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We consider the problem of a bulk pure type-I superconductor in a static magnetic Geld (H (II,) applied
parallel to the surface. We show that there may exist single-particle excitations of energy (relative to the
Fermi energy) less than the zero-Geld energy gap, which are spatially bound to the surface region where
the screening current flows. We then investigate the contribution of these localized states to the electro-
magnetic absorption of the superconductor at frequencies below the zero-Geld absorption edge (2A}.Order-
of-magnitude estimates seem to be in agreement with the observations in aluminum by Budzinski and
Garfunkel.

I. INTRODUCTION currents are set up along the surface perpendicular to
the field in such a way so as to screen out the field
in same characteristic penetration depth X, which is
given in the Pippard' limit by X 4,"'Pt', where Xr, ——

(mc'/4srne')'t' is the London penetration depth and
(=Sue/sr', is the coherence length. For aluminum, a
typical Pippard superconductor, the parameters take
on the values X 500 A, Xz, 160 A, $=16X10' L. It is
important to notice that the condition for type-I be-
havior X/P&(1 is well satisfied in this case. The problem
at hand is to study the eAect of the surface currents
on the excitation spectrum.

I.et us first consider a superconductor in a state of
uniform current Qow of current density j=nev, where

v, is the superRuid velocity. In this case the excitation
spectrum (1.1) becomes'

& IHE purpose of this paper is to investigate the
changes in the BCS' spectrum of electronic excita-

tions, induced by the application of magnetic field,
in a pure type-I (or Pippard) superconductor. We shall
furthermore discuss the manner in which these modifi-
cations may aGect the absorption of electromagnetic
radiation by the superconductor.

It is by now well known that the spectrum of exci-
tations (in zero field) for an ideal superconductor has
the BCS form'

e 0 —
(P z+A2) 1/2

ea =ei +filr va&' (1 2)

where cia is given by (1.1) . The gap function A appear-
ing in. (1.2) must be determined self-consistently and

is, in general, a function of v, . For quasiparticles travel-
ing antiparallel to the current, the minimum excitation
energy is then 5—Pfv„where I'~ is the Fermi mo-
mentum. The current thus lowers the e6'ective energy

gap for single-particle excitations. This, however, does
not imply electromagnetic absorption (at absolute zero
temperature) for frequencies less than 2A/5. In a uni-

form system, momentum conservation requires that
the two quasiparticles excited from the ground state
have equal and opposite k. Thus, the reduction of the
excitation energy for quasiparticles traveling antiparal-
lel to the current is compensated by the corresponding
increase for excitations directed parallel to the current.
Indeed Makis has calculated the microwave surface
impedance for this uniform situation and his results
appear to substantiate these remarks. Maki has also
pointed out that when 6—I'~v, becomes zero there
exist thermal excitations at arbitrarily low temper-
atures and hence no frequency domain of vanishing
electromagnetic absorption.

Our problem of a bulk type-I superconductor in a
magnetic Geld and thus with a nonttnsform current
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where @0 is the energy of a single-particle excitation
of momentum lr, tt, is the energy of the corresponding
normal-state electron relative to the Fermi energy, and
d is the energy gap. There are no single-particle exci-
tations with energy less than h. This energy gap causes
all effects that depend on thermally excited quasi-
particles to decrease as exp( A/ktsT) for —ktsT(A.
Thus, for example, at suKciently low temperatures
the contribution of the thermal quasiparticles to the
absorption of electromagnetic radiation may be arbi-
trarily small. The only allowed mechanism for the ab-
sorption of a photon is then the excitation of a pair
of quasiparticles from the ground state. This process
requires a minimum photon energy of 2A (A for each
quasiparticle). The detailed shape of this absorption
edge has been calculated by Mattis and Bardeen' and
there have been several experimental investigations of
the electromagnetic absorption both in the infrared'
and microwave4 domains.

When a small magnetic 6eld is applied parallel to
the surface of a bulk type-I superconductor, Meissner
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distribution has some significant differences relative
to the uniform current problem. (1) Because the
currents fIow only within a penetration depth of the
surface, those excited states which have their excitation
energies reduced as in (1.2) can only exist in this
surface region, i.e., they are bound to the surface.
Cyrot has treated the somewhat similar problem of
the quasiparticle excitation spectrum near an isolated
vortex in a type-II superconductor (2.) Even at the
absolute zero of temperature there may exist electro-
magnetic absorption at frequencies less than 2b/5
because the nonuniform nature of the fieM distribution
breaks down the momentum conservation selection
rule. Such an eBect has been observed by Budzinski
and GarfunkeP in pure aluminum.

