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An Ising model with ferromagnetically coupled, randomly distributed impurities in a linear antiferro-
magnetic chain was previously presented to interpret the magnetization of certain organic free radicals.
Simple assumptions permit this model to be generalized to other anisotropies. It is shown that for a sma].l
concentration of impurities there arc two contributions to the low-temperature magnetization. Onc is a
local contribution and is proportional to the number of impurities, g. It is largest and least localized for
Heisenberg coupling. The other contribution is nonlocal, depends upon the zero-temperature long-range
order cg, and probably can be represented as a single spin of magnitude gP(ru g) ~~2j2. Near the Ising limit
the system acts like a supcrparamagnet. The magnetic-Geld dependence of the magnetization can be used
to separate the two contributions. For Heisenberg coupling the magnetization will be paramagnetic and
this paramagnetism persists as kT/( J (~0. This prediction requires cu„=O and hence provides a direct
test of this relation. The low-temperature experimental results on the free radicals agree with the para-
magnetism predicted in the case of Heisenberg coupling.

L DtTRODUCTION

t IHERE has been considerable progress recently in.„.determining the properties of linear antiferromag-
netic chains. '~ Unfortunately, measurements of such
thermodynamic quantities as the susceptibility, mag-
netization, speci6c heat, etc. , do not provide very
complete information about the ordering. In this paper
the low-temperature magnetization of an antiferro-
magnetic chain containing a low concentration of ferro-
magnetically coupled impurities will be investigated.
It will be shown how these impurities can be used as
probes to provide information about the ordering. In
particular, they allow an experimental test of whether
the zero-temperature long-range order co is zero for
Heisenberg coupling.

In Ref. 7 the model is presented and some of its
predictions compared with experimental results on cer-
tain organic free radicals. Some organic free radicals
represent linear antiferromagnetic chains in which the
low-temperature susceptibility is dominated by im-

purities. ~ The impurities appear to be coupled via
exchange forces to their neighbors, and yet still give
rise to a paramagnetic contribution to the susceptibility.
In order to interpret these data, an Ising model con-
taining ferromagnetically coupled impurities was intro-
duced. Falk' has generalized this model for other values
of spin, but his work has the same limitations with
regard to temperature range or impurity concentration.
These limitations can be partially removed by the
method of Ref. 9. In Ref. 9 it was shown that the low-
temperature limit of the model results in superpara-
magnetism. No superparainagnetism is indicated in the
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experimental results on the free radicals, Because of
this and the fact that the interaction between the spins
in the free radicals is better represented by Heisenberg
coupling, it is interesting to try to generalize this model
to other anisotropies. For Heisenberg coupling the zero-
temperature long-range order cv is probably zero. In
Ref. 9 it was suggested that in the case of Heisenberg
coupling, the impurities would act paramagnetically.
This suggestion was based on an analogy to the result
for a gas of impurities for which the effective ~ is
zero. This suggestion will be proved using simple ap-
proximations. A system in which the anisotropy can,
vary between the Heisenberg and Ising limits is investi-
gated. The restriction to Ising coupling will be removed
by making some apploxiIQatloIls which should be qualj. —

ta, tively correct. The approximations become exact in
the case of Ising coupling, but their correctness is
difficult to test for other anisotropies. They are simple
and rather natural approximations in the sense tha, t
they are reasonable and the first ones to come to mind.

The treatment is restricted to low temperatures, low
impurity concentrations, and finite-size systems. The
last restriction is not necessary in the case of Heisenberg
coupling and for some of the results when the coupling
is intermediate between Heisenberg and Ising coupling.
Use is made of the zero-temperature correlations. The
magnetization is developed as a power series in gpII/AT.
It is necessary to evaluate at least two terms in this
series in order to separate the paramagnetic and non-
paramagnetic contributions to the magnetization. It
will be shown that in general the impurity gives rise
to two effects. There is a contribution to the magneti-
zation which is localized near the impurity site. The
magnitude and extent of this local contribution, but
not its existence, depend upon the approximations
which are made. It is interesting to note that Tonegawa
and K.anamori" have found a localized mode in their
spin. -wave analysis of the three dimensional case. From.
the approximations it follows that the local moment
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can be expressed as a sum of the pa, rtial sums 5„
which were defined in Ref. 4. There it was shown
that the 5„'s provide bounds on the product of the
temperature times the susceptibility.

