'PO' exp[i( —k,+k„)a/2]

+P4' exp[i( —k, —k„)a/27}+exp( —ik,c/2)

X IPo' exp[i(k, —k„)a/2]+PO' exp[i(k, +k„)a/2]+Pl' exp[i( k,+k„)a/2]+PO' —exp[i( —k, —k„)a/2]}, (6 7)

for the case with the exciton on sublattice 1.
We begin by considering the four elements (P. I 0);

(C2'
I 0); (I

I
0) and (02 I 0) which form the unitary site

group for rutile in the magnetically ordered state. In
particular, consider the symmetry operation (C2'

I
0).

This is a pure rotation by vr about a s axis through
the site 0. For the ions which do not lie on the rotational
axis the transformation consists of two steps: (1)
Translate the ion to a new site; (2) rotate the contours
of the wave function.

It is clear that the matrix element I'3' of the original
crystal, for example, is related to Pl')r of the tran. s-
formed crystal. We obtain the relationship between I'3'
and Pl') r from the transformation properties of the func-

tions within the matrix element (e01222n2
I
(P"') n I g01gn2).

The dipole operator P"' transforms like a polar vector,
thus under a rotation about the s axis the s component
goes into itself. The effect of the transformation upon
the wave functions is found by applying the usual
theory of rotation properties of angular momentum
functions. For the special case of rotations about the
quantization axis we have

R(0,) I JM)=exp(iMO, ) I
JM). (6.8)

For the sidebsnds we are considering, the state
I e)

5' Further details are given by D. D. Sell, Ph.D. thesis, Stan-
ford University, Stanford, California, 1967 (unpublished).
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I go&&« l~l go&&eo I,

I gs&&ma l~—
I c)&~i I (6.9)

We use this notation for a product of wave functions to

has S=-,', M, =-,'( ——,') for the spin-up (-down) sub-
lattice. Orbitally,

I e) is a linear combination of the &1
components of T~, . In Sec. IV we found that these
components of T~, are formed from the odd-MI, com-
ponents of P, F, and G free-ion states. Using Eq. (6.8)
with 8=m we find that

differentiate it from a matrix element which is written
as (e

~
g). In Sec. VI.C we show how the transformation

properties of such products can be obtained group
theoretically. Combining this with the transformation
of P"), we find that P~'~ P~*)—r. Since the trans-
formed crystal is identical with the original one, we
require that P~*)r ——Pq* and conclude that Pa' —— P~'.—

In a similar manner we can apply the other three
symmetry operations to the I'„&' and obtain all possible
relationships between these quantities. Equs, tion (6.7)
then reduces to

~,'(k) =4i cos(k, c/2) LP~* sin(k, —k„)a/2+P2' sin(k, +k„)a/27,

~&& &(k) =4i sin(k. c/2) (PAL & cos(k, —k„)a/2+P2&" cos(k~+k„) a/2g. (6.10)

No further information is obtained from the other
four unitary elements (5—8 in Appendix A).

The results for the case with the exciton on sublattice
2 are obtained by using (C2' I ~). We find that the
roles of $ and g are simply interchanged; thus, for
example, PP~ iQp-

The absorption coeKcient for exciton-magnon ab-
sorption is proportional to

~
M P. In Sec. VII we shall

use Eq. (6.10) to obtain calculated shapes and polariza-
tions of the absorption lines. It is important to note
that Eq. (6.10) is rather general since it depends
primarily upon symmetry. The details of the wave
functions and the interaction mechanism are isolated
in the three matrix elements which can be considered
phenomenological parameters.

We can obtain the transition moment for other final
states in a similar way. For two-magnon absorption
when the magnons are on opposite sublattices we ob-
tain the results of Allen, Loudon, and Richards. "
For exciton-magnon and two-magnon absorption when
both excitations are on the same sublattice, the weight-
ing factors suppress all critical points. Furthermore, in
the two-magnon case translational symmetry requires
the moment to vanish.

C. Exciton and Magnon Symmetries

In the previous subsection we showed how a de-
tailed knowledge of the transformation properties of

~ g), ~
m), and

~
e) led to selection rules for various

processes involving excitons and magnons. In this
subsection we shall rederive these results by considering
the symmetry of the excitons and magnons themselves.
While the first approach is more physically transparent,
this second approach enables us to use all the powerful
tools of group theory, thereby obtaining a more general
result.

