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Excitonic Insulator*
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This paper presents theoretical considerations of a new kind of insulating phase which has recently been
theoretically predicted but has as yet not been found experimentally. This phase is expected to occur when
semiconductors with very small band gap or semimetals with very small band overlap are cooled to a suf-
ficiently low temperature. The present paper first develops a BCS-like theory of the ground state and analyzes
the nature of the response to a general perturbation, from which collective modes (of a sound-like nature),
response to a static magnetic field, and conductivity are calculated. Finally, some discussion of the possible
experimental realization of this new phase is presented.

I. INTRODUCTION

S EVERAL years ago Mott' made the observation
that in a semimetal thy electrons and holes will

under certain circumstances form bound pairs, thereby
leading to a nonconducting state. Shortly afterwards,
Knox' made the remark that if, in a conventional
insulator, the binding energy of an exciton

~
En

~

ex-
ceeded the energy gap G, the normal insulating ground
state (fdled valence band) would be unstable against
the formation of excitons.

From these observations, and subsequent develop-
ments, ' there has now emerged the realization ' that
for solids with small energy gaps, there may exist, at
sufhciently low temperatures, a new phase which we
call the excitonic insulator and whose "phase diagram"
is schematically shown' in Fig. 1.

Several studies of the properties of this phase have
recently appeared in the literature. In the present
paper we wish to report theoretical work which we
have done over the last year and a half, which partly
overlaps and extends those studies.

The paper consists of seven sections, Section II
deals with the ground state in a manner formally
analogous to the BCS theory of superconductivity.
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However, we show that the order is not of the off-
diagonal kind, ' characteristic of superQuid systems, but
diagonal, as in an ordinary crystal. In Sec. III we
derive a set of equations to describe the response of
the system to electromagnetic perturbations used in
later sections.

The translational symmetry of the ground state is
broken by the introduction of a new characteristic
wave vector w' which represents the difference between
the positions of one of the conduction-band minima
and valence-band maxima in momentum space. Asso-
ciated with this broken symmetry we Gnd collective,
longitudinal excited modes which have the dispersion
relation of a longitudinal sound wave but are of en-
tirely electronic (rather than ionic) character. ' These
are the subject of Sec. IV.

Section V deals with the response, in the ground
state, to a static vector potential. In particular, we
verify the absence of a Meissner eGect in harmony with
the previously established absence of oG-diagonal long-
range order.

In Sec. VI we calculate the frequency-dependent
conductivity as a function of temperature, by utilizing
ordinary and anomalous Green's functions. By means
of the Kramers-Kronig relations, we then also predict
the temperature dependence of the dc conductivity.

Finally, Sec. VII deals with the question of which
materials have most promise for a realization of the
excitonic insulating phase in the laboratory. It appears
that a combination of high pressure (10—100 kbar) and
low temperature (1—100'K) techniques is required and
that Sr and Yb may be good prospects.

II. THE GROUND STATE OF@THE
EXCITONIC INSULATOR ~»

In this section we develop the theory of the ground
state of the excitonic insulator in formal analogy with
the BCS theory of superconductivity.

For simplicity, we consider a system which, in the
absence of interactions has a single valence-band maxi-
mum at k=0 and a single conduction-band minimum

' V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor. Fiz.
20, 1064 (1950); O. Penrose, Phil. Mag. 42, 1373 (1951); O.
Penrose and L. Onsager, Phys. Rev. 104, 576 (1956); C. N.
Yang, Rpv, Mod. Phys. 34, 694 (1962).
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at k=w. We write the single-particle energies as try a new Hartree-Fock ground state of the form

O'=Qn~*
I vac), (2 9)

where uk* creates an electron in a linear combination
of band a and band b states,

e.(k.) = ——,'G —(2m.)-'k ' (2 1)

et, (g) = ,'G-+(2m') 'kP, (2.2)

(2.10)

(2.11)

&k Nk~k &k~ky

IN. I'+
I » I' =1.

A second linearly independent combination is
(2.3)

where k, and kt, refer to the respective band extrema.
Energies are reckoned from the center of the gap and G
may be positive or negative. For negative G we have,
in the absence of interactions, a semimetal with Fermi
wave vector given by

a, =2„IGI,
where p is the reduced mass

ii '=m '+my '

We introduce creation and destruction operators as
follows: uk*, uk create and destroy electrons in band a
with wave vector k; bk*, bk create and destroy electrons
in band fi with wave vector w+k. We also introduce
the (partial) charge-density operator"

p(Q) =gag+ *ai+bj+,*b~. (2.5)

Then, following Des Cloiseaux' we take for our model
Hamiltonian

&=Z"(k) o~~~*+~~(k) &~*b~+2ZV(q) p(q) p( —9)

p=lI(Ng —'vg bg tzy) 4' (2.13)

which shows, in obvious parallelism to the BCS theory,
that in this state a hole in (u, k) and an electron in

(b, k+w) are either both present or both absent.
Minimization of the total energy with respect to

Nk and vk gives the following results

&~=Lk(1+(4/&~) )3'" (2.14)

where

i~= L-', (1—(5k/+k) )]'"(~~/I ~j, I), (2.15)

(2.12)

This state can also be written in the equivalent form

(2.6)

Here the sums go over the Srillouin zone and we take
&.=lI:~~(k) —~ (k) j

&I,'=5~'+
I

~~ I'

(2.16)

(2.17)

V(q) =4ze'/e(il) q', (2.7)

where e(il) is an effective dielectric constant.
The conventional, insulating ground state is given by

c =pa~*
I vac), (2.8)

where
I
vac) is the state with no electrons and k runs

over the Srillouin zone. The possible instability of this
state against bound-pair formation suggests that we

and the gap function 6k is determined by the equation

~~= ZV(k —p) (~p/2I:& '+
I
~ I'j'") (2 18)

The phase of 6k is arbitrary and the energy is inde-

pendent of it. For most purposes we shall take h, k and
hence uk and ek as real and positive.

It is instructive to define a wave function

~.—=~./2L4'+ I ~v I'j'". (2.19)

MI -CONDUCTOR
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+IG. 1. The phase diagram of the excitonic insulator (Ref. 6).