Besides the local contribution, there is a superpara-
rnagnetic contribution. This is a result of the large
distance correlations approximating z . The super-
paramagnetic effect vanishes if the zero-temperature
long-range pair correlation ~ is zero. In this case,
thought to occur for Heisenberg coupling, the local
contribution remains and behaves paramagnetically as
kT/~ J

~

—+0. This example of paramagnetic behavior in
a strongly coupled exchange system is interesting and
perhaps unique.

II.THE MODEL AND LOWEST-ORDER TERM IN H

A. Formalism

The Hamiltonian under consideration is

where for any operator 0

(0)=—TrLO exp( —Xa/kT) ]/Tr[exp( —Xa/kT) ], (7)

o-i =25,'.
B. Ayyroximations

Consider the first term on the right of Eq. (6). At
present this term can only be calculated if p=0; i.e.,
for Ising coupling. ' It can be evaluated in the limit of
very low tempera, tures4 for any y in the absence of
impurities. In order to proceed further it is necessary
to make some approximations, the validity of which
is dificult to ascertain. As mentioned earlier, the
approximations are reasonable and the first ones that
come to mind. It is assumed that the low-temperature
correlation between spins z and j' is unmodified by the
impurities if there are no intervening impurities be-
tween the spins i and j; i.e.,

X Xg+Xg)

X = —gP g S'8'
If there are intervening impurities it is assumed that

(10)

2V

Xg ———2 g J;,;+iLS,'S;+i*+y (S,*S;+i*+SoS;+P)],
i=1

' " I".j! (3)
where

J;,'+a=J'& o

=J&0

if ~ and i+1 a,re both impurity
neighbors

otherwise, (4)

and the magnetic field is in the s direction. All the spins
have S=-', . The impurities are nonmagnetic and are
responsible for a ferromagnetic superexchange between
their nearest neighbors. They were previously called
diamagnetic impurities. ' ' The number of impurities
will be denoted by q and they will be assumed to be
randomly distributed. The total number of pure spins
is denoted by X. (This is a slight change from the
previous notation. .) The spin. s are arranged in a ring
and hence cyclic boundary conditions will be employed;
i.e., S~+l—=Sl.

The magnetization is

M =gP TrLQ S,* exp( —X/kT) ]/TrLexp( —X/kT) ],

4kTM, gPB '
giO j =,. 3 0 O&OpO~

(gp) 'H, ,
'

2k T

gpH)t4—(+0;o.,)']+terms of order ~, (6)
2kTj '

0 i0 j/pzp&~GO j for kT«~ J
)

and
( j—i

)
(1OOO.

The z's are the zero-temperature correlations between
spins in the absence of impurities. See R.ef. 1 for the
values of ~~ and Ref. 4 for a general discussion of the
ordering in the pure-spin case. For kT«~ J ~, short-
range ordering extends over a certain range taken in
Eq. (11) to be 1000 spins. Within this range the 6nite
temperature correlations are approximately equal to
their zero-temperature values. For decreasing temper-
ature the range of validity of Eq. (11) and accuracy
of the approximation are expected to increase. It will
be useful to employ Eq. (11) throughout. This implies
that some of the results are valid only for 6nite size
systems. These instances will be pointed out. Combining

where m is the number of intervening impurities and
(o.,a.,)~„„is the correlation between spins i and j in a
chain without impurities. This assumption is correct
for Ising coupling, y=0, if J'= —J. One can consider
taking the J'/J ratio which best satisfies Eq. (10).
For p/0, there may not be any value for this ratio
which satisfies Eq. (10). Nevertheless, the predictions
based on this equation should be qualitatively correct.
The factor ( —1) correctly describes the effect of
ferromagnetic coupling on whether spins tend to be
parallel or antiparallel.

By restricting the treatment to low temperatures one
is able to obtain numerical values for some of the first
terms in the Taylor series expansion of the magneti-
zation. Following the approach used in Ref. 4, it is
reasonable to take
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Eqs. (10) and (11) one has

«» &2'«
I
J

I

I &
—i

I
&1000. (12)

OD

The problem can be simplified by taking the concen-
tration c of impurities to be small. Hence the average
impurity separation is large. This will allow the corre-
lation between spins near different impurities on an
average to be approximately equal to %co, where

There will always be some impurities which will be
close to one another, but for decreasing c, the per-
centage within any separation $ decreases. As discussed
in Ref. 4, the correlations

I
pii

I
decrease with increasing(

and for some separation $(p), II pii
I

—or I&p for all 1&1'.
Because the co's are of order unity a reasonable choice
of p is 0.01. The values of $(0.01) can be estimated
from Bonner and Fisher's values of co~.