We begin by finding the irreducible representations
for the excitons and magnons. Dimmock and Wheeler'"'

have given the irreducible representations of the
(unitary) group of k for all the symmetry points and
lines in the Brillouin zone of MnF2, as well as the com-
patibility relations between these representations. Let
us begin by considering the point F. The character
table for 1 is shown in Table II. We also indicate the
transformation properties of the components of a
pseudovector (S„S„,S,) and a polar vector (x, y, s).
It is easily seen that this group is isomorphic to the
point group group D2& (which is obtained by setting ~

TABLE II. Character table for the point F of the space group I„„orD2&". The transformation properties of a pseudovector (S„S„,S,)
and a polar vector (x,y, s) are indicated. Under time-reversal symmetry, F3+, F4+ and also F3, F4 become degenerate.

F+ F2 F3 F4
S S SRI

F,— F2
8

F3
x

F4 F5~ Fg

(&Io)
(E'

I
o)

(c,*c;
I o)

(c,*,c;I )
(cp,cp I ~)
(I I o)
(I Io)
(&a ~1 I o)
(&earp&vz I &)

(~w&0'vy I ~)

1
1
1

—1
—1

1
1

—1
—1

1
1

—1
1

—1

1

1
—1

1
—1

1
1

1
1
1

—1
—1

1

1
1
1
1
1

—1
—1
—1
—1

1

—1
—1
—1
—1
—1

1
1

1
1

—1
1

—1
—1
—1

1
—1

1

1
—1
—1

1
—1
—1

1

2
—2

0
0
0
2

—2
0
0
0

2
—2

0
0
0

—2

2
0
0
0

5' J. O. Dimmock and R. G. Wheeler, Phys. Rev. 12'7, 391 (1962).
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Ul, i'
l

/
+ &

R
I i

I
i
I
I

I
I

WI
I
I

Z

S~, S2

TI

IA~, Az

VI, V2

xg '2 -M+M+
I 2

YI, Y2

equal to zero). In the full group including time re-
versal the pairs of representations I"3+, I'4+ and I'3, r4
become degenerate.

The sublattice magnon for k=0 is

I
M' k=0)=ill'-'~s+8 t

—
I G) (6.11)

I' 1G. 9. Irreducible representations for the excitons for the
symmetry points and planes of the Brillonin zone lafter R.
Loudon, Ref. 54).

Loudon" refers to
I e&(g I as the transition operator.

For k =0, the sublattice exciton transforms like

I &)(g I, thus
I e)(g I

transforms as 5*. In a similar
way we see from Eq. (6.11) that

I m)(g I
transforms

as S for sublattice 1 and as S+ for sublattice 2.
We must note that our discussion of exciton sym-

metry is somewhat oversimplified. Loudon'4 has shown
that the two excitons resulting from this single-ion
transition must transform as I'&+ and I'&+, respectively.
We can see this by returning to Eq. (4.10). The state
I
E+, k=0) transforms as I's+ and

I E,k=0) transforms
as I"i+. Unlike the magnons, time-reversal symmetry
does not require these states to be degenerate, thus, in
general, Davydov splitting may occur, In MnF2, how-
ever, they are degenerate, and we are free to choose
sublattice excitons as eigenstates. Incidentally, we note
that Davydov splitting (if it exists) cannot be observed
in an unperturbed crystal because F&+ does not trans-
form as a vector component. This is veri6ed by our
model. The contributions to the transition moment
from the two sublattices cancel for

I E, k=0).
The irreducible representations of the excitons and

magnons for the symmetry lines and points of the
Brillouin zone can be obtained as follows by using the
compatibility and character tables of Dimmock and
Wheeler": (1) For the symmetry points, the repre-
sentations are obtained by comparing the characters
for the respective groups of k with those for F for the
elements (R I 0) common to both. (2) For the sym-
metry lines, the compatibility tables can be used. The

The ground state
I G) must transform as I't+ for, by

definition, it is invariant under all group operations.
Consequently, for sublattice 1 the magnon transforms
as S which we see transforms as I"3+, F4+. Similarly,
for sublattice 2, I

M', k=0) transforms as 5+ which
also belongs to I'g+ and F4+. Neither sublattice magnon
transforms as a single irredicible representation but this
is not inconsistent. First of all, the true eigenstates are
linear combinations of these states. Secondly, I'&+ and
F4+ become degenerate in the full space group. Sym-
metry tells us that at F the two magnon modes must
be degenerate (i.e., no Davydov splitting) .