Then (2.18) may be written as

I (G+(u'/2i ) )'+4
I a, lmji"p, = QV(k —p) pp. (2.20)

Comparison with the elementary equation for the
exciton wave function,

[(k'/2ii) + I
Es I]gg ——QV(k —p) g„(2.21)

"The total-charge-density operator is given by

p~(q) = Z [f(k+q, k) uk+, *ak+g(k+w+q, k+w) 6k+,*6k

+h(k+q, k) ~k .+,*uk+P(k, k+q) ~k+.*b& .],
where f, g, and h are matrix elements and

limf(k+q, k) =limg(k+w+q, k+w) =].

and
limh(k+q, k) =0.

confirms that 0 =0 when G&
I

E& I. One may also
verify that nontrivial solutions (i.e., I

6
I )0) exist

for all values of G, positive and negative, which are &

In spite of the forrnal similarity with the BCS theory,
the nature of the order in the excitonic insulator is
entirely diGerent. Yang' has shown that a super-
conductor is characterized by og diagomat lo-ng-range

order (ODLRO) . This is manifested in the two-particle
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density matrix,

Tr{e P~P*(r2) P(rl) P(r, ') P(r2 ) }(rl'r2' { p2 ~
rlr, )= Tr{e ~~}

(2.22)

where we have suppressed spin indices. The criterion
for ODLRO is that p2 remains finite in the limit

~
rl —rl'

~

~~, rl r2 and rl' r2'. In the BCS theory,
one finds (for the well-known antiparallel spin orienta-
tion)"

(rl r2 I P2 { rlr2) =g (rl —rl) g (r2 —r2)

+f*(rl—r2)f(rl' r2'), —(2.23)
where

g(r) =9 'Q }
vg2

~
exp(ik r), (2.24)

k

f(r) =0—'QN22g exp(ik r).
k

The second term in (2.23) leads to ODLRO.
In the excitonic insulator on the other hand we find,

at T=O, in the Hartree-Pock approximation,

&rl'r2'
I P2 I

rlr2)=(r2'
I » I

r2)&rl' I pl I rl)

(2 26)

(2.25)

where
(r' { pl ~

r) =g(r, r') f(r, r') — (2.27)

and, denoting the Bloch waves of bands a and b by
and pbk+pp)

g(r, r') =fl 'g{{ N~ }'2 *.1,(r) 2.~(r')

+ I » I'v»+ *(r)v'»+ (r') }, (2 2g)

r(r, r') =n-'g{u~*v22», „*(r)~.~(r')

+N222*q. i,*(r)q bbi (r') }. (2.29)

Both f and g are of short range in the sense that they
vanish when

~
r —r'

{ ~~. Hence there is no ODLRO.
However, there is an additional diagonal long-range

order, which we shall now discuss. Consider first, by
way of background, an amorphous (disordered) solid.

Then, for

~
rl —r2 } ~~, and rl' rl, r2' r2, (2.30)

one has, for the two-particle electronic density matrix,

(r,'r2'
~

p2 )
rlr2)~(r2' { pl } r2) (rl'

} Pl t rl). (2.31)

For a given configuration of the ions, (rl' { pl ~
rl) is a

function of both (rl —rl') and -',-(rl+rl'), but if we

average over the position of the center of mass of the
entire system, (rl'

~
pl

~
rl)A, is a function only of (1'1—rl'),

(r,' } p, ~
r, )A„=l(r,' —r,). (2.32)

The same average gives, under the conditions (2.30),
for the two-particle density matrix

(rl r2
~

P2 ~
rlr2)A (r2

~ Pl { r2)A (rl { Pl } ri)A

= l(r, ' —r2) i(r, ' —rl) (2.33)

and in particular, for r~' ——r~ and r~' ——r2

(Pl(») Pl(r2) )"= &Pl(ri) )A (Pl(rl) )" (2 34)

There is no dependence on (r2 —rl), i.e., no long-range
order.

Next consider an ordinary crystal, whose transla-
tional symmetry is characterized by the reciprocal
lattice vectors I„.Here„ if the ion positions are re-

garded as fixed, one has, under the conditions (2.30),

(rl'r2'
j p2 } rlr2) = (r2'

~
pl

~
r2)(rl' } pl } rl), (2.35)

where (rl'
~ pl } rl) has an expansion of the form

(rl' } pl { rl) =gs„(rl —rl') exp[iK„(rl+rl') /2].

(2.36)
In particular, the density has the form

p(rl) =(rl { pl
~
rl)=gz, (0) exp(iK„rl). (2.37)

If we now average over the positions of the center of
mass of the crystal we find

&ri'
I pl } rl)A 20(rl rl) (23g)

as in the disordered case. The long-range order may,
however, still be seen in the behavior of the two-

particle density matrix, which now becomes

(2.39)

(rl'r, '
~

p, { rlr2)=Q —' gs„(r2—r,') exp{iK„[2(r2+r2')+R]}&&ps„.(rl —rl') exp{iK„[—', (rl+rl')+R]}dR
V 1AI

(r2 —r2 )s (rl —11 ) exp{ LK '[—(r2+r2 ) (rl+rl )]},

In particular, for r~' ——r~ and r2' ——r2

(rir2 } p2
~

rlr2)A = (pl(ri) pi(r2) )A.

=ps„(0)s „(0) exp[iK„(r2—rl)].

(2.40)

We see that, even when j r2 —rl
~

—+DO, there remains a

~ M. Rcnsink" (to be published).

periodic dependence on r2 —r~, which represents the
diagonal long-range order of the crystal. We also note
that, unlike the case of the disordered system,

lim (pl(rl) pl(r2) )A„W (pl(rl) )„„(pl(r2) )A„. (2.41)
[ X'2—g1( ~oo

In the excitonic insulator we consider throughout
the positions of the ions as fixed. There is however an
additional broken symmetry due to the arbitrariness
in the phase of the gap function. Under the conditions
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(2.30), p2 of Eq. (2.26) reduces to

&ri'r2'
I p2 I rir2& = &r2 I pi I

r2'&(ri I pi I
ri'& (2 42)

and we can see a new periodicity in pi. From (2.28) and
(2.29) we have for ri ——ri'

(pi(r) &
= QG„exp(iK„r)

v

+g(F„exp[i (K„+w) r]+F„*exp[ i—(K„+w) r]).
(2.43)

The first sum is of the same form as in an ordinary
crystal [cf. Eq. (2.37)], but the second term exhibits
a new periodicity characterized by the wave vector w.

If one now averages over the phase of 6 (cf. the
previous averaging over the center of mass R), then,
since vi, carries this phase we see from (2.29) that
Ii, =0. However, even with the phase averaging, a new

diagonal long-range order remains in p2. For example,
setting rb' ——r«and ri' ——ri, we find from (2.42), (2.28),
and (2.29)

&rlr2
~

p2 ~
rir2&A &pi(rl) pl(r2) )A

= [QG„exp(iK„r,) ][QG„.exp(iK„" r«) ]
v v~

+PfF„F„*exp[i(K„.ri —K„"r2)]exp[iw (ri —r2)]+c.c.I. (2 44)

In summary, then, we have a new periodicity
characterized by w, whose phase with respect to the
lattice is arbitrary.

Throughout this paper we neglect the effects of
electron spin. If we include the electron spin, then the
pairing can take place in either a singlet or a triplet
state. If the pairing is in a triplet state, there will be
additional magnetic eGects, which are currently under
study.

