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The existing theory of the transition temperature of a strong-phonon-coupling superconductor in zero
magnetic Geld is merged with that of the upper critical Geld B,2 of a weak-coupling type-II superconductor
to arrive at formulas for the strong-coupling corrections to H,2(T). A numerical computation is carried
out for a phonon model of pure niobium. The strong-coupling eff'ects make up only a negligible portion
of the discrepancy between the earlier weak-coupling theory of H, 2 and experimental observation, the
remainder of which must be ascribed to Fermi-surface anisotropy.

I. INTRODUCTION

N previous articles, an exact solution to the lin-
earized Gor'kov equations in a uniform static

magnetic field has been presented, yielding the second-
order critical field H.2 of a bulk type-II superconductor.
The solution covers the full temperature range and
incorporates the efI'ects of spin paramagnetism and
impurity scattering.

Agreement of the calculated H,s(T) with experi-
mental measurements has been good for supercon-
ducting alloys at low fields and satisfactory for high-
field alloys where spin paramagnetism and spin-orbit
impurity scattering become signiGcant. However,
quantitative discrepancies exist with careful measure-
ments on high-purity niobium' and vanadium, 4 which
are intrinsically type-II superconductors. At low re-
duced temperatures, the measured values of II,2 for
both of these materials lie about 15%above the theoret-
ical prediction' for a pure sample.

Among the possible sources for the discrepancy, two
are most likely: crystal structure, producing an anisot-
ropy of the Fermi surface, and strong electron-phonon
coupling effects. Both of these are omitted from the
Gor'kov equations, which assume the simple BCS model
potential and an isotropic material. The role of Fermi-
surface anisotropy has recently been investigated by
Hohenberg and Werthamer, ' who found that it moved
the theoretical II,2 curves in the direction of better
agreement with the observations on Nb and V, al-
though it was not possible to make quantitative calcula-
tions. In the present paper we correct the other de-

ficiency in the earlier model, by calculating H,s(T)
within the strong-phonon-coupling theory of super-
conductivity initiated by Eliashberg' and developed by
Schrieffer, Scalapino, and Wilkins. 7

In Sec. II we outline the merger of the existing
theories of the transition temperature of a strong-
coupling superconductor in zero Geld6 with that of
B,s( T) for a weak-coupling superconductor, ' and
arrive at formulas for the strong-coupling corrections to
H,s(T). Since we allow for an arbitrary impurity con-
centration, these formulas are applicable to, and
particularly relevant for, materials such as lead-based
alloys. In Sec. III are presented results of a numeri-
cal computation of H, & for a phonon model of pure Nb.
It is found that the phonon effects make only a negli-
gible contribution to the difference between the weak-
coupling theory' and observation. Thus the discrepancy
can presumably be ascribed entirely to Fermi-surface
anisotropy. '

II. FORMAL SOLUTION

Following closely the development of Ref. 6 we
begin by introducing the 2)&2 Nambu' matrix single-
particle Green's function g(x, x'), where x=(r, t),
appropriate for a coordinate-space description of the
superconductor in a magnetic field. The Green's func-
tion satisfies Dyson's equation,

g(x, a') =g„(x, ~')

+ ~ »~ +2/. (*,») &(»& as)g(~2) *'), (&)
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Helfand, and P. C. Hohenberg, ibid. 147, 295 (1966).
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where b„ is the normal-state Green's function, con-
taining the g„magnetic field. The strong-coupling
theory of superconductivity assumes the simple form

6 G. M. Eliashberg, Zh. Eksperim. i Teor. Fiz. 38, 966 (1960)
LEnglish transl. : Soviet Phys. —JETP 11, 696 (1960)g.' J. R. Schrieffer, D. J. Scalapino, and J. M. Wilkins, Phys.
Rev. Letters 10, 526 (1963); D. J. Scalapino, J. R. Schrieffer,
and J. M. Wilkins, Phys. Rev. 148, 263 (1966).

8 Y. Nambu, Phys. Rev. 117, 698 (1960).
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for the matrix self-energy (vertex corrections can be
shown to be negligible)

Z(x, x') = —r2g(x, x') tD(x, x')+n242i)2(r r—') fr2, (2)

where r3 is the third Pauli matrix in the 2)&2 Nambu
space, D is the phonon propagator, and nN' is the
impurity concentration times the square of the im-

purity scattering amplitude. H we write the matrix
Green's functions in the general form

or using Eq. (4) in (5),

G.d(x, x')

d xld x2 Gd (xt xl) Ztsd(xlt x2) Gd(x t x2) ~ (6)

Neglecting anisotropy of the electron-band structure
and of the phonon spectrum, it is appropriate' to assume
that the phonon propagator has very short spatial
range:

�

/G„(x, x')

g. (x, x') =!
0

!

G.(*', x))
(3a)

D(x, x') —D(t—t') P(r—r'). (7)

Then using this together with Eq. (6) in Eq. (2), we
find the linear homogeneous equation for Z,d.