The transformation properties of the excitons can
be obtained from the polarizations of lines Ej and E2.
These are magnetic dipole lines appearing in o (electric)
polarizations, thus the transition matrix element is Xg

2

u .' .-SI S2li
I

+ I A2
IRI

I

I

I

I

(

w, ,

I

I

I

I

I
I

I's+I's

X ~ 3 ~ ~M+M+2P 3t 4
Y3, Y4

(z, k=oI &*IG& (6 12)

Since p' transforms as F2+, the exciton must also
transform as I'~+.

Now we can easily obtain the transformation proper-
ties of

I g)(e I
and

I g)(ns I
which we used in subsection

B. We note that an exciton state can be written as

I
&'k&=L& "'2 exp(sk r-t)

I
e.t&«.t Ij I G& (6 13)

27r
0

Fzo. 10. Irreducible representations for the magnons. The no-
tation F3++I'4+ denotes that these representations are degenerate
because of time-reversal (after R. Loudon, Ref. 54).

'4 R. Loudon (to be published) .
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results for the excitons and magnons are shown in
Figs. 9 and 10, respectively.

The selection rules for exciton-magnon absorption
are determined by the transition matrix element

(zi; M —I
I

X
I G). (6.14)

I,ax and Hopfield' have discussed a method for ob-
taining selection rules connecting different points in
k space which uses the available character tables for
the groups of k. We are primarily interested in the
symmetry points at the zone boundary since these
lead to critical points in the density of states. As we
have shown in Ref. 11, the sideband absorption is
proportional to a weighted density of states. If the
selection rules forbid the transition for some sym-
metry point, this peak in the density of states is sup-
pressed by the weighting factor and does not appear
in the observed spectrum. Using the method of I.ax
and Hopfield we find that the product representations
for the exciton-magnon states at the symmetry points
decompose into (note that the characters for —k are
the complex conjugates of those of lr)

XrX&s=rs++r4++rr +rs,
M&+xi+= M,+x%4+=I,+,

3fg+XJI4+=Mg+XM3+= I'4+,

Z, XZ, =W,Xa,=r,++r,+yr;+r;,
R+XA+= ri++rs++rs++r4+ (6.15)

"M. Lax and J. J. Hop6eld, Phys. Rev. 124, 115 (1964).

This provides the information necessary to deter-
mine the selection rules for any operator transforming
as a I' representation. For the electric-dipole process
we see that X contributes to ~ polarization and Z
and A contribute to 0- polarization. For the two-
magnon process, on the other hand, Z contributes to
m polarization and I contributes to 0 polarization.
Since in this latter case we are dealing with two identi-
cal excitations the symmetrized Kronecker squares
must be used rather than the usual Kronecker products.
This causes the greater selectivity of the two-magnon
process. For example, if a process involved a magnon
and an exciton which transforms like the magnon,
both Z and A could contribute to x polarization.

We note that M and E do not contribute to either
polarization. This is true because the groups at JIJ/I

and E contain inversion and the exciton and magnon
states have even parity. Such a product state cannot
decompose into odd-parity representations.

These selection rules are considerably more general
than those obtained in the previous subsection. These
results do not depend upon the nature of the interaction
and make no assumptions restricting the excitons or
magnons to a given sublattice. The selection rules
follow solely from the fact that the excitons and mag-

FrG. 11.The s components
oi the pair transition moments g~
of exciton-magnon absorption &I

for the symmetry points in the
Brillouin zone. Only the X,('

point can give a nonvanishing
contribution.

nons transform according to the irreducible representa-
tions of the groups of k as shown in Figs. 9 and 10.

It is clear that any proposed mechanism for this
process must predict selection rules consistent with
those obtained here, and indeed the results obtained
in the previous subsection are consistent. From Kq.
(6.10) we see that X contributes to z. polarization
(Mi*) and Z and A contribute to o polarization
(Mi&, Mrs) for coupling between sublattices.

In Fig. 11 we illustrate the s components of the pair
transition moments for the various symmetry points
in the Brillouin zone. The arrow represents the mo-
ment for the ion at that site and the body-centered
ion. The orientations of the vectors are determined by
symmetry relations obtained as indicated in the pre-
vious subsection and by the phase factor exp(ik 6)
for the various values of k. A macroscopic electric
field "sees" the sum of these pair moments. It is clear
that the dipole moments sum to zero for all symmetry
points except X and that there is inversion symmetry
for the points M and R.