III. GENERAL RESPONSE THEORY

V(1—1') = U(xi —xi') 8(ti —ti') . (3.5)

The zero-temperature Green's functions for the a and
b bands are defined as

The equation of motion for the Heisenberg operator
gb(1) is

[Z(«j/lofti) —«b(1)]pb(1) = V(1—1)p(1) fb(1) ) (3.4)

where 1—= (xi, ti), and the bar denotes integration over
that variable. The two-body interaction is written as

=b(1, 1') —iV(1—1) &Tp(1)fb(1)1tbt(1') &. (3.7)

We turn now to the general response of the excitonic
insulator to a perturbation. We will employ a formalism (3 6)
similar to that used by Ambegaokar and KadanoP' for
superconductors. We introduce an anomalous Green's 'p y' g Eq ( 4) a r y ~b ( ) g

function to describe the excitonic insulator in direct equation of motion for the Green s function

analogy to the Gorkov F function used in the theory
of superconductivity. It is more convenient to work in
position space, and introducing the operators

Introducing the anomalous Green's functions

Pb(x) = ebb exp(ilr x), (3.1)

H = Q P,t(x) «;(x) P, (x) dx

we can write the model Hamiltonian [Eq. (2.6)]
in position space as

F'(1, 1') = —i&T4.(1)4b'(1') &,

F(1, 1') = —&TA(1)W.'(1')
& (3.8)

we factorize the product on the right-hand side of (3.7)
and we obtain

[i(8/Bti) —«b(1) ]Gb(1, 1')

—iV(1—l)Ft(l, 1')F(1, 1) =8(1, 1'). (3.9)

«;(x) and p(x) are defined as follows:

+ — p(x) p(x ) V(x—x )dxdx . (3.2)
2 We omit the Hartree and Hartree-Pock terms and use

the real (i.e., observed) masses in «, (1). In a similar

way we obtain an equation for Ii~

«. (x) = ——',G+(2m. ) 'P; «b(x) =-', G—(2mb)
—'P;

[i(8/Bti) —«.(1)]Ft(1, 1')
p(x) =6'(x) 4'(x) +A'(x) A(x) . (3.3) —iV(1—1)F"(1, 1)Gb(1, 1') =0. (3.10)

' V. Ambegaokar and L. P. KadanoG, Nuovo Cimento 22,
954 (1961). If we take the Fourier transforms of 3.9 and 3.10
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then we And

L
—«(y)]G«(y, ) —~(y)F'(y, ) =1,

Lp —"(p)jF'(y~ p) —~'(p) Gb(p~ p) =0~ (3 11)

where

de
G(1, 1') =Z —G(p, )

p 271

)& expi Iy(xi —xi') —p(ti —ti') I (3.12)

and we have introduced the gap function 6(y) defined

by

dp
6(p) =iQ— —V(p —k) F(k, b'),

2Ã

dv
Dt(y) =ig— —V(p —k)Ft(k, v). (3.13)

2'

Solving Eq. (3,11) for Gb and F~ in terms of A, we

obtain

p-p. (p)
G(p, )=

Lp —p. (p) jLp —pb(y) j—
I ~(y) I'

F'(p, p) = ~'(y)
(3.14)

Lp
—p.(y) jl:p—pb(y)3 —

I ~(y) I'
'

Substituting into Eq. (3.13) and integrating we get the
complex conjugate of the gap equation, Eq. (2.18). In
a similar way we find for G and F

p —pb(y)
G.(p p)=

Lp pa(p) jLp pb(p) j—
I &(y)

F(p p)= ~(y)
(3.15)

I
p —"(p)3L —b(p) j—

I ~(y) I'

Consider now the eGect of an external perturbation
U. The set of Eqs. (3.9) and (3.10) are still valid in
the presence of the perturbation and the formally self-
consistent field. Thus Eqs. (3.9) and (3.10) become

with

Pi(8/Bti)b(1, 1) —hb(1, 1; U))G«(l, 1'; U) —iV(1—1)Ft(l, 1'; U)F(1, 1; U) =8(1, 1'),

[i(8/Bti) b(1, 1) —h. (1, 1; U)]Ft(1, 1'; U) —iV(1 —1)F~(1, 1; U) Gb(l, 1'; U) =0,
(3.16)

(3.17)

h;(1, 1'; U) =p;(1)8(1, 1') —U(1) 1') —v(1 —1) (p(1; U) )8(1, 1'). (3.18)

The last term in Eq. (3.18) represents the Hartree Geld due to the perturbation. Note that p(1—1) is the un-
screened potential. Let us now expand Eqs. (3.16) and (3.17) and keep the linear term in U. We could do this
by taking the functional derivative with respect to U evaluated at U=O. However, it is more convenient to
rewrite Eqs. (3.16) and (3.17) in a slightly different way before we take the derivative.

Gpb '(1, 1; U)G«(l, 1'; U) —iV(1 —1)F(1,1; U)Ft(l, 1'; U) =b(1, 1'), (3.19)

Gp, '(1, 1; U)Ft(l, 1'; U) —iV(1—l)Ft(1, 1; U)G«(1, 1'; U) =0) (3.20)

with the following deGnition for the operator Gp; '(1, 1'; U):
G„-i(1, 1'; U) =Li(a/at, ) —p;(1)78(1, 1') —U(1, 1') —p(1 —1) (p(1; U) )8(1, 1'), (3.21)

where i=a, b. Now, we multiply Eq. (3.20) across by Gp, (2, 1) and we integrate over the variable 1. We get,
after an obvious change of variable,

Ft(1, 1; U) = iV(1 —2)Ft(2, 1; U) Gb(1, 1'; U) Gp, (1, 2; U) . (3.22)

Using the symmetry between a and b bands we get a similar equation for F;

F(1, 1'; U) =iV(l —2)F(2, 1; U) Go(1, 1'; U) Gpb(1, 2; U) . (3.23)

After substitution for Ft from Eq. (3.22), (3.19) becomes

G„—(1, 1; U)G, (l, 1'; U)+V(1 —1) V(8 —2)F(1, 1; U)F (8, 2; U)G«(2, 1'; U)Gp. (1, 8; U) =8(1, 1'). (3.24)

Gb '(1, 1', U) =Gpb '(1, 1', U) +V(1—1) V(2 —1')F(1, 1, U) Ft(2, 1', U) Gp, (1, 2; U) .
Di8erentiating with respect to U we get

BU(2, 2') '
BU(2, 2') ' '

BU(2, 2')
—Gb '(3 ) Gb '(2, 3') = ', —V(3—1)V(2 —3') F(3, 1)Ft(2, 3') Gp, (1, 8) ', Gp, (4, 2)

(3.25)

+V(3—1) V(2 —3'), Ft(2, 3') Gp, (l, 2)+ V(3—1) V(2 —3') F(3,1),Gp, (l, 2). (3 26)
BF(3,1), , BFt(2, 3')

BU(2, 2') 8U(2, 2')

We multiply across by the product Gb(13)Gb(3'1') and integrate over the variables 3 and 3'. Using Eqs. (3.22)

We multiply Eq. (3.24) across by Gb '(1', 4; U) and integrate over the variable 1' and obtain after a change of
variable
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and (3.23), we find after some algebra

