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It is pointed out that a rigorous inequality first proved by Bogoliubov may be used to rule out the
existence of quasi-averages (or long-range order) in Bose and Fermi systems for one and two dimensions

and T'#0.

I. INTRODUCTION

INCE the work of London, superconductivity and
superfluidity have generally been associated with
a specific type of order which London called long-
range order of the average momentum. The earliest
general mathematical characterization of this order
was given by Ginzburg and Landau? for superconductors
and by Penrose? for superfluids. They defined a system
to have this long-range order if a suitable density
matrix did not vanish for infinite separation of its
spatial arguments. In the microscopic theories*5 these
finite limiting values are taken to be anomalous
averages (or quasi-averages®) which are nonzero by
virtue of a broken symmetry (the conservation of
number). In certain simple cases,® the justification for
this can be given in mathematical form in terms of
discontinuous limiting behavior as an external source
coupled to the field goes to zero, and the volume
of the system goes to infinity. Alternatively,*®" a more
intuitive justification can be given in terms of a re-
stricted ensemble’ having a specified value of the
condensate function (the order parameter) but no
definite value of the particle number. In either case
the anomalous averages (such as (/) or (Y¢)) are
treated like ordinary ensemble averages, and their
existence is taken to be equivalent to long-range order.
We shall also assume this equivalence and not inquire
further into its rigorous justification.
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In this paper we wish to explore the consequences of
an exact inequality®8 due originally to Bogoliubov,
which we apply to cases where there is a broken
symmetry, or anomalous average. We shall use it to
calculate the fluctuations of the order parameter in
superfluids and superconductors, thus proving that the
assumption of a broken symmetry (or long-range order)
in Bose or Fermi liquids leads to a contradiction in
one and two dimensions at finite temperature. Using
the Ginzburg-Landau? theory, similar results have been
obtained for superconductors by Rice® and de Gennes!
and for superfluids by Emery.!! They have also been
derived on the basis of hydrodynamic arguments by
Ferrell,’? Halperin, and Martin,® Chester and Reatto,"
and, using the two-fluid expressions of Ref. 7, by Kane
and Kadanoff.’* However, the validity of some of these
arguments®? has been questioned® and in any case
they are only approximate, whereas the present deriva-
tion is exact, given the existence of quasi-averages. It
depends only on the commutation relations and the f
sum rule.

In Sec. IT we repeat Bogoliubov’s® derivation in the
form written down by Wagner.® In Sec. III we apply it
to the Bose liquid both at low temperatures and near
the transition, and in Sec. IV we show the necessary
modifications which must be supplied to prove a
theorem for a superconducting or superfluid Fermi
liquid.

II. PROOF OF BOGOLIUBOV’'S THEOREM

For completeness we repeat Bogoliubov’s proof,®
in the form given by Wagner.? Let (4) denote the
quasiaverage of the operator 4, or, equivalently, the
ensemble average in a restricted ensemble’ appropriate
for a system with a broken symmetry. The properties
of this average are just those of the equilibrium grand-
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canonical-ensemble average (in particular, the fluctua-
tion-dissipation theorem holds’), except that certain
quantities which would vanish in the latter remain
finite here when the volume Q goes to infinity (e.g.,
@) or (Y¢¥)). We shall introduce the Fourier transform
of a function or operator ® in a quantization volume
Q (with periodic boundary conditions) by the usual
relations

&(r) =0 Zk: exp(ik-1) ¢,

¢k=/dr exp(—ik-1) &(r), (1)
except that for the particle fields ¢ and ¢ we use the
normalization
Y(r) =012 Y exp(ik-1) ay;

k

Y1) =012 Y exp(—ik-r)at. (2)

We write in the volume @ explicitly for convenience,
even though it is always assumed to tend to infinity
and no final results can depend on Q. The spectral
weight function is

74,5(K K';1—1) =7 ([Ax(?), B () ])
® de
= [ ol ;) expl—i(i—1)],
—w 2
(3)
and the response function
dw k k
xn(, K39 =[ foraaloXie)
w—3
Furthermore, we define the static response function
dw 74,8(k, K'; w)

w

xtan(, &) = P/ (5)

(P is the principal part), and the equal-time correlation
function

Ca,p(k, k') =7 ({ 4x(t) — (4x(?) ), B (1) — (Bw (1) )} )

- /_ 5 man (s K ) coth} (80) (6)

(B=1/T, fi=kp=1) ; the last relation is the fluctuation-
dissipation theorem. From the definition of x* we infer
the following properties:

x°4,5(k, K’) is a linear form in Ay and By,
Dxta.n(k, k') P*=x*5t,41(K', k),
x'a,aT(K, k) =x%4,47(k) >0. @)