VII. DISCUSSION

In this section we shall apply the theory of the
preceding sections to analyze the sidebands.

A. Line Shapes

The absorption coefficient in cm ' is given by

n, (p) = I [(27r)s/hcnV5(g. ii/g)'v)

X Z Q I
M*'(Ir) I'~( —»' —»") (7 1)

Here r& is the refractive index, (g, i&/8) is the effective-
6eld correction, vi,' and vk are the wave numbers for
the exciton and magnon, respectively, and k is summed
over the first Brillouin zone. In the quantity M,'(Ir)
the superscript j denotes the polarization of the light,
and the subscript i accounts for the various processes
which ran contribute. For example, Mq refers to thy
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process in which there is an exciton on sublattice 1,
and a magnon on 2, while M2 refers to an exciton on 2,
and a magnon on 1. Since we shall consider the total
absorption of the crystal due to intersublattice coupling,
we include both M~&(k) and M~&'(k) . It is not dificult
to show that there are only two distinct absorption
coefficients: one for the electric vector parallel to the

s axis denoted by n (v), and one for the electric vector
perpendicular to the s axis denoted by a, (v). The
absorption does not depend upon the direction in the
x-y plane because the x and y axes are equivalent when
contributions from both sublattices are included.

Using Eq. (6.10) for the transition dipole moment,
we find-

n (v) = Cg([ M|* ~2+) M2* ~2) A(v —vq' —vq~)

=lixed sin'(k, a/2) cos'(k„a/2) cos'(k.c/2)A(v —vg' —vj,~) (7 2)

and
n, (v) =Cg[~ MP )'+) M,& )'ga(v —v& —v&")

=g sin'(k, c/2) [IIs cos'(k, a/2) cos'(k„a/2) +Ilg sin'(k, a/2) sin'(k„a/2) ]h(v —vq' —vq ), (7.3)

where the terms in the square bracket in Eq. (7.1)
have been absorbed into the constants. Similar results
have recently been obtained by Tanabe and Gondaira. 5

We have labeled the three parameters as II~, IIg,
and II~ because they multiply weighting factors which
pick out the critical points X, Z, and A, respectively.
For the most part, we treat them as phenomenological
parameters. It is possible, however, to express them
in terms of the pair matrix elements. For example, if
we use Eq. (6.10), we have

II =32C[) E,~ P+) PP ]'j, (7.4)

with similar expressions for IIg and II~. Thus, it is
possible to obtain experimental values for the pair
matrix elements from the integrated sideband absorp-
tion coefficients. "Symmetry does not tell us the rela-
tive magnitudes and phases of E'~& and P~&. If we could
obtain such information, we could determine the rela-
tive strengths of IIz and IIg from the expressions of
Iis and II~ analogous to Eq. (7.4) .

In evaluating Eqs. (7.2) and (7.3) we are faced
with the problem of what to use for the exciton dis-
persion. We have the dispersion relation Eq. (4.13)
but we do not know the parameters E» and IC~. With
our present understanding of the exciton dispersion,
the best we can hope to do is to obtain estimates of
the parameters E» and E3 which give the best agree-
ment with the observed lines. We have calculated line
shapes for several values of E» and E3 by using a
Monte Carlo technique, and we are led to the con-
clusion that it is not possible to obtain good agree-
ment with both the observed profiles of ~1 and 0-1

for one set of parameters E» and E3.
To indicate the problems one encounters, let us

consider some possible parameters. We see from Kq.
(4.13) that E~ introduces dispersion in the s direction

'6 Y. Tanabe and K. Gondaira, J. Phys. Soc. Japan 22, 573
(1967).

and E3 introduces dispersion in the x-y plane. For an X
critical point only E3 is important, for a Z point only
E» is important, and for the A point both E» and E3
are important. The observed profiles for lines x1, 0-1,

and 02 are shown in Figs. 12(a) and 12(b). We can
reproduce the peak position and shape of line 0.1 rather
well by using the known magnon dispersion and the
exciton dispersion parameters E»= —1.3 cm ', E3=0.
This moves the peak of 0.1 to 57.4 cm ' as it should
be and retains the sharpness of this line as shown in
Fig. 12(c). These parameters, however, lead to a ~1
line which is much too sharp and is at 50.4 cm ' rather
than 41.7 cm—'. To attempt to remedy this we try
E3——4.3 cm ' to move xt to the correct position. As
we see from Fig. 12 (d) the characteristics of s 1 are im-
proved but o-1 has deteriorated. The relatively small
value of 41.7 cm ' is the cause of this difliculty. A large
dispersion parameter E~ does not account for the ob-
served properties. Moreover, it also seems unreason-
able for E3 to be considerably larger than E» since E»
results from first-neighbor coupling and E3 results
from third-neighbor coupling. In the ground state,
the third-neighbor exchange J3 is negligible compared
to J» and J~.