BG,(1,1'), Bh«(l/2), Bh, (1, 2)= —G«(1, l)G«(2, 1') ', —F(1, 1)Ft(2, 1')

+iV(1—2) ', G/(1, 1)F«(2, 1')+iV(1—2) ', G«(2, 1')F(1,1). (3 27)
BF(l,2), BF«(1, 2)
BU 2, 2' BU 2, 2'

If we differentiate (3.22) with respect to U we find

BF«(1,1'), Bh, (l, 2)
BU(2, 2') '

BU(2, 2')

+iV(l —2) ', Gb(1, 1')Gp, (1, 2)+iV(l —2)F (2, 1) ', Go, (1, 2), (3.28)
BFt (2,1), BG«(1, 1')

BU 2, 2' BU 2, 2'

and after substituting for BGb/BU from (3.27) we get

BFt(1,1'), Bh (1,2), Bh«(1, 2)
BU(2 2/) ( / ) ( / )

BU(2 2/) ( / ) ( / )
BU(2 2/)

+iV(l —2) ', G«(2, 1')G,(1, 1)+iV(1 2) — ', F«(1, 1)F«(2, 1'). (3.29)
BF«(1,2), . BF(l, 2)
BU 2, 2' BU 2, 2'

We can use the symmetry between the a and b bands to write the functional derivatives

BG (1, 1')/BU(2, 2') and BF(1, 1')/BU(2, 2'):

BU(2, 2') '
BU(2, 2') ' '

BU(2, 2')
= —G, (1, l)G, (2, 1') ', —Ft(1, 1)Ft(2, 1')

+iV(1—2), G, (1, I)F(2, 1') +iV(1—2) ', G, (2, 1')Ft(1, 1), (3.30)
BF«(l,2), . BF(T, 2)

BU 2, 2' BU 2, 2'

BF(1, 1') — —,Bhb(1, 2) —, Bh.(1,2)
BU(22) ( ' ) ( ' ) BU(22) ( ' ) ( ) BU(22

+iV(l 2)— , G, (2, 1')G«(1, 1)+iV(1—2) ', F(2, 1')F(1, 1). (3.31)
BF(1,2), . BFt(1,2)
BU 2, 2' BU 2, 2'

The set of Eqs. (3.27), (3.29)—(3.31), determine the response of a system to a general perturbation and we
shall take these as our starting point, in the following sections, to calculate the collective modes and the electro-
magnetic response function.

IV. THE COLLECTIVE MODES

We can use the equations derived in the last section to calculate the energy spectrum of the collective modes.
If the external perturbation U has a wave vector and frequency equal to that of a collective mode to which it
is coupled, the response will be infinite, like that of a forced oscillator at its resonant frequency. The dispersion
relation of the collective modes can therefore be obtained from the condition that the response equations (3.28)—
(3.31) have a solution even without an external driving term.

Let us take U as a scalar potential, i.e., U(2, 2') = U(2) B(2, 2'). Then we have from the definition (3.18)

BI«(1, 1') /BU(2) = —B(1, 2) ~(2, 1') —«/(1 —1)LB(p(1) )/BU(2) ]B(1,1') . (4 1)

Substituting this into (3.29) and (3.31), but omitting the first (driving) term on the right-hand side of (4.1)
we obtain a set of integral for BFt/BU and BF/BU involving also B(p)/BU. Hut

(p(1) )= -«fG.(» 1+)+G«(» 1+)] L1+=(x„t«+0) ], (4.2)
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and using (3.27) and (3.30) we obtain

=iV(I—2)
' {Ft(1,1)G.(2, 1+)+Gb(1, T)Ft(2, 1+) }BU(2) BU(2)

+iV(l —2)
'

{G,(1, 1)F(o, 1+)+F(1,1)Gb(2, 1+) }—iu(l —2)
BF 1, 2

BU(2)
' ' '

BU(2)

X{QG, (1, T)G;(1, 1+)+F(1,T)Pt(T, 1+)+Pt(1, 1)F(l, 1+) }.
i=a, b

158

(4 3)

We now have a set of coupled integral equations linking the quantities BF /BU, BF/BU, and B(G,+Gb)/BU. Let
us transform to momentum space. If we dehne

BF(1, 1') dvko
tb(q) expi{q' (xl x2) N(t1 t2) +k' (xl xl ) —v(t1 —tj ) }BU(2) b ~ 4''

BFt (1, 1') dad(a
tk (q) expi{ q. (x&—x&) —~(t&—t&) +k (x&—x&') —v(tg —t)') },BU(2) „, 4w'

BLG.(1, 1+) +Gb(1, 1+)] d(uBU(2), 2~
—«(q) expi{q (»—») ~(tl t2) },

using the four-vectors k= (k, p), q= (q, &), p= (p, &), then

de
t&(q) =iQ -—V(p —k) F(k) F(k+q) t„"(q)2'

(4. 4)

+''Z —V(p —k) G. (&)Gb(&+q) t„(q) —iv(q) «(q) {P(k+q)G, (k)+Gb(k+q) F(&) } (4 5)
p

tb*(q) =i+ —V(p k)F&(tb)F&—(p+q)t„(q)
2~

de+'~ —V(p —k) Gb(t') G (~+q) t.*(q) —is(q) «(q) {F'(t+q)Gb(&)+G.(k+q) F'(k) }, (4.6)
p X

dedv
'(q) ='Z, V(P —k) t, (q) {F'(&+q)G.(&)+G (k+q) Ft(k) }

g, p 4m'

+iZ V(P —k)t.*(q) {G.(k+q)F(k)+P(k+q)G, (k) }
Q, p X

—iZ ~(q) «(q) {2 G'(p+q) G;(p)+F (p+q) F"(p)+P&(p+q) P(p) }.
p 2' i=a, b

VVe can express these equations in terms of the variables

a, (q) =Z
2
—V(p —k) Lt„(q) —t„*(q)],

p

A
&b(q) =Z —V(p —k) Lt.(q)+t.*(q)1,

p 2'
ance

1(q) = Lv(q) ]"'«(q) .
Then using the following form for G and F

Gb(p) =up'/(e i p Ep+zB) +—wp'/(—e fr+Er z8), — —

P(p) =F'(p) =~;,{( —l;—E,+iB)-'—( —4+E,—@)-"},

G.(p) =,'/( f, E,+ B-)+-,'/( i,+E, ~—), (4.8)
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where 1~=-', Le (p)+a[, (p) j, we arrive at a set of coupled integral equations

V(1 —p) V(e) (E+E') „V(1—p) 1.(a) ~.(rl) ( +f—f')
, ( +t 1-')'--(E+E')' ' . ( +f 1--')' (-E+E')'

g 2V(&—p) L~(%)1'"1.(a) p. (q.) (E+E')
L q , 4.9

(~+K f—') ' (—E+E') '

