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The dependence of the periodicity of the spin-density waves in antiferromagnetic metals upon the number
of conduction electrons is studied theoretically. It is seen that the commensurable structure, i.e., the struc-
ture for which the wave vector q equals half a reciprocal lattice vector 6, is the state of minimum energy
over a 6nite range of electron densities. The eQect, which has been observed experimentally, is essentially
due to the presence of two energy gaps which coalesce into one in the commensurable state. The theory
gives quantitative relationships which are in good agreement with the experimentally determined values
for the chromium-rich Cr-Mn and Cr-Re alloys.

I. INTRODUCTION

'4HE occurrence of antiferromagnetism in metallic..chromium and its alloys has been satisfactorily
explained in terms of spin-density waves (SDW).' '
This theory assumes that itinerant electrons in a metal
are strongly correlated in such a way that there is at
least one nonzero oscillatory component of the magneti-
zation M~. Each component M, is characterized by
an amplitude M„a wave vector q, and a polarization.
These properties have all been determined experi-
mentally by Ineans of neutron diffraction. ~"

The self-consistent SDW theory'' shows that the
excitation spectrum of the electrons in such a system
exhibits energy gaps. If the paramagnetic spectrum of
the electrons is described by a band structure s(k),
the antiferromagnetic energy gaps appear whenever
the condition

s(k) =e(k+isq) (1.1)

is satisfied; in (1.1) e is any nonzero integer. It has
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been proven experimentally" and theoretically" that
values of the gaps with m&+1. are in general very
small and can. be neglected; consequently (1.1) can
be reduced to

e(k) = s (kaq) . (1 2)

q*= & (2s./u) (1+he, 0, 0) (1.4)

as well as many other possible values.
The stability criterion quoted above has been used

to relate the values (1.3) and (1.4) to the features of
the Fermi surface of chromium, "and it is seen in Fig. 1
that in fact q connects, as expected, two "Qat" pieces
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The magnitude of these antiferromagnetic gaps' is

proportional to M~. Stability arguments"~ also show
that the value of the q vector is such that the appear-
ance of energy gaps results in the annihilation of a
sizeable portion of the paramagnetic Fermi surface.
That is, the q vector should connect two rather "Qat"
pieces of Fermi surface which run nearly parallel to
each other. In this respect, the problem can be con-
sidered in essence a one-dimensional one, since the
band structure changes appreciably only in a direction
normal to the Fermi surface, or equivalently, normal to
the surface defined by (1.2). In the case of pure chro-
mium, q takes the value

q = + (2s /a) (1—8s, 0, 0), (1.3)

where bo is a temperature-dependent small quantity
which varies approximately between 0.05 and 0.035.
It should be remembered that the presence of a crystal
lattice makes q+6 (6 any reciprocal lattice vector)
an equivalent representation of q; consequently the
SDW vector can also be defined, for instance, by
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of I""ermi surface, the so-called hole "octahedron. " and
electron "jack."

The relationship between q vector and Fermi surface
is more explicitly shown by the experimentally de-
termjned change of q upon alloyjng &7,&9,20 The addjtjon
of a small concentration of vanadium, which is to the
left of chromium in the periodic table, lowers the value
of the Fermi energy of the system with a consequent
enlargement of the hole octahedron and a reduction of
the electron jack; as expected (see Fig. 1) the il vector
changes so that 8 increases from its 80 values with in-
creasing V concentration. The alloying of a few percent
of tungsten into chromium, which leaves the total
number of conduction electrons unchanged, produces a
very small increase in 8; this increase on the whole is
smaller than the change in Bo with temperature. Finally
the alloying of manganese or rhenium, both with one
more conduction electron than chromium, produces an
eGect just opposite to that of U.