One possibility for this difhculty may be the presence
of phonons. Raman scattering " indicates that there
is a low-lying optical branch with B~, character and
61 cm ' energy at k=0. Its dispersion is not known.
Thus it is conceivable that such phonons could in-
huence these transitions.

We note that there are also difficulties in explaining
the two-magnon line shapes even though the density
of states is well known in that case. To account for
the broadness of the two-magnon ~ polarization line,
Allen, Loudon, and Richards" have introduced a longer-

S. P, S. Porto, P. A. Fleury, and T. C. Damen, Phys. Rev.
&S4, 522 (1967).
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range interaction. This de-emphasizes the zone-bound-
ary magnons and leads to the desired broadening.
This may also be important for the exciton-magnon
profiles.

The shape of line 0-2 can be reproduced rather well

by using the exciton dispersion parameters E&——3.1
cm ', E3=0. The negative exciton dispersion pulls the
peak down from 54.8 cm ' to 48.6 cm ' Line (72 does
not have a sharp high-energy cutoff like (Ti because,
unlike the case for (71, the Z and A point exciton-
magnon states do not have the greatest energy. It is
significant, however, that the absorption does end
rather abruptly at 54.8 cm '.

We see that the whole question of exciton-magnon
line shapes is complicated, and not fully resolved. The
strong polarization which results from symmetry is
accounted for but the shapes which depend upon the
exciton dispersion, the range of interaction, and pos-
sibly also upon other factors such as the phonons are
not adequately accounted for.

B. Stress Studies

3.0—

2.0—

I.O—

3.0—

2.0—

I.O—

SIDEBAND PROFILES

to)

02
48.7

OI
57.4

.58.2

The effect of uniaxial stress upon the sidebands in
MnF2 was first studied by Dietz, Misetich, and Guggen-
heim. " We have veri6ed their results but shall not
dwell upon this aspect of the problem except to point
out how such studies are related to the present dis-
cussion.

For stress parallel to the s axis (S ~~ [001]) lines
EI, x1, and 0-1 all shift by the same amount, and line
0-2 has the same behavior as E2. This provides strong
evidence that gi and xi are indeed sidebands of Ej,
and o.2 is a sideband of E2. The stress studies do not
indicate whether the sidebands are phonon or magnon
sidebands; this information is provided by the shape,
magnetic field, and temperature studies.

The lines do not split under a stress along the s
axis because the stress affects both sublattices in the
same way. When the stress is applied perpendicular
to the s axis along the $ axis (S ~~ [110)) all of the
lines split into two components (labeled A and 8
in Ref. 14). We remember that the ions on the two
sublattices have environments diGering by a 90' rota-
tion about the s axis. Thus, stress along the f axis
affects the two sublattices differently. For an ion on
sublattice 1 (see Fig. 3) the stress tends to change the
78' bond angle of the four fluorine ions in the $-s plane.
This changes the orthorhombic crystal field which in
turn changes the wave function

~
e). [The states

~ g)
and

~ m), being orbital singlets, are insensitive to
stress. j This produces an absorption with a compli-
cated stress behavior. For an ion on sublattice 2 the
stress is pushing directly upon a Mn-F bond. This does
not cause a large perturbation upon the state

~
e) and

the resulting transitions have a simple stress de-
pendence.

(c)
57.4

KI =-I.3 cm

Kg=0

K~=-I.3 cm '

Kg= -4.3

I I I

IO 20 30 40 50 60
WAVENUMBERS ( cm ' )

FIG. 12.The observed and calculated sideband profiles: (a)
observed profiles for line 7I-1 and 0-1, (b) observed profile for line
o.2, (c) calculated profiles for lines m1 and 01 using the exciton-
dispersion parameters E:-1=1.3 cm ' and Eg ——0, (d) calculated
profile for 7t-1 and o.l for the parameters E1= 1.3 cm ' and E3=4.3
cm 1.
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Dietz et al. observe that o-18 and o-28 are seen
when the electric field is perpendicular to the stress
(along g) and o1A and o.2A are seen for the electric
field along the stress (along $). This indicates that the
matrix elements I'P and/or I'~& are much larger than
P»~ and Pp.