V(1 —p) 4(~)~.(~) ( +f —t') „V(1—p) ~.'(a) (E+E')
( +f t')-' (E-+E')' ', ( +t-f') -(E+E')' '

g 2V(1 —P) I: (9))'"P.(%),(%) ( +0—i')
( +f f')-' (E-+E')'

+»(a)P, '(tl)(E+E')
L +L~(a)3'"~(a)P.(~)( +t—1')

B. ( +f t-')'-(E+-E')', ( +f f')-' (E-+E')'

l, m, n, and p are the coherence factors given by

4(%) =Np+p+a+6"r+q)

+r& (0) Univ+a "v"v+q)

~v(tl) =+a"a+a+&v+u+~~

Pr (0) =Nrr~+e rvN~+m (4.12)

and we have used the notation that E=Ep 8 Ep+q,
1 =fp, and f' =fp+~

We now assign q a definite value and look for the
values of cv which are eigenvalues of these equations.
At q =0; co=0 is an eigenvalue and the corresponding
eigenfunctions are A[, (0) =6[[,[ B[,(0) =L(0) =0. A
careful examination at finite but small q shows that
there is a solution with a phonon-like dispersion
relation, i.e., &u

~ g ~. However it is very dificult to
solve exactly for the velocity except in one limiting
case. In the extreme semimetallic limit the interaction
potential U becomes more and more short range so that
one may eventually replace V(k) by a constant, V.
Note that the direct interaction e(q) is not screened.
With this simplification the coupled set of integral
equations reduces to a set of linear equations for the
quantities L(q), A(q), and B(q). In this region we
may also make use of particle-hole symmetry, i.e., any
quantity which is summed over p and which is odd in
r[, (p) or e, (p) can be neglected. The products

P, (C) 1.(a) =~(l—&') /2EE'

l, ([1)e, (q) =$/2E+$'/2E' (4.14)

are odd in $ and thus the terms which couple L(q) and
A (q) are zero. The terms which couple A (q) and B(q)
are each proportional to q' as co, g~0. Thus the A (q)
mode is essentially uncoupled in this limit, and its
dispersion relation is given by

Vlp'([I) (E+E')
~ (~+t —1') '—(E+E') '

Expanding in powers of &o,
~

[I
~

and using the gap
equation, we get

0 Vg ( +f f' ) (5 e)
(4 ]6)

(2E) ' (2E) '

or

M =kg q /3' S1g (4.17)

V. THE ELECTROMAGNETIC RESPONSE AT T=0

In Sec. III we discussed the general response of the
excitonic insulator to a perturbation. In this section
we will use those results to derive the linear electro-
magnetic response function at zero temperature. We
will show that the excitonic insulator is in fact an
insulator and that there is no Meissner effect. Thus
despite the close formal similarity of the excitonic
insulating state and the superconducting state, the
physical properties of the two states are very different.
This is what we expect in view of the very different
nature of the electronic order in the two states.

We study the effect of an external electromagnetic

We note that this mode has the same dispersion
relation as the well-known "ionic sound" mode in a
two-component plasma. This acoustic mode is asso-
ciated with the broken symmetry in the new phase
and thus will not disappear when interband scattering
terms are included, contrary to the remark in Kozlov
and Maksimov. ~
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where

6eld by introducing a vector potential 'I(x,t) into the usual gauge term and a paramagnetic term:
Hamiltonian. ln the presence of the field the single- J(1)=J"(1)+J (1),particle terms in the Hamiltonian are (5.2)

h;(1, 1') =c;Lpi —e5(1)jb(1, 1')

—v(1 —1) (p(l; 5) )b(1, 1'), i=a, b (.5.1)

The current generated by the external Geld can be
split into two terms, a diamagnetic term which is the

J"(1)= —(~.e'/~) ~(1)
and e, is the number of carriers in either band,

.=Z&~ .')=Z(f, 'b. )=Z,
P P P

The paramagnetic term is given by

(5.3)

8Gb(1, 1'),8G, (1, 1')
J&(1)= —ice(Vi —Vi) mq ' ' —m, ' '

~ 'I(2).
8$(2) 8$(2)

(5.4)

Taking the functional derivative of Eq. (5.1) we find

bht (1, 1') /81(2) = —
t e/2m&i) f V2 —V2 }b(1—2) 8(1'—2') {2 =2—u(1 —T) f b(p(1) )/81(2) j8(1, 1') . (55)

Substituting in (3.27) and (3.29) and taking the Fourier transform we obtain

h. ~(q) = —(e/2mb) (2p+q) Gi, (p+q) Gq(p)+(e/2m, ) (2p+q) F(p+g) Ft(p)

+i+ —V(k)[ki g(q)F (p)Gg(p+q)+2, i*(q)F(p+q)Gb(p)]
2Ã

4v—Z —e(q)LG (p+~)G (p)+F(p+V)F'(p) jf&"(V)+&"(V)}, (5.6)
2%

and

X,*(q) =+(e/2m, ) (2p+q) G, (p+q) Ft(p) —(e/2mt) (2p+q) Q, (p) F(p+q)

+iZ
2

l'(&)L& ~(V)F'(p+V)F'(p)+&. -~*(V)G.(p+0)G~(p) j
dp—Z —(q) L~'(p+v)G (p)+F'(p)G. (p+g)3L& '(V)+& '(q) j (5 7)
2x

where A, ' and X„*are dehned by

and

BG;(1, 1') deCka

8$(2) p, ~ 4s'Z ~n ('g) exp{ iq' (xi x2) i~(~1 i2) +&p (»—xi') —ie(t —t ') }

&Ft(1, 1') de@

bS(2), ,~ 4'', X„*(q) exp fiq (xi—x2) —m(ti —6)+ip (xi—xi') —ie(ti —ti') }.

(5.8)

(5.9)

The Fourier transform of the current can be expressed in terms of the A and we find using (5.4)

J"(V) = —ieZ —(2p+q) " — "
@(~)

de ci„'(g) A.„'(g)
p 4m mQ ma

(5.10)

The calculation of the current requires the solution of the integral Eq. (5.7) for 2* and the companion equation
for X. Let us look first at a static external Geld and for simp1icity restrict ourselves to the equal mass case. With
these simpliGcations the equations can be written as

J&(q) = (e/2m) g(2p+q)Lm, (q)/(E„+E+,)]fn, (q)P, (q)+(e/m) (2y+q) I(q) m, (q) I, (5.11)

where

~.(q) =iZ —l'(p —1)L&.*(q)+~.(q)] ~(q),2'F
(5.12)
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(5.14)

and pp (q) is determined by an inhomogeneous linear integral equation

P'(q) =Zl'(p —p')
I N. (q)/%, +4+,) If~, (q)P. (q)+(e/~) (2p+q) @(q)~(q) I (5»)

P

The functions 222p(q), 22p(q) are the coherence factors introduced earlier in Eqs. (4.12) .
Let us first verify that our equations are gauge-invariant. This we do by taking $(q) as a longitudinal vector

potential and demonstrating that the system does not respond. Then we shall investigate the Meissner effect by
examining the response to a general potential in the limit q~0. If we write 'g(q) =quip(q), the Eq. (5.12) for