In Sec. II, within the framework of a simpliGed
model of the field distribution, we calculate the exci-
tation spectrum for these magnetic field induced sur-
face states. Section III is devoted to a qualitative
discussion of the eGect of these surface states on the
electromagnetic absorption at energies less than 2A.

II. SURFACE STATES

Ke consider a semi-infinite type-I superconductor as
depicted in Fig. I, with a magnetic field, H, directed
along the s axis in the surface of the specimen and the
Meissner currents therefore Qowing along the y axis.
We shall restrict our discussion to such fields that any
intermediate state structure occurs over macroscopic
distances and thus may be neglected in any discussion
of surface phenomena. This is not a stringent require-
ment and is satis6ed if H is only slightly less than
the critical Geld B,.

The excitation energies e are determined. from the
Bogoliubov equations, '

~u(r) =[(2m) 'L(5/i) V—(e/c)Aj' —Er]u(r)

+d, (r)v(r),

ev(r) = —[(2m) '[ —(fi/i) V—(e/c)A)' —Er]v(r)

+6*(r) u(r), (2.1)

where u(r) and v(r) are respectively the electron-like
and hole-like amplitudes of the quasiparticle wave-
function. In (2.1), the standard Hartree-Fock potential
has been omitted. It plays no central role in our simple
model and. could be included without difhculty. The
self-consistent gap function (or pair potential) A(r) is
given by

A(r) = V P v„*(r)u„(r) (1—2f„), (2.2)

where Y is the strength of the separable BCS electron-
electron interaction, f is the Fermi distribution function
for the eth state, and the sum is over all states. By
means of the Landau-Ginsburg theory, Caroli' has
shown that a magnetic field suppresses h(r) near the

6 M. Cyrot, Physik KondensIerten Materie 3, 374 (1965).
~ W. V. Budzinski and M. Garfunkel, Phys. Rev. Letters 16,

1100 (1966};1V, 24 (1966}.
8 C. Caroli, Ann. Inst. Henri Poincarb 4, 159 (1966).

Vacuum Superconductor

Pro. f, The geometry under consideration: a semi-inGnite
superconducting slab with a static magnetic Geld applied along
the s axis in the plane of the surface; the screening current j is
also in the surface plane but perpendicular to the Geld; the x
direction is perpendicular to the surface which is taken to be at
x=0. The impinging electromagnetic wave is taken to be polarized
with its electric Geld directed along the y axis.

surface only slightly from the BCS value in the absence
of a 6eld. In fact, she 6nds

A(0) b, (1—x/2&2), (23)

where 6 is the zero-field energy gap, d (0) is the value
of the gap parameter at the surface for H=H„and
the Landau- Ginsburg parameter ~—XJ/$. For the type-I
situation of interest here x«1, and thus A(0)
Furthermore we expect that the principal spatial vari-
ation of b, (r) occurs on the scale of $. Thus, since we
are mainly interested here in phenomena which take
place within a few penetration depths of the surface
we may assume that h(r) is spatially constant and
maintains its zero-6eld value. It has been implicitly
assumed that the gap parameter is real. In the presence
of magnetic fields, this is the case if the vector potential
A is chosen in the London gauge, i.e., div A =0 and the
component of A normal to the surface is zero. Ke
shall employ this gauge throughout. In principal, the
vector potential must also be determined self-con-
sistently. However, for our purpose, it is sufhcient to
approximate the exact 6eld distribution by an expo-
nential decay of the form

k(x) =IIe *~', (2 4)

which indeed satisfies the London gauge.
The Bogoliubov equations (2.1), for this problem,

are separable in Cartesian coordinates, and can be
reduced to a one dimensional form by the transfor-
mation

u(r) =u(x) expLi(k„y+k, s) j;
v(r) =v(x) exp['i(k„y+k, s) j. (2.6)

The quadratic term in the vector potential in (2.1) can
be shown to be negligible relative to the linear term

where H is the applied Geld and x is the distance from
the surface of the specimen. This distribution is gener-
ated from the vector potential

A„=A (x) = BXe *~~ (2.5)—-
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P cP 86
ea(x) = E,+PI+— A—(x) k2 ~(x) +&N(x),

2m dS fsc

(2.8)

where E1 (fi2/2m) (k„'+——k,') is the transverse kinetic
energy. Using (2.5), the vector-potential term in (2.8)
can be treated as the velocity-dependent potential

V(x) = (e5/mc) k„XPe—*/". (2 9)

This potential is attractive or repulsive depending on
the sign of k„, i.e., electrons traveling antiparallel to
the current experience an attractive potential, while
the parallel moving electrons are repelled from the
surface.