The necessary value of $ is maximum for Heisenberg
coupling p=1 and decreases rapidly to 1 at &=0.
For y=1, $ is difficult to estimate because the ~'s
have only been calculated out to co4 and the rate of
decrease is slow.

The probability that the two impurities are separated
by e spins is c(1—c)". This follows from the assumed
randomness of the impurities; i.e., the probability that
any site is occupied by an impurity is c. The require-
ment that most of the impurities are separated by
$—1 or more spins is that the sum of the probabilities
of smaller separations is small, or

FIG. 1. Examples of
impurities in an antiferro-
magnetic linear chain. The
open circles represent im-
purities.

EVE

T

(b)

ODD

with restricted reversals. ' lt is reasonable to expect
that the long-range order gives rise to a similar effect
for y/0. Consider the cases illustrated in Fig. 1.

(1) Case illustrated in Fig. 1(a): In this case there
are two impurities. They are separated by an odd
number of spins on each side.

(Qoio;)=(& o„o-;)=1+pi„

This implies

$—1

c Q (1—c)"«1.
m=O

(15)

C. CALCULATION

Perhaps c 0.01 is sufficiently dilute for y =1;higher
concentrations are allowed for y(1.

where

=Sp+ 263

=Sl—2'~,

(g opoj) =1+2~1+2Mp+M

=Sp+2M~&

(16)

(17)

The quantity (g;;o;o,) will be evaluated for con-
centrations satisfying Eq. (15). Hence only a small
error will be made by restricting ourselves to the case
in which the impurity separation is greater than $.
In this case the contribution of successive impurities
depends only upon whether the number of intervening
pure spins is even or odd. This follows from the fact
that spins which are separated by $ or more spins
have a correlation approximately equal to &~ . The
sign of the correlation is determined by Eq. (12)
together with the sign for the pure system. The sign
is positive for the pure system if the number of inter-
vening spins is odd and negative otherwise. As stated
above, for y=0 the counting process results in super-
paramagnetism and is an analog to a random walk

(19)

(Q o;o;)=2(2 Q S„)+4co .
tj n=o

(21)

In obtaining this result one must take into account
that the separations are odd; otherwise the contri-
butions proportional to co will cancel out as they do
when Eqs. (16) and (17) are added. The S„'s that
appear above are the same partial sums that are im-
portant in discussing the ordering of the chain without

So= 1 M~.

The result of summing over the entire chain is twice
that of the top row or
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I'IG. 2. Contribution to the square of the localized moment
pL, divided by (gp/2)' from the spins n places array from an im-
purity versus n. The quantity is plotted for various values of y.

impurities. 4 From certain reasonable conjectures it was
shown that

g &g ~ ~ ~ «0« ~ ~ ~ +4&gg.

in the negative direction if even. The next step is in
the same direction as the previous one if the number
of spins to the following impurity is odd and in the
I'everse direction if the number is even. Continue this
process until the initial impurity is reached. The result
of Rvcraglng this pl occss ovcl impurity posltloQs ls
that of a random walk with restricted reversals. There
is a concentration dependence as discussed in Ref. 9
which makes the probabihties of taking a step in the
same direction or in the reverse direction unequal.
This difference is proportional to t,.and will be neglected
here. Then the problem reduces to that of the usual
random wRlk, Rnd

(r )sv IQlp 3g

where ( ), ; o indicates an average over impurity
positions. Hence, Eq. (25) when averaged over im-
purity posltlons becomes

(26)

These conjectures include Eq. (11) and provide a
general description of the ordering. The proof of Eq.
(22) was based on an expansion of the susceptibility
similar to Eq. (6) . Equation (22) unlike Ref. 4 includes
the possibility of equality. This correction is necessary
for Ising coupling. Values for 5„for various anisotropies
were calculated which are consistent with Eq. (22).
The 5„'s have the property of decreasing rapidly in
magnitude with increasing e and alternating in sign.
The upper index in the sum should be of order $, but
the error made in extending the sum to in'.nity is
probably small because of the rapid decrease of 5„.

(2) Case illustrated in Fig. 1(b): There are two
impurities but they are separated. on each side by an
even number of pure spins. In this case

(Z ~'~~.)=2(2 Z s.).