Pp(q) may be rewritten as

P'(q) = Z~(p —p') L~.(q)/(4+4+. ) ]IN, (q)P, (q)+2e~, (q) @ (q) B(p+q) —k(p) 3I

The solution of this equation is

P, (q) =2 (~.-~...) ~o(q)

as we shall verify by direct substitution. The right-hand side becomes

p" (q) =2p4ZI'(P —P') I:~,(q) /(E, +E,+.)]I ~.(q) (~,—~,+.) +~,(q) Lk(P+q) —$(P) jI

(5.15)

(5.16)

and, after some algebra, we And that this can be re-
written as

P;(q) = —2p@oZl'(p —p') ~, (q) P, (q) (5.17)

1 t'~.+p= —2p@oQ~(P —P') -I ' ' ——'I (518)
2 iEy E J

=2eSp(h, —&, +,). (5.19)

This verifies that Eq. (5.15) is a solution of Eq. (5.14)
for a longitudinal vector potential. It remains to sub-
stitute this solution into Eq. (5.11) and then to
evaluate the current

integral equation is perfectly regular in this limit. By
contrast, in a superconductor the corresponding inte-

gral equation Lsee Rickayzen, "Eq. (6.3)] is singular in

this limit. It is this singularity, which leads to the very
diGerent behavior of the response function of a super-
conductor to a transverse or longitudinal. vector poten-
tial. In the excitonic insulator the variable Pp(q) is
independent of the polarization as g—+0. Thus the
response function is independent of the polarization in
the limit as q~0 and there is no Meissner eGect.

Lastly, let us examine the response in the low-

frequency limit. If we apply a low-frequency electric
held to the system, we represent the perturbation by a
vector potential

p2

J"(q) = Z(2p+q)
m p +p

X f22, (q) (&,—&„,) +[&(p+q) —$(P) j222, (q) I

g(q, ~) = —(i/~) E(q, ~).

Then the electromagnetic k.ernel E,; defined by

(5.26)

=(—2"/~)@ Z(P+lq)~. (q)P. (q)

(5.20)

(5.21)

J;(q, pp) =E;;(q, pi) 5;(q, p&),

and the conductivity r given by

J(q, ~)=~(q ~)E(q, ~),

(5.27)

(5.28)

= ( —2p'/m) %Z(p+pq) (N.",+.' —p.'~.+.')

= (—2"/~) @pZ(p+pq) ("+.'—"')
(5.22)

(5.23)

= (2e2/222) Spqgp, 2 (5 24)

= (~.&'/~) @(q). (5.25)

Combining the paramagnetic and gauge contributions
to the current, we see at once that they cancel exactly
and the total current is zero. This demonstrates that
the theory is gauge-invariant.

Now let us examine the integral equation, Eq. (5.13)
in the limit as q

—&0 for a general vector potential. The

are related as follows:

p. (q, pp) = —i ReI (1/p~) E;,(q, &p) I. (529)

The dc conductivity is determined by the response to
a very low-frequency uniform electric field, i.e., lim„o
(limp p Z, ;(q, &p) ). Now the electromagnetic kernel is
determined by (5.6), (5.7), and (5.10). At T=O an
examination of the integrals over the products of
Green's function entering (5.6) and (5.7) shows that
they are regular in the limit q,~—&0. Thus lim, ,

E (q, pi; T=O) is well defined. (For nonzero tempera-
tures this is not so and the limit depends critically on
the ratio

I q I/p~ as q, p&
—+0.) We have shown above that

E,,(q=0; p~=O; T=O) =0,

14 G, Rickayzen, Phys. Rev. 115, 795 (1959).
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thus the dc conductivity at zero temperature is zero
and the new phase is an insulating phase.

VI. THE CONDUCTIVITY OP THE
EXCITONIC INSULATOR

tions. These are defined as

b, (1, 1)=-'((~~,(1)V(1»), Z=G) b

We turn now to a discussion of the finite-temperature
resistivity of the excitonic insulator. We are interested
in the resistivity, since, in general, a transition between
metallic and insulating behavior is accompanied by a
large change in the resistivity. Thus we expect that
the transition will be most easily seen experimentally in
the resistivity. "In the last section the electromagnetic
kernel E was calculated at zero temperature. We can
generalize the results to finite temperature by using
the finite-temperature time-dependent Green's func-

where ((~ ~ ~ )) denotes the thermal average of the time-
ordered product. The form of the Green's-function
equations is unchanged at finite temperature. However,
these determine only the real part of g. The imaginary
part can be obtained by using the relation due to
Landau" +, Imp(x)

Ref(e) = —2r ' COth-', (pX) — dX, (6.2)
—CO S

and we find, in the equal-mass case,

I,'(1—22 ) 2 222v e '(1—22 )
e —E +i8 2+En+i8 2+En —i3

e '(1—22 ) Nvsgn I,'(1—22n)

e E+i3 —2+En+26 e+E ih—

Sp Sp2

~—Ep —ib
'

'Vp Sp2

e —Ep —i5

Sp Sp flp Sp
~(y e)=~t(y, e)=~,s, '. —— '

. — ". +
2 E„+io —2+E„+28 2+E„—28 2 E„i8——

where n, =t exp(PE, )+1] ' and we have chosen the phase of the gap function to be real. The gap function 6,
is determined by the usual temperature-dependent equation

An
——QV(y —lt) (Ak/2Ek) tanh(srpEk). (6.4)

k

(6.3)

where

The calculation of the finite-temperature electromagnetic kernel E proceeds in an analogous fashion to the
zero-temperature calculation carried out in Sec. V. The finite-temperature generalization of Eqs. (5.6), (5.7),
and (5.10) are found by replacing G and Ii by b and F. Thus we find after some algebra

2 4u'v'
limLlimE;22(q) o&) j= —gp, p;

' (1—2nn)+ —gp, y (y)
' (I '—s ') (1 2N ),— (6.5)

rsvp ~Q q~Q 1S p Ep ns Ep
p

and satishes the equation

dv
&;(y) =+i+ —V(y —1)L)t.*(0)y)t, (O) j;

2x
(6.6)

v, (y) = g&(y —&) (1—»k) v, (&)+—g&(y —&) 2&; (22k tk ) (1—222k).
(Nk —'Vk ) e

k 2Ek 5$ ~k
(6.7)

Note the order of the limits q, co—&0 is important at finite temperatures. The dc conductivity is determined by the
response to a very low-frequency uniform electric field. Thus limp~0 must be taken before limM —+0.