In this last case, however, more interesting eGects
appear. For alloys more concentrated than about 1.5%
Re or Mn, the magnetic structure of the alloy becomes
commensurable with the crystal lattice at all temper-
atures above 4.2 K, i.e., 8 is identically zero and q is
then equal to exactly half a reciprocal lattice vector.
For alloys with smaller concentration of the impurity
two structures are observed: a low-temperature struc-
ture (called 0 in Ref. 17) with nonvanishing 5, which
is nonetheless smaller than that of pure chromium 80,
and a high-temperature structure C, commensurable
with the crystal lattice, in which 8=0. The phase
transition C-0 takes place at a temperature Tgo which
decreases rapidly with increasing concentration; the
phase transition shows temperature hysteresis. In all
these cases it is found that as the concentration of the
impurity increases and 8 decreases the value of the
magnetization intensity increases by about a factor of
2 in the range 0—7 at. % of the diluent. "

Several features of these experiments need expla-
nation: (1) Why, if the q vector tends to follow the
Fermi surface, 5 jumps abruptly from a finite value to
8=0 and why it gets locked in at that value? (2) Why
and how a phase transition takes place)

We present here a theory which yields an explanation
for these effects and which provides numerical corre-
lations between various quantities measured experi-
mentally. The presentation of the theory will be divided
into four parts: (a) classification of the electron states
in the antiferromagnetic metal; (b) calculation of the
antiferromagnetic band structure; (c) calculation of
the total energy of the antiferromagnetic bands; and
(d) minimization of the total energy and discussion of
phase stability.
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will also contribute to Bi, but we neglect this e8ect for simplicity.

FIG. 1.Cross section of the Fermi surface of Cr in the (100}
plane. The shaded area represents the electron jack and the dotted
surface represents the hole octahedron. The vectors with magni-
tude q= ('2~/o) (1%8) which connect the two pieces of Fermi
surface are indicated.

&= &~s+&~t+&s, (2.1)

where %~0 is the number of electrons in A when no
excitations are present, X~t is the (positive, zero, or
negative) number of electrons in excited sta, tes in A,
and E~ is the number of electrons in the reservoir.
Each of these groups contribute to the total energy
(or free energy) of the system. At T=O, if we neglect
the excitations, i.e., Ã»=0, the total energy ET can
be rewritten as

Er= Eral+Era, (2 2)

where the terms on the right-hand side of (2.2) are
the ground-state energies of A and B.

If for the reservoir we take an independent quasi-
particle model, the total energy Ez& depends only on
the Fermi energy e& of the reservoir, and is such that

d Erg = eyp (ep) des. (2.3)

The number of electrons in the reservoir varies ac-
cordingly, so that

(2.4)

II. THEORY

A. Electrons in an Antiferromagnetic Metal

Ke may consider the electronic system in pure Cr
or in the Cr-rich alloys divided into two parts:

(a) an antiferromagnetic d-band part, which includes
only those electrons whose Fermi surface is annihilated
by the antiferromagnetic interaction;

(b) the rest of the (s- and d-like) conduction elec-
trons, whose band structure is modified by the anti-
ferromagnetic interaction but whose Fermi surface is
left essentially unchanged. This last part is referred to
in this paper as the reservoir.

The total number S of conduction electrons in the
metal can thus be written as
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B. Antiferromagnetic Band Structure

In the absence of excitations, the SDW theory shows
that the system A (essentially a one-dimensional one)
is such that the one-electron spectrum exhibits an
energy gap right at the Fermi energy. That means that
condition (1.2) is satisfied for

p&(k) = p, (k+q) =p., (2.5)

In (2.3) and (2.4), p(pz) is the density of sta, tes at
the Fermi surface; this quantity is measured experi-
mentally by means of, e.g. , electronic-specific-heat meas-
urements.
I', .'It should be remembered that the A part of the
systems exhibits no free Fermi surface and conse-
quently gives no contribution to the electronic specific
heat.

The calculation of EAO and ETA requires a determi-
nation of the details of the antiferromagnetic band
structure.

where the subscripts 1 and 2 indicate that the two
paramagnetic bands are not necessarily the same and
c, c~. In addition, as Fig. 2 shows, the fact that 8/0
implies that another gap of the same order of magnitude
should be present in a region in 0 space quite close to
the (destroyed) paramagnetic Fermi surface. This
second gap appears at values of k such that

pg(k) =pp(k+q*) =pg,

where q* is given by (1.4) . In Cr and its a,lloys,

ad+ 6g.

(2.6)

(2.7)

It is important to emphasize at this point that the
energy gaps tend to follow the electron distribution.
The addition of extra electrons to the system decreases

and changes the value of &. and ed, and the two
energy gaps coalesce into one.