The stress studies answer the question why line
E2 does not have a sideband m2. As stress is applied
along the $ axis such a sideband appears. Dietz et aL
have shown that the sideband strength is very sensi-
tive to the structure of the excited-state wave function

~
e). In the unperturbed crystal, pr2 is simply too weak

to be observed.

=v,'(T) +R(T)v " (7 5)

where R(T) is the renormalization factor defined in
Eq. (5.7) . The energy v' is measured and v, is known;
however, v, '(T) is not directly observable. To extract
information about R(T) we must relate the exciton
energy at the Z point to the observable energy of line
E1 which is a k=0 exciton. In other words, to gain
information about the temperature dependence of the
magnon dispersion, we must know something about
the temperature dependence of the exciton dispersion.

We took the exciton dispersion to be independent of

temperature in the 0—30'K region. We did this for
two reasons. First, from the work of Gibbons" on the
thermal expansion of MnF2 and Dietz et al.»4 on the

compression it appears that the parameters entering
the exciton- and magnon-dispersion relations do not
change with temperature in this region. Second, since
the excitons have such large energies, these modes are
unpopulated. Thus, there should not be any renormali-
zation effects.

Thus, if we assume that the exciton dispersion is
independent of temperature and define (o.1 E1)r a.s-
the energy separation between ol and E1 at tempera-
ture T, then from Eq. (7.5) we obtain

R(T) =1—[(o1—E1)p—(01—E1)rj/v, ". (7.6)

For lines o-1 and o.2 we use the Z, A-point magnon
energy 54.8 cm '. For m1 we use the X-point value

" D. F. . Gibbons, Phys. R.ev. 115, 1194 I,'1959).

C. Temperature Dependence

The temperature dependence of the energy separa-
tions E1—xi, E1—o.1, and E2 —o-2 provides a rather
direct measure of spin-wave renormalization. Consider
o1 for example. The peak of o1 corresponds to an
exciton and a magnon with wave vectors at the Z or 2
points of the Brillouin zone. The peak wave number
v"(T) at a temperature T is the sum of the exciton
and magnon energies

v"(T) =v,'(T)+v,"(T)

50.4 cm '. It is found that within experimental error
the results for o-1 and o-2 are the same. These data are
plotted as the solid circles in Fig. 7. The data for m1

are plotted as X's. The curves E.', E.,', and E,' are the
theoretical renorrnalization factors obtained in Sec.V. C.
For E» only the intersublattice exchange J2 is con-
sidered and the result is independent of k. When J»,
J~, and II~ are included the renormalization depends
upon k and E,. ' and E,' are the results for the X, M
and Z, 3, points, respectively. The curves marked
AFMR and M(T) are the experimental results for
antiferromagnetic resonance4' and sublattice magnetiza-
tion, "respectively.

The optical studies and AFMR provide stringent
tests of spin-wave theory. We see, for example, that
E» which supposedly applies for all k does not agree
with the AFMR experimental result (even when the
error bars, which are as large as those for the sideband
data, are considered). This is not too surprising, how-
ever, since R neglects anisotropy which is a very im-
portant factor for k =0 magnons. For the sidebands
we compare the o-1 and o.2 data with R» and 8,' and
the vr1 data with E» and E,.'. It appears that the o--

polarization data is in somewhat better agreement with
theory than the m1 data. Ke see that the m1 data agrees
well with the AFMR result. It is not clear whether
this has any significance, According to the theory,
the ~1 results should be more similar to the o-1, o2
results.

Again we see that difficulty arises with line x1 and
it is quite probable that the difhculties have a common
origin. It is interesting to note that the observed tem-
perature dependence of 7r1 is well accounted for by
renormalization theory if a maximum-magnon fre-
quency of approximately 42 cm ' is assumed,

D. Zeeman Studies

Experimentally, we find that a 10-kOe field parallel
to the z axis splits lines E1 and E2 by 1.7 cm ' while
lines m.1, o1, and o.2 show no apparent splitting or
shifting. A held perpendicular to the z axis has no
effect upon any of these transitions.

The exciton and magnon Zeeman energies were ob-
tained in Eqs. (4.12) and (5.4). It is clear that the
Zeeman energy is the energy shift of a single-ion transi-
tion in a field and the energies can be obtained easily
be referring to Fig. 5. We saw in Sec. III that the
single-ion levels are unaffected by a field perpendicular
to the z axis. This explains the behavior in such a field.
From the splitting of lines E1 and E2 we learn that
g'=2. 11 (g=2.00).