The calculation of the conductivity in general involves the solution of the inhomogeneous integral Eq. (6.7).
However in the most interesting limiting case the solution is trivial. In the semimetal limit the inhomogeneous
term in (6.7) is zero by particle-hole symmetry. Thus y(p) =0 is the solution and one finds in this limit

e2 Q2
lim/limZ';. "(q cd) $= —pp~p; —(1—222n) (6.8)
g)~Q g~Q fS p Ep

es p2+2

, ,Z, (1-2;)3'.;.
3m' p

(6.9)

'5 It has recently been suggested by Kozlov and Maksimov
fA. N. Kozlov and L. A. Maksimov, Zh. Eksperim. i Teor. Fiz.
50, 131 (1966) [English transl. : Soviet Phys. —JETP 23, 88
(1966)gg, that an excitonic insulator would be a "superthermal
conductor. " They consider the properties of the states of the ex-
citonic insulator which are the analogues of the current-carrying
superconducting BCS states. In the excitonic insulator such

states do not involve mass or charge transport. Moreover in com-
mon with supercurrents in metals and He4, a "supercurrent"
in an excitonic insulator will not carry entropy. Thus it will not
contribute to heat transport or lead to "superthermal conduc-
tivity. "

'6L. D. Landau, Zh. Eksperim. i Teor. Fiz. 34, 262 (j.958)
[English transl. : Soviet Phys. —JETP 7, 182 (1958)j.
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The diamagnetic contribution to the kernel is

g2

E,,"(0, 0) = ——g((,a„t+b,tb„))8;,,
PE p

(6.10)

tef2

= ——+[22p2+ (u, 2 —2,2) 22,7b„;.
5$ p

(6.11)

In the semimetal limit, the second term on the right vanishes by particle-hole symmetry and combining (6.9)
and (6.11) we find for low frequencies

a(0, ~) = —(2/&u) ReIlim( (limLE, ;"(q, ~) +E;,"(q, &0) 7) ) }
co~0 q-+0

(6.12)

2C2 P2+2

, (1—222,) — 1——'
SSco p 38$Ep jV

(6.13)

The temperature-independent term is identically zero, as can be seen by integrating by parts, and we are left with

where
a(0, &o) =+2(ffeffe2/mu),

ffeff 2 g(p2+2/fffp 2) Lexp(pp ) +17—1

(6.14)

(6.15)

(XI Q2
=2n, d$

($2+g2) 8/2 I expL&(P+~') '"7+1} ' (6.16)

CX2

(P+1)2/2
IexpLPE(P+1)'/27+1} '; (6.17)

r4 is the number of carrier in a band defined in (5.3) .
In the semimetallic limit 22. =kr2/3ff2.

The foregoing discussion has referred to a "perfect"
system without scattering, for which we found that
for co—+0, the conductivity has the form

a(fe) =af(a)) +ia2((o)

a2(CO) =C/ref (6.18)

Such a form, implies by the Kramers-Kronig relation-
ship

that

2M ~ ai(f0 )
a2(M) = —— dfe

&

7i M M0
(6.19)

ai(fe) =0,

ai(M) dfLf = 22rC,

GO+ 0 (6.20a)

(6.20b)

Thus ai(~) has a 8-function —like character.
When scattering is present but weak, af(a&) is some-

what spread out (up to cd~1/r, where r is the effective
relaxation time) but (6.20b) continues to hold. If the
functional form of ai(fd) is adequately given by a
simple relaxation time expression

ai(~) =ai(o) 1/L1+(~r)'7 (6»)

rC2 Qffeff Qffeff gQ

dG m BG 85 dG
(6.24)

The second term on the right-hand side diverges as
G-+G, and da/dG= —~ at G=G.. In Fig. 3 the rough
behavior of 0.(G) is shown.

I.et us examine the qualitative behavior of the dc
conductivity as a function of the temperature T and
the bandgap G. Consider first a(T) for a fixed-value
(negative) of the bandgap in the semimetal region. At
the transition temperature the conductivity is a con-
tinuous function of temperature but there is a dis-
continuity in slope.

g &~2 ggeff /jeff d+ —. (6.23)
dT m BT BA dT

As T—+T, the second term on the right diverges and
da/dT~+ ~ . As T—e0 then da/dT &0. The qualitative—
behavior of 0(T) is sketched in Fig. . 2 in the semimetal
limit.

Also of physical interest is the behavior of 0 at a
fixed temperature as the gap G is changed, for example
by varying the external pressure. In the normal
(semimetal) state the dc conductivity is proportional
to the number of carriers and a~ (—G)2/'. At the
transition a(G) is continuous, but there is a discon-
tinuity in slope.

Then, by (6.22b) the dc conductivity af(0) is given in
terms of our calculated constant t, and the relaxation
time v by

VII. CHOICE OF MATERIALS

ai(0) =cr.
In the preceding sections we have discussed some of

(6.22) the main physical features associated with the excitonic
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Fso. 2. The dc
conductivity as a
function of tempera-
ture in the semi-
metallic limit.

R= f&a); (7 2)

for negative G there is no sharp cutoG, but the transi-
tion temperature falls exponentially on a scale given
by

~
Ea ~, so that we may take the effective cutoff at

(7.3)

the maximum transition temperature, according to
Ref. 6, is given approximately by

kf',
t Za [. (7.4)

We now turn to the question of the experimental
realizability of the excitonic phase. Since this phase
occurs when the bandgap is approximately zero, one is
led to consider materials which under normal condi-
tions have a small (positive or negative) gap. Further,
one requires that the gap can be varied continuously
through zero by some external means without the
occurrence, in the "normal" phase, of a polymorphic
transition. These considerations suggest two main
groups of materials: Divalent metals and Group V
semirnetals and related alloys.

Among possible means of varying the gap, the most
useful appeared to be the application of hydrostatic
pressure. Several measurements of resistance and crys-
tal structure as function of pressure and temperature
do in fact indicate the existence of some materials
which may satisfy the necessary requirements. They
are discussed in more detail, in the subsequent two
sections.

1. Divalent Metals

Pressure measurements on these metals have recently
been summarized in a review article by Drickarner. '~

Calcium, strontium, and ytterbium, under application

"H. G. Drickhamer, in Sold State Physics, edited by F. Seitz
and D. Turnbull (Academic Press Inc. , New York, 1965), Vol. 17.

insulator phase. No experimental evidence for the
existence of this phase has yet been reported, so we
now turn to questions connected with its realizability
in the laboratory.

Kozlov and Maksimov' have calculated the main
features of the phase diagram which is shown in Fig. 1.
The scale of this diagram is determined by the exciton-
binding energy in the normal insulating phase,

t Ea
~

=-,'(p*/m) (1/e02) Ry, (7.1)

where p,
* and m are, respectively, the reduced eGective

mass and free-electron mass, and eo is the static di-
electric constant. The cutoff for positive G is given by

of pressure, all appear to change from metallic to
insulating behavior as shown by the temperature
coeKcient of their resistance.

5/romtium

I

I'p, co Gg(T) GOO

FIG. 3. The dc conductivity as a function of bandgap
G at low temperatures.

' R. A. Stager and H, G. Drickhamer, Phys, Rev. 131, 2524
(1963).' A. Jayaraman, K. Element, and G. C. Kennedy, Phys.
Rev. 132, 1620 (1963).