The antiferromagnetic band structure can be ob-
tained by solving an infinite-order secular equation of
the form

p(k+q* —q) —X

p(k+q*) —X V,

p(k) -X V, (2.8)

V, p(k+q) —X Vq

Vq

where for the sake of simplicity we may take

V,= V,*(real) . (2.9)

When 8= 0, (2.8) is replaced by a 2&& 2 secular equation

p(k) —X Vo

=0. (2.10)
Vp p(k+6/2) —X

In (2.8) and (2.10) the off-diagonal matrix elements
V, and Vo are proportional to the amplitude of the
magnetization waves 3f, and Mt.-/2, respectively.

If the eigenvalues X of either (2.8) or (2.10) are
designated by E(k), the total energy of the system
E'» is given by'

k,occupied states

where X is the number of atoms in the crystal, Co is
an electron-electron interaction strength, and the sum-

rnation over q includes all those values of SDW vectors
in the 6rst Brillouin zone of the paramagnetic structure.
Continuity of (2.11) as q~-,'6 as well as continuity of
(2.8) into (2.10) requires that

lim V,= Vp/%2. (2.12)
q~G/2

This equation indicates that the root mean square of
the magnetization is continuous, although the maxi-
rnum value of I is not. '~

Solutions of (2.8) exhibit an infinite number of gaps,
as predicted by (1.1). If we only retain first-order
gaps, the band structure has the general form shown
in Fig. 2(B). The following features can be obtained
from a detailed analysis of (2.8):

(i) Two energy gaps

(2.13)

are present in the spectrum, and correspond to un-
perturbed energies p, and & given by (2.6) and (2.7) .
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Fzo. 2. (A) Hypothetical band structure in the absence of antiferromagnetism. (B) Modification of the energy

bands in the presence of a SOW state of wave vector q.

~0= 2Ue 8 very large

&~0.

(iii) The energy gap at 6=0 is

(ii) E, takes the following limiting values: discussion above it can be seen that, for the lower
band,

E(k) = p.—{[p(k) —p.]'+A.'} (2.22)

gives the correct limiting behavior at both very large
and very small 8. In (2.22) p, is de6ned by (2.20) and

Eg= Eg—E,=2Up= lim 2V2U„
q—&G/2

(2.15)

since in this case the intermediate band [b-c in Fig
2(B)]does not exist.

If, for the sake of definiteness, we assume that the
two connected pieces of Fermi surface have equal and
opposite velocities and that the zero of energy is taken
at the point

6 (8) =p —E,
should satisfy the following conditions:

A, (8=0) = Vp
——lim %2V„

~G/2

QD, /dp, Ip p= —1,

lim A, = U, +O(V,'/p, ).

(2.23)

(2.24)

(2.25)

(2.26)

pg(kp) = pp(kp+-', 6) =0,

then we can write

(2.16)
These conditions are satisfied by an expression of the
form

pg(k) = —pp(k+-,'6) = p(k),

and the following results are found:

2.17
where

—V +p +[p 2+~2 V P]1tp

A= 2 1.

(2.27)

(2.28)

(1) At 5=0 the bands are given by Corresponding expressions can be written for the upper
band.

E(k) =~ {[p(k) ]'+Vo'}'" (2 18)
C. Total Energy of the Antiferromagneti|: Band

(2) As b becomes very large the lower band is given
by %e now calculate the change in the total energy

E(k) =p(k, ) —{[p(k)—p(k, )]'+V,'}"', (2.19) Erz [Eq. (2.11)] with the number ot electrons Ezp,
where

p(k. ) =p(k.+q) =p., (2.20)

1.e.)
Es= &Er~/&&~p (2.29)

and
E(k.) =p(k. ) —

I V. I

We call E, the separation energy, and in varying the
number of electrons we always keep the antiferro-

It is important for our purposes to find analytic magnetic system in its ground state. This means that
expressions for the lower and upper bands. From the the occupation of the one-particle states is such that
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(i) if S~s is less than S~o (the number in the com-
mensurable state 8=0), all states up to E, are filled,
the second and third bands remaining empty Lsee
Fig. 2(B)j; (ii) if S~s is greater than S~c, all states up
to E, are filled while the third band is completely
empty.