(3} Case illustrated 111 Fig. 1(c): There Rlc tllI'cc

jmpurjtjcs separated as shown in Fig. 1(c). Counting
as before one obtains

These special cases can be generalized to

(Z o;o, )=2q Z S;+r'co„,

where g' ls thc llUlTlbeI' of impurities RQd f Is Rn integer
which is determined as follows: The integer r is the
distance from the origin after g steps of unit length.
Start with any impurity and count clockwise around,

the chain. The first step is in the positive direction if
tllc nunlbcr of spills to tllc llcxt llllpul'lty ls odd ol

giOj av imp

=q'(4(Z s,)'+4~„Z s,+3~„). (2y)

An examination of the steps leading to Fq. (26)
shows that the two terms on thc rjght of Fq. (26)
arise in quite different ways. The first term is a local
contribution. It is independent of the impurity positions
for small concentrations and arises from the contri-
butions of spins near an impurity. Its form is not
dependent on the size of the system. If the contribution
is viewed as a single localized moment jM~, then spins e
plRccs away flolll Rll llllpllrl'ty contribute 2(gp/2) S~+I
to the square of pI, . The factor of 2 arises from the
fRct thRt on R chRlQ thcI'c RI'e two splns s plRccs a,wRy
from an impurity. In Fig. 2, the individual contrlbutlons
25„+l to pI, are plotted as a function of the distance e
away from an impurity for different values of y. The
nearest neighbors contribute positively, whereas the
second neighbors contribute negatively. At present
there are values available for 5„only for n up to 4.
These values are tabulated in Ref. 4. From Fig. 2
one sees that the contributions to p~ are largest and
least localized for Heisenberg coupling, i.e., y=1.0. For
Heisenberg coupling the spins 6ve places away from an
impurity still make a signi6cant contribution to pg,
while for smaller y, pl, is more localized. For y&0.4
only the nearest and next-nearest neighbors make a
signi6cant contribution.

The second term of Kq. (26) is nonlocalized. It has
the simple form of Eq. (21) only if the impurities are
randoxnly distributed and if the system is 6nite. Figure 3
shows the function ((Z;;o;o;.)). ; o/q and its local
and nonlocal components as R function. Of the anisot-



LO CAL AND NONLOCAL MAGNETIZATION

ropy. For the localized part the value of so

n=O

has been used since values of 5„ for higher e are not
available. Unfortunately, for small anisotropies, 7 I,
this is a rather inaccurate estimate because as discussed
above pl. extends past this range.

2.0—

(o,o;oi,a.i) = (a,)(o.,ago. , )=0. (2g)

The last equality follows from the fact that (o-;)=0.
(2) Two of the spins, i and j, are separated from

the other two and from any impurity by a distance of
a,t least $. Using the statistical independence of i and j
from k and l one obtains

Oi0~0&i = 010' (29)

The (') is used here and in. subsequent sections to
denote restrictions on a sum. The restrictions are differ-
ent in different sections but are defined in the text.
Since i and j are not within $ of an. impurity,

0 i0 j = Oi0.y (30)

of the pure system. In Ref. 4 it was shown that this
sum is proportional to the temperature T times the
zero-field susceptibility X. The quantity

~

J
~ x goes

to a limit L for kT/
~
J

~
&&1. Hence,

lim Tx= lim LT/
l
J

l
=0.

kT/[ J(~0 kT/f J)-+0
(31)

Therefore, these terms do not contribute.
(3) Two of the spins are near one impurity and

separated from the others by a distance of a,t least P.
The other two are near another impurity. Using the
s mmetr of the situation and the statistical inde-

III. NEXT-ORDER TERM IN II I'OR
HEISENBERG COUPLING

Consider the term (go.;o-,o-ja. t) which appears in
Eq. (6) for the case p=1.0; i.e., Heisenberg coupling.
It is extremely probable that co =0 in this case. Hence
spins separated by a distance $ or more a,re uncorrelated.
This implies that they are statistically independent.
Consider the types of terms contributing to the four
spin correlations.

(1) One of the spins, i for example, is separated from
the others by a distance of at least $ from the others.
Then since it is statistically independent,

t +
0 ,I .2 .5 4 .5 ,6 7 ,8 ,9 I,O

Fxo. 3. Graph of

2 + S~+GPCO)
n=O

4

2 + S~, anQ co~

as a function of the anisotropy y.