At this point we must decide how to treat the
surface, i.e., what boundary condition is to be imposed
on N(x) and r/(x) at the surface x=0. For simplicity,
we shall assume an ideal surface in the sense that we
replace the semi-infinite slab by an inhnite sample and
symmetrizing the potential V(x) with respect to the
plane x=0. There will then be symmetric and anti-
symmetric solutions for u(x) and e (x) . While the details
of the excitation spectrum depend on the exact choice
of boundary conditions we hope that the qualitative
nature of the results are unchanged.

Even with this simplified choice of boundary con-
ditions, the Bogoliubov equations (2.8) with V(x)
given by (2.9) are rather messy to handle. In order to
make the problem more tractable, we approximate
V(x) by a rectangular potential V. This is accomplished
in an arbitrary way by choosing the width of the well
to be X and adjusting its depth (or height) to be such
that its area is the same as that given by (2.9), i.e.,

VX = V (x) dx (equi/2mc) k,X2H. (2.10)
0

For electrons traveling antiparallel to the drift current,
the form of this potential is given in Fig. 2. Of course
the sign of the potential for the holes is opposite to

as follows: The ratio of these terms, using (2.6), is

(eA/c) ' eA, A

(2e5k,A/ic) 25ck„@2k„
where g2 ——ck/2e is the flux quantum. Then using (2.4)
and the relation for the critical field

(3)1/2(p /2r2pL)

the ratio in (2.7) becomes approximately

(22r)-'(-2)'/'(H/H ) (X/Xz) (Pk )-'«1 for $k ))1
but, because we are principally interested in electrons
traveling along the y axis k„~kq, the ratio is much less
than unity and we are able to drop the A' term in
(2.1) . Under these conditions, the Bogoliubov equations
become

d 8A
eu(x) = E,—Er A (x) k„u(x) +ha(x),

2m dx' mc

that for the electrons. The equations (2.8) now reduce
to a pair of coupled Schrodinger equations for a one-
dimensional square well: One equation describes the
electronic excitation, the other is for the holes, and the
coupling is via the gap parameter A. These equations
are now solved by the standard technique of forming
solutions in the two regions (I and II of Fig. 2) and
requiring that the wave-functions Lin this case N(x)
and 1/(x)] be continuous and have continuous de-
rivatives across the boundary at x=X. The coupled
equations are now

~2/(x) =[—a—(/r/2/2m) (d'/dx') —V]u(x) +61/(x),

ci/(x) =Ln+ (P/2m) (d'/dx') —V]r (x) +An(x),

(2.11)

where n=Er —E, and V=O for
~
x ~)X and V=V for

~
x ~(X. Now assuming that N(x) and n(x) vary as

e'", we find from (2.11) for
~
x ~& X,

~
—(( 2++2) 1/2 (2.12)

where $, =(fi'q'/2m) 0/ is the—total kinetic energy
relative to the Fermi energy. Formally this is identical
to the BCS spectrum (1.1). However, there is no
longer translational symmetry along the x axis and
therefore q need not be real. Indeed as we are interested
in states of energy less than 6, it is necessary that $,
be imaginary. ' This implies a complex q, which is
given by

V
= (2mlfi') "'I+4-'((~'+I 0 I2) '"+~)3"2

+iE-'((~2+) f. I2)'"—~)3'/2I (2 13)

where the (&) refer to right and left traveling waves,
respectively. Thus, if there exist bound states with
c&A the electron and hole amplitudes for these states
are exponentially decreasing oscillating functions in the
forbidden region. For 0&&(h the characteristic extent

V(x)

x=-X x 0 x )

I' IG. 2. The solid line represents schematically the effective
one-dimensional potential experienced by quasiparticles traveling
antiparallel to the screening current. .The dashed line represents
our square-well approximation. In the figure, the potential is
symmetrized with respect to the surface, thus determining the
boundary conditions.

' This is in contradistinction to the ordinary Schrodinger
equation square-well problem where the bound states have nega-
tive kinetic energies in the classically forbidden region.
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of the amplitudes zz(x) and p(x) in this forbidden
region is from (2.13), (P.r)'l2 where Xr is the Fermi
wavelength. In the case of aluminum, $~16X10' A, and

3 A., this distance is approximately 200 X and is
therefore of the same order of magnitude as the pene-
tration depth X.

In the interior region I x I(X, (2.11) gives

0 —(+2+) 2) li2 V (2.14)

which is the analog of (1.2) for this problem. In this
case the two wave vectors are given by

k = (2m/fi') "'I|2+L(0+V) '—Le]'"I . (2.15)

Notice that if the second term in the curly bracket is
larger than e, one value of k is pure imaginary while
the other is always real.