It is evident that the problem has symmetry about
the Ezp=E&z value, but that the separation energy
should be discontinuous at N~p= E~g, i.e., at ~,=~=0.
For Xzp&X&& with the occupation numbers completely
defined, Ez& is only a function of two independent
variables c, and V~. Consequently

+BEr~ ds. BErg dUq

dXgp 8V, dSgp

However, the equilibrium condition which minimizes

the total energy for a 6xed number of electrons implies

dEr =dEr~+dEra =o (2.38)

subject to the constraint of a constant number of
electrons

dS= dS~p+dS~ ——0. (2.39)

It follows from Eqs. (2.3), (2.4), and (2.29)—(2.32)
that these conditions are equivalent to

E,= ep. (2.40)

then a plot of Eqs. (2.35)—(2.36) is that shown in
Fig. 3.

D. Total Energy and Phase Stability

To And the equilibrium configuration, i.e., the value
of 5 which minimizes the total energy, we impose the
condition

BErg/BU, =0, (2.31) At the same time the total number of electrons is given
by

~a

E(e, s,) X(e)de . (2.33)
Bing

If we take for E(e, s,) the approximate expression
(2.22) and remember that the density of states K(s) in

(2.33) is given by

K(e.) =dip/de, = 1/E, (2.34)
we obtain

E,= s,—5,(86./Bs,) ln(2W, /h. ), S~e(Sgc (2.35)

where 5', is an energy of the order of half the d band-
width. Similarly

E = ss++d(84&/Be&) ln(2'/&z), Sxe)Sxc. (2.36)

If for 6, (or As) we take an expression like (2.27),
assume that V, is a constant equal to its value for
pure chromium

and choose"
V,=0.03 eV,

8',=8'g= j..s eV,

(2.37)

"A. R. Mackintosh, in Proceedings of the Tenth International
Conference on Low Temperature Physics, Moscow, 1966 (to be
published); A. L. Trego and A. R. Mackintosh (to be published)."L.F. Mattheiss, Phys. Rev. 134, A970 (1964).

and the calculation of the separation energy requires
only the calculation of the first term in (2.30) .

|A'e can write, to a very good approximation,

' —=K=—, (2.32)
dXgp SJ 20

where eg is the Fermi velocity in the relevant d band
of the paramagnetic structure, Sp is the area of the
destroyed portion of the Fermi surface, and 0 is the
volume of the sample.

The calculation of BEr@/Be, proceeds as follows:

Z
~&a ~% k, occupied states

S=Sg+ p(e) de+
&a~ed

E 'de, (2.41)

where Xg is the number of electrons corresponding to
the case sr=0, s,=e&=0. Equation (2.41) yields for
the Fermi energy

sr = L~S (se/~~) ]lp—(sr),

where ep indicates either t ol 6g and

The extremal condition (2.40) requires that

E,(e.) =e, D.(—M./—Be.) ln(2W. /A. )
ES—(e,/E) =ep(s~i 6S)

p(sr)

for hX negative and

E,(gg) = ss+As(8&/Bed) 1n(2'/Ag)
hS (ss/E)—

=—ep (es, 8S)
p(ep)

(2.42)

(2.43)

(2 44)

(2.45)

for AX positive.
The equilibrium values of s, (or eq) corresponding

to a given AS are obtained graphically from the inter-
section of the curves E,(e,) and er (e„hS) as illustrated
in Fig. 4. The energy sr(s„hlV) is plotted for five
values of AX, hX~—DES, these go in increasing order.
The value 6$& corresponds approximately to pure Cr
while the others refer to suitable Cr-Mn or Cr-Re
alloys.

In Fig. 5 the total energy Er Eral+Err, is shown——
schematically for each of the five values of hX. The
stable or metastable equilibrium values of e„&„corre-
spond to the minima in the Er curve. As AS increases
from AS~, the only minimum in the curve, e„, moves
smoothly towards zero. At AP=hX2 a second mini-
mum appears at e =0. This is a local minimum at a



FIG. 3. Plot of the sep-
aration energy E+ as a func-
tion of e LEqs. (2.33) and
(2 36)7.

point of slope discontinuity, i.e., a cusp. For 6$ be-
tvreen ~%2 and 8%3 the oscillatory structure and the
commensurable one are both local minima, but 0 is
still the stable one vrhile C is metastable. For AX3&
~Ã&AE4, C becomes the stable structure and 0 is
only rnetastable. Finally for,&F4(dÃ(0 only one
stluctuI'c, C, satis6es thc condltlon of being a minimum.