For the sideband transitions we simply add the
Zeeman energies. For example, for the final state
~

E'k; 3II' —Ir) the energy shift is PPp(gS —
g (S 1)—g).

59 V. Jaccarino anal R. G. ShulnIan, Phys. Rev. 107', 1196
(1957'.
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The shift for the final state
~

E'k; M' —k) is the nega-
tive of this; consequently the observed splitting is

If g'=g, the magnetic field will have no effect. In this
case, the Zeeman energy of the magnon cancels that
of the exciton. For the values g'=2. 11 and g=2.00,
the splitting should be 0.15 cm ' in a 10-koe field.
This is too small compared to the sideband linewidths
to be observed optically. Russel, McClure, and Stout"
have observed the Zeeman splitting for fields up to
170 kOe. For fields less than the critical field (approxi-
mately 90 kOe) the sidebands do not split. They ob-
serve, however, that line a.1 does broaden in a way
consistent with g' =2.11.

The Zeeman studies provide further evidence that
the exciton and magnon are not on the same sublattice.
The Zeeman energy of a state such as

~

E'k; M' —k)
is approximately 1.7 cm ' in a 10-kOe field. If some
of the sideband absorption strength results from intra-
sublattice coupling, the sideband would distort seriously
in a magnetic Geld (even though the peak may not split
since the weighting factors suppress all critical points
for intrasublattice coupling). Such distortions are not
observed in MnF~."'

We note that all single-ion transitions in MnI2 or
phonon sidebands of such transitions, should split in a
s-directed magnetic Geld. Since all transitions are spin
forbidden, the single-ion transitions must have a hM,
of at least 1. Barring highly unusual circumstances,
such lines will split.

The pair transitions (i.e., sidebands) have the unique
distinction that they are bM, =O transitions (for inter-
sublattice coupling). If the g values of the excited
states are reasonably near 2.00 such lines will exhibit
no splitting. This provides a very convenient test to
differentiate between sideband transitions and single-
ion transitions. Unlike most other tests, this one does
not require that the pure electronic transition be ob-
served. For example, Eremenko and co-workers~ have
observed seven lines in the PAi, -+'Tp, ('D) region which
do not split below the critical field. These lines are
quite probably exciton-magnon transitions. McClure'
has recently reported the results of a systematic
Zeeman study of the optical spectrum of MnF2. They
find that most of the sharp electric dipole lines do not
split below the critical field, thus, they identify these
lines as exciton-magnon transitions.

VIIL CONCLUSIONS

The concepts developed in this paper, and more
thoroughly explored in the dissertation of Sell,"apply
directly to all the sidebands in MnF&, FeF2, CoF&, and
other materials which have the magnetic space group
E4p'/mens'. Using Loudon's" results we find that
magnon sidebands in these materials should either be

similar to those discussed here (excitons with I'i+, I'p+

symmetry) or should be similar to the two-magnon
case (excitons with I'p+, I'4+ symmetry). The general
framework which we have used should also be useful
for describing sidebands in other materials, even with
diBerent symmetry. There were two central points in
our discussion. First, the elementary excitations of pure
materials are nonlocal propagating excitations which
are characterized by a wave vector k. This is a well-
established concept but previously it was not recog-
nized as an important factor in the optical spectra of
magnetic insulators. The second and probably the most
important point is that the elementary excitations, such
as the excitons and magnons, can couple together to
produce two-center excitations. It is not a mere coinci-
dence that two-center excitations appear in magnetic
materials. As we have seen, the Coulomb-exchange
interaction provides the coupling between pairs of ions
that leads to sidebands. This interaction is very similar
to the exchange integral J (in JSi Sp) which causes
magnetic ordering. Thus we expect some correlation
between the existence of magnetic ordering and the
presence of two-center excitations.

We have also emphasized that group theory is very
helpful in identifying and characterizing sideband ab-
sorptions. At present, sidebands have only been ob-
served in antiferromagnets. There appears to be no
basic reason, however, why they should not appear in
ferrimagnets and ferromagnets as well. The ferro-
magnetic case does present the unique feature that
the exchange term cannot contribute (without spin-
orbit coupling) since the s component of spin must
change in the transition. Sidebands in ferromagnets
would probably result from the direct Coulomb inter-
action.