Therefore, x* is a scalar product and satisfies a
Schwarz inequality

| x5k K) | x'aa ®)xshk).  (8)
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Furthermore, since (8/2) | coth (Bw/2) | > | w |~ and
the integrands in (5)—(6) are positive, we have

xa,41(kK) < (8/2) Ca,at(k). ©)

III. THE BOSE LIQUID

We shall apply the two inequalities to a Bose super-
fluid in which, by assumption,

Q2 (ay Yy =12 (@, )o (k)
=Q 12 (g, Y= (1/no) 6(k),

where §(k) is a Kronecker delta. We take the operators
A and B to be (k=—k’'50):

A ()=1i(3/00px();  Bu()) =2ax(1). (11)

The operator py is the Fourier transform of the density,
and satisfies {po)= [dr {(o(r) )=N. It is easy to verify
the relations

(10)

TA,B(k/yk;w)=pr.B(—kyk;w)) (12)

74,41 (—k; 0) =07, ,t(—k; w), (13)
Xan(—K k)= / T,,B( k k; o)

=012 ([p_x(t), ax(t) ])= —v/no. (14)

The last equality depends only on the Bose commuta-
tion rules and leads to a nonzero answer if there is a
broken symmetry (long-range order). As a consequence
of the continuity equation dp/d¢4V-j=0, we can prove
the f sum rule,"” which implies

2,
kn / e aryat(—, )

—P/ dw'rAAT( —k; ) —xaat(=K). (15)
Finally, we have (since k;éO)
Cz.pt(kK) = ({ax(?) — (ax), ot () — {axt)})
=2 <adek)+1- (16)

Putting together the two basic inequalities (8) and
(9), we get

] __k’ k 2
CB,Bf(k)ZZTXSB,BT(k)ZZT‘_&:B(—)—I; (17)
x'a",4(—k)
which yields, using Egs. (14)-(16),
T ’ﬂo
(a)=m> =t (1)

17 P, Noziéres and D. Pines, Quantum Liquids (W. A, Benjamin,
Inc., New York, 1966), Vol. I, p. 90
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Clearly the quantity

ot Z nx=
k0

—— =Ny, (19)

(27)°
(where s is the dimensionality of the system) must be
finite, and we see that this is incompatible with (18)
in one and two dimensions for 7> 0, unless 1,=0. We
conclude that there is no broken symmetry (long-range
order) in one and two dimensions in a Bose liquid.

In three dimensions, very near the transition tem-
perature T3, but for T'< T}, one may wish to describe
the correlation function in the form

n(k)~const/k>1*

as k—0. From our inequality (18), we see that the
exponent n* turns out to be nonpositive.

[Note added in proof. In order to avoid confusion we
wish to point out that »* is not the same as the coeffi-
cient 7 introduced by Fisher.® The latter coefficient
characterizes the behavior of the correlation function
for fixed k, in the limit 7—7). The coefficient #* on
the other hand, applies for fixed 7< 7}, in the limit
k—0. This difference in behavior is well known,8:?
and our theorem says nothing new about the param-
eter . In terms of Josephson’s?® discussion, it merely
states the obvious fact that p,<p. The Bogoliubov in-
equality (18), does lead to the exact result *<0, which
is a necessary restriction on any accurate theory of
the lambda transition in three dimensions. The pos-
sibility of a positive #* was raised by Kane and Kada-
noff® (they called it ) and by M. Fisher (private
communication) and is ruled out by Eq. (18).]

IV. COOPER PAIRING IN FERMI SYSTEMS

For fermions, the analogous statement would be
that it is inconsistent to assume that the quasiaverage
W (r)¢,(r) ) (the arrows denote spin states) is finite
for infinite volume in one and two dimensions. How-
ever, the order-parameter correlation function is not as
directly related to a thermodynamic quantity as #y, and

Cs,pt(k) =01({ Z S(Q) ate—q8ias 2/ S@") ayarTancq )

= (2/9) Z S(q) S(q,) <al'-1'1‘a1k—q'1-a1k—-qa&q>
a,q’
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we shall have to use a slightly more complicated argu-
ment.? We begin by assuming that the quasi-average
(@148,—q) is nonzero for one or more regions of q, and
we shall show a contradiction in one and two di-
mensions. For this purpose we introduce the order
parameter

a= [di s(r—8) @@ )

=q! Z S(q) {(a1q@4—a),

where the ‘“smearing function” s(r) is arbitrary (a
Gaussian, for instance) but has the properties

/s(r)dr= S(0) = 1;

(20)

s(0)=0"1 3 S(q) < .