( Gd(x, x') G.d(x, x') )
b(x, x') =!

lG.d+(x, x') Gd(x', x) )
(Bb) Zs(r, r; t—t') = ('D(t t')+ess'] f—4'r4tct,

then Eq. (1) can be split into two 1X1 equations for
G& and G,z. Since we are interested only in the second-
order transition point, we can regard the off-diagonal

(od) elements as infinitesimal. Linearizing the equa-
tions for G~ and G,g with respect to od elements, we
arrive at

Gd(x, x') =G (x, *')

XGd(r rl' t tl) Zod(rl rl tl t2) Gd(r rl' t t2) ~ (g)

The magnetic field appears' in the unperturbed
Greens function, in the semiclassical approximation,
as a phase factor:

G„(x, x') = G„(r—r'; t—t') expLiq (r, r') ], (9)

q (r, r') = (e//fic) ds A(s),

+ d xld x2 Grs(xt xl) Zd(xlt x2) Gd(x2r x ) t (4)

G.d(x, x') = d4xld4x2 G (x, xl)

X(Zd(Xlt X2) Gstd(X2t X ) +Ztsd(Xlr X2) Gd(X r X2) ]r (5)

where A is the vector potential and the integration
follows a straight-line path between the end points.
The phase integral form holds unchanged for Gd in the
presence of the phonon interactions, because of approxi-
mation (7). This, together with Eq. (8), suggests that
the space and time depen(iences of Z,d(r, r; t t')—
factor:

Z.s(r, r; t t') =4(r) f 4( —/2 ) exp( —t (t—t')]4'( ).

The Ansatz (11) leads to the equation

&(r) C'((d) = d((dl/'2l(. ) LD ((d—col) +22(.22N'B((d —441) ] d'rl

XGd(! r—rl!; a») G, (!r—r, !;—44,) expL2iq (r, r,) ]h(r, ) C ((d,). (12)

The spatial part of Eq. (12) is now identical to the linear homogeneous integral equation solved in Ref. 1.
Taking over the analysis of these references intact, we are le(i directly to the equation for 4 (co):

where

4( ) =[}—ets's( )] 'f 4(,/2 )D(ss ,)s(es}4(ss), — (13)

s()= f rprrpsb(r)Gs(lr —r I; )Os(lr —r I; e) exp[2tr(r r)]4(r)/ 4'sb'(r)

d'pGd p,'~ Gd p,
' — exp —e&p~' 2&G, (14)
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and where pi is the magnitude of the projection of y out' to yield
onto the plane perpendicular to the field H. We next
introduce the form" for the normal-state Green's z(o)) =
function, 2Z(~) I

~
I + (i/r) o

dw exp( —w')

d 'p exp(ip )o)

(2~) ' Z((0) (0—e(p) +i(sgn(o/2r)
'

where

1+n(o)) w
X » , (16)

n(o)) 1 n—(o))w'

which solves Eq. (4). Here e(p) is the electron energy
spectrum, Z(o)) is the phonon renormalization factor
to be specified shortly, and r is the impurity scattering
time given by (2r) '=2rrN(0)nu' Sub. stituting Eq.
(15) into Eq. (14), the p integration can be carried

n(o)) = (2eH/Ac) ')'()pg2Z(o))
[ o)

) +(i/r) j' -(.17)

Also introducing an explicit expression for the phonon
propagator in the manner of Ref. 6, we can fold the ~i
contour to obtain

C ((0) =—4 (o)) L1—eu's(o)) j
co 1 1+n(o)y) w

do)r E+(o), o)~) Re 4 (o),) LZ(o)~) o)r+(2r) '] dw exp( —w') ln
0 n((0r) 1—n(o))) w 2r

together with the relation for the renormalization factor,

o)Z(M) = o) do)),E (o), o)r) .

The kernels E+ are given' by

&+(" )=Zf i) i)i( «)I(&( i)+f( Mi))(( i—+ «+ ) '+( i+ i— ) ')+(&( )+f( i))

X((—o)r+(dx+o)) '+(—o)&+o)x—o)) ')I, (20)

where F&, (o»,) is the coupling strength times density of
states for phonons of frequency co& in branch A., and
(1V,f) are (boson, fermion) thermal weight factors.
Equation (18) together with Eqs. (17), (19), and (20)
constitute our final formal result, an eigenvalue equa-
tion determining the critical magnetic field H, ~ as a
function of temperature.

III. NUMERICAL RESULTS AND COMPARISON
WITH EXPERIMENT

A numerical calculation of H,2(2') using the equa-
tions developed above was carried out for the case of
pure niobium. The phonon density of states was taken
from the neutron-scattering data of Nakagawa and
Woods, ' and a Coulomb pseudopotential, as discussed
in Ref. 7, was chosen equal to 0.15. The last free pa-
rameter, the phonon-coupling strength, was then ad-
justed to give the observed zero-field transition temper-
ature.

The most convenient way to plot the T dependence

' Y. Nakagawa and A. D. B. Woods, Phys. Rev. Letters 11,
27& (i96S).

of H, 2 is in terms of the dimensionless quantity'

h(t) =H,2(t)/( —dH„(t)/d—t), ~,

where ~ is the reduced temperature. The result of the
numerical calculation is that h(t) in the phonon model
agrees with that given by the earlier weak-coup]ing
solution. to within 2%%u(), the accuracy of the present
program. The main effect of having included the
phonon interactions is to alter the electron effective
mass (or equivalently the Fermi velocity) from the
band-mass value because of the renormalization con-
stant Z/1. This produces a substantial over-all in-
crease in H, 2 from that which would be obtained using
the bare band Fermi velocity, but being relatively
temperature-independent the shift cancels out of h(i).
Since phonon coupling has proved to be of little signifi-
cance in determining the temperature dependence
(although not the magnitude) of H, 2 for pure Nb, it
would appear that the discrepancy between theory and
experiment for both Nb and V must be attributed
entirely to anisotropy of the Fermi surface.

It would be of some interest to learn whether phonon
effects make any contribution to h(t) for materials
more strongly coupled than niobium, for instance
alloys of lead.