20 B. Vasvari, A. O. E. Animalu, and V. Heine, Phys. Rev. 154,
535 (1967); B. Vasvari and V. Heine (to be published).

This material appears to us the most promising of all.
Being a divalent element, strontium owes its normal
metallic character to band overlap. Recent high-
pressure measurements" have shown that at both 77
and 300'K this material maintains its fcc structure up
to a pressure of at least 37 kbar. " The following
remarks are restricted to pressures below this value.
Resistance measurements at both temperatures indicate
that as pressure is increased the electronic properties
tend towards those of an insulator: (1) At both 77
and 300'K, the resistance increases strongly as the
pressure is increased, and (2) at pressures around
37 kbar, the resistance at 77'K is higher than at 300'K,
and at 300'K a slightly negative temperature coefficient
has been reported.

By themselves these experimental results would

strongly suggest that under pressure, Sr develops a
positive gap G. However, band-theoretic considerations
lead to the conclusion that the two bands in question
cannot actually separate. " If one accepts these con-
clusions one is led to the belief that, under high pres-
sure, Sr becomes a semimetal with a degeneracy
temperature, Tp, of less than about 300'K, perhaps
much lower. Resistance measurements under high
pressure and in the temperature range from 4.2 to 77'K
would be most helpful in clarifying the situation.

We can make only the roughest estimate of
~
Ea

~

since neither JM~ nor eo is known for Sr. By analogy with
Ca (see below), we may guess y*~~0.25 m and eo 30,
which gives

) Ea
~
~4X 10 ' eV,

and hence

r,=0.4S
~
Za [/x=20'K. (7.6)

This is only an order-of-magnitude estimate. If Sr
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0 P 0.2 kbar. (7.8)

Of course this is again only a very rough estimate but
it points to the need for accurate pressure control,
quite likely not yet within the reach of present low-

temperature —high-pressure techniques.

Calcium

This is qualitatively similar to Sr, except that the
interesting region occurs at much higher pressure. "
There is a erst-order phase transition at about 350
kbar, below which Ca has the fcc structure. Near 300
kbar, Ca has a negative temperature coeKcient of the
resistance, suggesting a positive or at least-small nega-
tive gap.

Cyclotron resonance gives values of about m~=0. 5 m
for electrons and holes, leading to p,

~ 0.25 m."
The static dielectric constant we have estimated as

best we could by means of the Kramers-Kronig
relations, using the available optical data for the energy
range 2.16 eV&hco&3.08 eV and theoretical considera-
tions for both Al and Ca." "We conclude that

ep 30, (7.9)

with an uncertainty of about a factor of 2.
Finally, we use the theoretical band overlap of 0.5 eV

to estimate

BG/BP = (0.5 eV/300 kbar) .

Combining these estimates we 6nd

(7.10)

T, 20'K, AP 2 kbar. (7.11)

I'tterbium

This element has been extensively studied under
pressure. It keeps its fcc structure up to 40 kbar. At
about 18 kbar the temperature coeBcient of the
resistance changes sign indicating a metal to insulator
transition'5 Hal] and Merrill" report a kink in the
compressibility at this pressure, but no such eBect
appears in the data of Stephens. "A positive gap above
15 kbar has been quite conclusively established by the

"J. H. Condon and J. A. Marcus, Phys. Rev. 134, A446
(1964)."H. M. O'Bryan, J. Opt. Soc. Am. 26, 122 (1963).

28 W. A. Harrison, Phys. Rev. 14'7, 467 (1966).
24H. Ehrenreich, H. R. Philipp, and B, Segall, Phys. Rev.

132, 191' (1963).' P. C. Souers and G. Jura, Science 140, 481 (1963).
"H. T. Hall and I. Merrill, Inorg. Chem. 2, 618 (1963).
~7 D. R. Stephens, J. Phys. Chem. Solids 25, 423 (1964).

remains a semimetal, a condition for the new phase to
be observable would be that T~ is not much larger
than 7', (see Fig. 1). There appears to be some possi-
bility that this is in fact the case.

The pressure range AI' over which the new phase
might be observed is given by

(BG/BP) AP~
i
Es i. (7.7)

If we estimate, very roughly, (BG/BP) (0.5 eV)/25
kbar we obtain

AP 2&10 ' kbar,

far less than present pressure control permits.

(7.14)

"R.Jaggi, in Proceedings of the Conference on Semiconductors,
Paris, 1964 (Dunod Cie, Paris, 1964).

~9 L. M. Falicov, in Physics of Solids af High Pressures, edited
by C. T. Tomizuka and 'R. M. Emrick (Academic Press Inc. ,
New York, 1965).

30W. S. Boyle and A. D. Brailsford, Phys. Rev. 120, 1943
(1960).

resistivity measurements ot Souers and Jura."We have
no independent information about m* and ep.

Thus the metal-insulator transition seems more
6rmly established for this material than for Sr and Ca.
However, there are elements of uncertainty due to
convicting experimental results on the compressibility
and to the possible role of the 4f electrons.

1Vote added in proof Th.e electrical resistivity of Sr
and Yb under pressure has recently been studied by
D. B.McWhan [Hull. Am. Phys. Soc. 12, 356 (1967),
and to be published7 in the region 4.2 to 300'K. He
finds that Yb in the fcc phase undergoes a change from
a metallic to a semiconducting state with increasing
pressure. In Sr there is evidence for a small energy gap
in the fcc phase just before the crystal phase change to
bcc. The samples, however, are not pure enough to be
intrinsic semiconductors and the excitonic insulator is
masked by impurity eGects.

The optical properties of Yb and Sr have been
studied by W. E. Muller [Phys. Letters 17, 82 (1965),
and to be published7. Due to the presence of low-

energy interband transitions it is not possible to sepa-
rate clearly the interband and free-carrier contributions,
so that one cannot make a reliable estimate of the
dielectric constant. We estimate op~50 at 1 atm in Yb,
though it could be much less, which would give T,
13'K for Yb. Sr appears to be very similar to Yb in
its optical properties.

2. Semimetals

The elements As, Sb, and Bi at Grst sight appear
very promising. A continuous transition from metallic
to insulating behavior under pressure has been clearly
established for Bi by Jaggi. 's At 4.2'K, the gap changes
sign at about 6 kbar. A polymorphic transition does
not occur until about 25 kbar. Similar behavior may
be expected for Sb and As."

However these materials do, nevertheless, not appear
to be good candidates for the observation of the new
phase, because the small effective mass and high-
dielectric constant lead to a very small exciton-binding
energy. A rough estimate using @~=0.01 m and ~p=
100,"gives

~
Z,

~

=1.3X10- ev, (7.12)

T,=0.05'K. (7.13)

Also the total number of electrons and holes in the new
phase would be ~10" cm 3, so that impurities would
entirely mask any intrinsic eBects. Finally, the pressure
range AI' over which the new phase would exist is only
about