(21)
We apply the Bogoliubov inequality to the operators

Aw()=i(8/00)p(t);  Bi=2.S(Qapatia. (22)

The fermion commutation rules yield for k<0

o (Bo o) =0 LS (@) + (k=) Horgaioa)

=A+n(k). (23)
This defines n(k), which has the important property that
lim n(k) =4,
k0

since S(q) is analytic and {(a1q@y—) is bounded. The
f sum rule once again yields (15), which permits us to
write the Bogoliubov inequalities (8) and (9) as

| A+n(k) |2
(n/m) k2
The small r behavior of the Fourier transform

cs,8t(r) of Cg (k) is not simple, so that in order to

prove our theorem we must rewrite Cg,zt(k), using the
commutation relations, in the form (k70),

Crt(k) 22T (24)

(25)

=07 30 [8%(q) + 8 (k—q) Naiataiatargtarg )+ 35 S*(q).  (26)
q q
If S(q) were a constant [s(r) =6(r)], then the last term of (26) would be infinite [§(0)], and ¢p,5*(r) would

not be defined. With a Gaussian s(q), this term is some finite constant (independent of k) ; likewise, the next
to the last term in (26) is an analytic function of k which is integrable. The first term, which we call F(k), would be
just the density-correlation function if s(q) were a constant. Its Fourier transform f(r) can be shown to be finite
for r=0 by the following argument:

fle—m) = [[arar” s(r=r)s (") G O D EE)).

18 M., E. Fisher, J. Math. Phys. 5, 944 (1964).
13 B. D. Josephson, Phys. Letters 21, 608 (1966).
2 A number of key points in the application of the theorem to fermions were suggested to me by Dr. B. I. Halperin.

(27)
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The matrix element in (27) is of the form

Wt ()t () () (17) )= (a'd),

which defines the operators @ and 4. The scalar product
again satisfies a Schwarz inequality, so that

| {a'®) | 2< (a'a)(b'd)
= (pu(r) pr(11) Y (o1 (12) 24 (1) ), (29)

where py (1) =y, T (r)¢y(r). From Egs. (27)-(29) we
conclude that

(28)

50 <2 [ sttr=1) {n@mD 2, 30

which is obviously finite since the density correlation
function may not have any singularities which are not
integrable. If we write (26) in the form

Cs,p'(k) =F (k) +R(k),

we see that R(k) is regular at small k2! and with the
aid of Egs. (24), (31), and (30) we have

(31)

F(k)ZZTIA%?;)—“ “RE®),  (3)
ISP (k) <f(0) < . (33)
k=0

Clearly, since 9(k) and R(k) are regular at small k,
Egs. (32) and (33) are in contradiction in one and two
dimensions for 70 and for infinite volume, unless
A=0. Since S(k) is arbitrary, subject to the conditions
(21), we cannot have (@148,—q)5%0 for any q, and
Wr(r)y(r) )=0.

This result can be extended to cases where A is
not the only anomalous average in the system.'® Under
certain circumstances it is conceivable that a breaking
of translational invariance'® might invalidate some of
the arguments presented here, although a similar
discussion could probably be used to exclude such a

21 For fixed S(q), R(k) is integrable.
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broken symmetry also.?? A full discussion of the case
treated by Gor’kov, Bychkov, and Dzialoshinskii
would depend on subtle details of their model and we
shall not attempt it, but it seems to us extremely
unlikely that their assumption of long-range order in
one dimension (A>£0) can be strictly valid, at least at
finite temperature.

V. CONCLUSION

We have shown that the long-range order generally
associated with superconductivity and superfluidity—*
(i.e., the existence of anomalous averages (') or (Y¢'))
is not consistent with exact sum rules in one and two
dimensions. Our arguments do not depend on the range
of the forces so long as these keep the f sum rule intact.?
This work supplements approximate arguments pre-
viously given.* We do not make any statement about
the existence of a phase transition, or even of super-
currents or flux quantization, except to say that the
usual models (involving long-range order) are not
valid. Needless to say, we can shed even less light on
the interesting question of the existence of approximate
long-range order, or of essemtially persistent currents
which might live for macroscopic times. However,
the arguments presented here seem to us quite rigorous
and simple. They have a sufficiently general character
to be applicable to other cases of long-range order,
such as the Heisenberg ferro- and antiferromagnet, and
the crystal. A discussion of the extension of these ideas
to other cases has recently been given by Mermin and
Wagner.22
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