The equilibrium value of 5, 5, is obtained from

EX(0 (2.46)

(2.47)

Fxo. 4. Plot of the separation energy E, (s ) and of the Fermi energy of the reservoir sz(e,DN) LEq. (2.44) g for Eve values of
6Ã, The critical values of e, are determined from the intersections of the curves.
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TOTAL

Fxo. 5. Schematic plots of the total energy versus e for the
values of /t E shove in I'ig. 4. The equilibrium value of e„=~„
corresponds to the minimum in the Ef t, l curve. e« is zero for
6$&AE3,' c is the maximum stable nonzero value of e,.

EpI 1 2~

V~ 0.03—0.06 eV

9,~1.5 eV

(Refs. 21 and 17),

(Ref. 22),

We obtain for the minimum value' of 8

0.0i—0.04,

and for 2hlits (that is, the range of variation of electron
concentration in which the C structure is stable)

2d ilI's 0.1—0.5 electrons/atom.

GI. MSCUSSION

We have shown that when the electron-to-atom ratio
becomes suKciently greater than that of pure Cr, the

"C.H. Cheng, C. T. Hei, and P. A. Beck, Phys. Rev. 11.20,
426 (1960).

where
~

G
~

is 4s./u, nF is the Fermi velocity, C, and Cq

are numerical constants of the ordel of OIM, and H/,

and Wd are the bandwidths used in Kqs. (2.35) and
(2.36) .

From Figs. 4 and 5 lt ls seeD that 6 has a minimum
value 8 corresponding to AS3. This quantity can be
obtained from the curves and it is a function of E,
p, V„ t/t/„and C,. We choose for these parameters the
following range of reasonable values:

p ~1—2 LeV atom/ ' (Ref. 23),

g vector no longer "follows the Fermi surface"; instead
it changes abruptly to ~G and remains at that value
until the electron-to-atom ratio exceeds some critical
value. The physical explanation of this behavior may
be understood from a consideration of the q=-', 6 state.
For relatively small values of the excess e/u ratio the
q = ~6state cannot be stable since the separation energy
E,(e,=0) of the antiferromagnetic system would be
greater than the Fermi energy of electrons in the
reservoir and a transfer of electrons would take place
with the resultant stability of a rid-s'6 state. When e/a
increases to a value (EXs in Fig. 5) such that the
Fermi energy of the reservoir is greater than E.(e.= 0)
the tl=-,'6 state becomes locally stable (see Fig. 5).
For suKciently large e/u the il = ts6 state becomes stable
relative to a SDW state with q~-', 6 because such a
state would require placing electrons in states above
the lower band Lsee Fig. 2(B); the band b-c would
become occupiedj, whereas in the il=-', 6 state these
electrons would be only in the lower band. This ac-
counts for the observed sticking of q at the value ~6
as e/a increases. The first-order transition in which ci
jumps to s6 when a critical value of e/a is exceeded is
directly related to the fact that (BE,/Be, ) &0 as e,
approaches zero (Fig. 4) . This effect takes place because
in the electronic configuration the state k is not only
connected to the state lr+il via the matrix element V,
but also to the state k+q* via a similar matrix element
(Fig. 2) . As e,—+0 the latter effect becomes increasingly
important with the result that the lower band is dis-
placed downwards. This leads directly to the possibility
of two minima in the total-energy —versus —e, curve of
Fig. 5, and the jump in q at dX=6$3. From the nu-
merical estimates of Sec. II we can see that the present
theory predicts numbers with the right order of magni-
tude. In fact experiment shows" that 8 —0.03 and that
the region of sticking 23S3 is of the order of about half
an electron per atom. '4 In view of the simplicity of the
model and the uncertainty in the parameters, the
agreement shouM be considered good.

The model also provides a basis for understanding
the abrupt change in 8 from a 6nite value to zero that
occurs at a temperature Tgo in some of the Cr-Mn
alloys. The phase transition occurs because in these
alloys, for 8=0, E,(e ) is less than the Fermi energy
of the reservoir. This means that the energy of the
antiferromagnetic electrons does not increase greatly
with increasing T whereas this is not so for the bQ0
state. The free energy increases more rapidly mith T
for the 6@0 state than for the 8=0 state and there is
a resulting transition to the 8=—0 state at suKciently
high T. Hysteresis is also to be expected in such
circumstances.

'4 The alloys can be studied up to about 50'%%uo Mn in Cr; it is
found that the C structure is stable in the range 1—50%,. for more
concentrated alloys the body-centered-cubic structure becomes
unstable.