Q'(o. ,o-,o(,a.i) =3q(q —1) (2 Q S~) '.
i=1

(33)

(4) All the spin indices in the sum are within a
distance $ from one another. If they are not near an
impurity the contribution is proportional to T/

~

J
l

times the coeScient of the H' term in the magnetization
of the pure system. This case does not contribute for
kT/

~

J
l

&&1. Hence, it is only necessary to consider the
situation when all four indices are near the same im-
purity. One could try to express this sum in terms of
the pure four-spin correlations by an assumption similar
to that made for the two-spin case. In order to make
any statements about the total sum arising from the
cases considered above, one would have to compare the
two-spin and four-spin correlations of the pure system.
Not enough is known about these correlations to make
such a comparison. As an alternative approach, we
shall assume

0 &0~'0'&0 [ = 0 i0~' OIcO E (34)

(35)

impurity. The coeKcient counts the number of ways in
which this situation can occur. The factor of three arises
from the fact that index i can be grouped with either

j, 0, or i. The factor of q(q —1) counts the number of
ways the pairs of spins can be near different impurities.
The right side of Eq. (32) has been evaluated in Eq.
(27) . Thus,

pendence The sums are restricted to be near a single impurity.
Because the spins are within a distance P of one another

p (o'oiojc«) =3&(V—1) (p (o'oj))' (32) they are statistically dependent. Hence, Eq. (34) is an
assumption and has not been proven. This contribution

The sum is restricted so that i and j are near one is a factor of 3 smaller than that of case (3), Thus,



A. S. ED EL STEIN 158

IV. THE GENERAL CASE OF ANISOTROPIC
COUPLING

a DENOTES AN IMPURITY

(a)

If yN1, the above treatment of the second-order
term is no longer valid. Because co /0, spins separated
by a distance greater than $ are no longer statistically
independent. The classical explanation given above also
breaks down for p/1 because if there is anisotropy
then 8E, does not go to zero for large separations.
It is likely that in the general case the impurity mag-
netization is approximately the sum of a contribution
of g localized moments of magnitude gP(2 g S;)'I'/2
and a single moment of magnitude gP(co q)'I'/2. The
second contribution saturates in small fields to the
value gP(~ q) 'I'/2 and is a generalization of the super-
paramagnetism of Ref. 9.

Fg". 4.Classical model for interpreting the Heisenberg result.

the result does not depend too critically on Eq. (34.)
One can show that for Heisenberg coupling the magneti-
zation is proportional to q without using Eq. (34) .

Combining all these contributions to the sum of the
four spin correlations the magnetization can be written

The magnetization is that of q localized, noninteracting
spins having S'=&~ and a magnetic moment pl, ——

(2 g S;)'~'gP/2. The free-spin behavior can be in-
terpreted classically. For a small concentration of im-
purities there is no increase in exchange energy in
reversing the direction of a given localized moment.
Consider two oppositely directed localized moments as
in Fig. 4(a). This spin configuration is approximately
degenerate with the one shown in Fig. 4(b) . The local-
ized moments can line up parallel if the intermediate
spins form something resembling a Bloch wall. Inter-
preting the spins classically, if each spin is tilted with
respect to the next one by an angle 0 as shown in
Fig. 4 (b), the increase in the exchange energy necessary
to line up the localized moments is

8E, =J(~/2)'I ',

where e is the number of spins separating the localized
moments. For small concentrations, e—+~, and it re-
quires no increase in exchange energy to reverse the
direction of a localized moment.

V. CONCLUSIONS

The properties of a linear antiferromagnetic chain
containing ferromagnetically coupled impurities depend
strongly upon the anisotropy. In the low-temperature
limit for Ising coupling and near the Ising limit the
system is a superparamagnet.

There is a contribution to the magnetization which
is localized near each impurity. For the present model
this local contribution pz is equal to gP(2 g„S„)'~'/2.
The quantity pl, becomes increasingly localized and
goes to zero with increasing anisotropy. The localized
contribution remains as kT/

~
J

~

~ 0. To the author' s
knowledge, it is the first case of paramagnetic or free-
spin behavior in a strongly coupled exchange system.
By measuring the magnetic-field dependence of the

magnetization, the two contributions can be separated.
In the case of Heisenberg coupling, the absence of a
superparamagnetic contribution can be used as an
experimental test to see if co =0. The experimental
results~ on the organic free radicals are consistent with
the paramagnetism predicted in the case of Heisenberg
coupling. The data is insufficient to provide a thorough
test.

The restriction to finite size systems is not necessary
in the case of Heisenberg coupling. The superpara-
magnetic contribution does not saturate in a magnetic
field as completely if the correlations do not extend
over the entire system. This situation arises for larger
systems or higher temperatures.
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