Pote added im proof Througho. ut our discussion of
the exciton-magnon interaction, we have considered a
completely aligned ground state for both the excitons
and the magnons. Thus, the zero-point deviations of
the magnons have been neglected and we have dealt
with the ai, and bi, sublattice magnons rather than the
coupled modes aq and Pq (see Sec. V.A.) . Dietz et al.PP

have pointed out that the inclusion of zero-point
deviations leads to two changes. First of all, the right-
hand side of Eq. (6.10) for the transition moments
due to intersublattice coupling are multiplied by u&.
This leads to an almost negligible e8ect upon the cal-
culated sideband profiles since these expressions pick
out zone boundary critical points at which ui, ——1.

The second change is that the zero-point deviations
introduce an additional intrasublattice coupling term
which also conserves the total s component of spin.
This term is multiplied by oq (which vanishes at the
zone bounda, ry). For the s component, for example,
the intrasublattice transition moment has the form

M (k) =2'KgLPypp slnkzg+Ppip slnkpo],
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where P~pp' and I'pyp are the coupling parameters for
the third-nearest neighbors along the x and y axes,
respectively. This term can lead to a line having the
approximate position, shape, and Zeeman behavior of
line ~1. However, this intrasublattice mechanism pre-
dicts that there should be a m-polarized sideband in the
intrinsic emission with an integrated intensity approxi-
mately twenty times larger than the E1 emission line.
Since no m-polarized sideband is observed in the in-
trinsic fluorescence, " we conclude that vr1 does not
arise from this intrasublattice coupling mechanism.
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APPENDIX: SYMMETRY OPERATIONS IN Mnp2

The complete magnetic space group I'4q'/mew' of
MnF2 consists of the operations listed below and their
products with the subgroup of primitive translations
(Z i t„) and (E i t„):

1. (E
~ 0), the identity operator;

2. (C~'
~
0), a counterclockwise rotation about the s

axis through 180';
3. (I

~ 0), the inversion operator;
4. (Oq

~
0) = (C,' ~ 0) (I

~
0), reflection in the x-y plane;

5. (C2'
~ ~), counterclockwise rotation about the x

axis through 180' followed by the translation ~;
6. (Cp

~ ~), counterclockwise rotation about the y
axis through 180' followed by the translation ~;
7. (0„~ ~) =(Cp

~
~) (I

~
0), reflectionin they-splane;

60R. E. Dietz, A. Misetich, H, J. Guggenheim, and A. E.
Meixner (to be published).

g. (0'»
~

~) = (CP
~
s) (I

~ 0), reflection in thee-splane;
9. (CzrE

~
0), time reversal followed by a counterclock-

wise rotation through 180' about the $ axis;
10. (CpE

~
0), time reversal followed. by a counterclock-

wise rotation through 180' about the g axis;
11. (0~tE

~
0) = (C~& E~ 0) (I

~
0), time reversal followed

by reQection in the g-s plane;
12. (Oq„E

~
0) = (CpE

~
0) (I

~ 0), time reversal followed
by reflection in the $-s plane;
13. (C4*E

~
~, time reversal followed by a 90' counter-

clockwise rotation about the s axis followed by the
translation ~;
14. (C4 'E

~ ~), time reversal followed by a 90' clock-
wise rotation about the s axis followed by the trans-
lation ~;
15 (54*E

~
~) = (C4'T

~
~) (I

~
0) .

16. (S ' 'E
i ) = (C * 'T

i ~) (I i 0).

The coordinates x, y, s, $, q are shown in Fig. 13 and
~ =a/2i+a/2 j+c/2a

We use the usual convention that the coordinate
transformations r'=Sr given above correspond to
transformations of functions P~P(r) =P(R 'r).

The point group of a crystal is the set of transforma-
tions obtained by setting all translations equal to
zero in the space-group elements. The site group is the
set of elements which leave one site invariant. For
magnetic space groups we also differentiate between
the unitary elements (no time reversal) and the anti-
unitary elements which include time reversal. The
unitary elements form an invariant subgroup.

For this magnetic-space group, elements 9—16 are
anti-unitary and 1—8 form the unitary subgroup I'„„
or D»". Thus the unitary-point group is D» and the
unitary-site group is C». The full point group is es-
sentially D4&, since the space group contains inversion
as well as time reversal.

For MnF2 in its paramagnetic state the space group
is F42/mam or D4q". It consists of the 16 elements
given here with time reversal omitted. The site group
is D~~ and the point group is D~.