It is now necessary to match the solutions in the
two regions at their mutual boundaries

I
x

I
=X. There

exist two types of solutions: symmetric with respect to
the surface Lzero slope at x=0 for u(x) and v(x) j
and antisymmetric IN(x) and s(x) are zero at the
surfacej. We shall consider the symmetric solutions
in some detail. The antisymmetric solutions have the
same general behavior. For the even solutions in the
interior region we may take

N(x) =pp coskpx+pl cosklx~

'v(x) =pp coskpx+pl cosklx, (2.16)

where ko and k~ correspond to the two expressions for
the wave vector given in (2.15) . The coefficients zl; and
v; are related by (2.11):

EV0,1 (0%$2+V)@pl),
where the minus sign corresponds to the zero subscript.
In the exterior region, we may express N(x) and 2(x) by

I(*)=~pexp(iq I x I)+»exp( —zg I*I),
v(x) =20 exp(iq I x I) +pl exp( iq*

I
x—I) (2 Ig)

where q is that solution (2.13) with Req) 0 and Imp) 0.
Again 220, 1 and sp, l are related (2.11) by

hpp, l ——(pwz
I 4 I) zz0, 4 (2.19)

where the zero subscript corresponds to the minus sign.
We now match (2.16) and (2.1'I) at the boundary
I

x I=X in the usual way and find, with the aid of
(2.17) and (2.19), the secular equation

42614 II v I2 —2b
I 4 l(q —q*) (kl tankl~+kp «nkpl )

+z(g+g*) ((Ip—
I $0 I' —v') (kl tanks —kp tankpx)

+4ikpk] tanks tanklhtp
I 4 I

=0 (2.20)

where $2 and 4 are the kinetic energies relative to the
Fermi level in the interior and exterior regions, re-
spectively. This eigenvalue equation has been solved
numerically for the excitation energy e as a function
of the effective well depth V for several values of the
parameter n. This parameter together with the kinetic

FIG. 3. Some ex-
amples of the bound-
state spectrum as
a function of the
well depth V for
three values of the
parameter o. defined
in the text.

0,% 0,8
V/h

energies $2 describes the angle between the directions
of propagation of the excitation and the surface of the
sample; e.g., m=0 describes motion antiparallel to the
Meissner current. In Fig. 3 we have plotted the bound-
state excitation energies as a function of the potential V.
For values of n& 206, the bound states have excitation
energies only very slightly less than 5. Therefore
0. 206, for aluminum, is approximately the maximum
value of that parameter for which there is an appreciable
reduction in the minimum excitation energy. For elec-
trons at the Fermi surface, this corresponds to an angle
8~(02/Er) Uz~(kryo) 'I'~10 ' between the surface and
the propagation direction of the electrons. Thus only
very few electrons become bound to the surface. How-
ever, these states have large amplitudes near the surface
and may therefore play an important role in surface
phenomena. The eight amplitudes No, &, vo, &, po, &, ~0,& can
be determined. by (2.17), (2.19), three of the four
matching equations, and the normalization condition

LI ~(x) I'+I s(x) I'7«=1. (2.21)
0

For electronic states with k„parallel to the screening
current the potential V is repulsive and thus there are
no states bound to the surface. Nevertheless for our
subsequent discussion of electromagnetic absorption we
must give a discussion of at least the lowest-lying
excitations of this type. We shall particularly focus on
those states in the energy range 0+V)0)5 because
only these play an important role for absorption with
501'(2A. In the exterior region

I
x I)X, Eq. (2.12) still

applies. However, there is now no possibility for exci-
tations with energies less than 6, and the kinetic energy
$0 is real. In the interior region we find

= (~'+v)'"+I v I. (2.22)

This implies imaginary kinetic energies $2 for states
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with 6+V& e& 6 and consequently expon. entially
damped waves in the surface region. These excitations
are thus states which tunnel into the region of Meissner
current Qow. They form a continuum whose density of
levels is roughly the BCS density of states. We shall
not discuss these tunneling states in more detail here
because their description is algebraically rather com-
plex.

III. ELECTROMAGNETIC ABSORPTION

Budzinski and Garfunkel4 have demonstrated by
microwave experiments in pure bulk aluminum that
the absorption of electromagnetic energy at frequencies
below (2h/h) is strongly enhanced when a static mag-
netic field (less than the critical field) is applied parallel
to the surface. In this section, we shall show that the
surface states discussed in Sec. II may be responsible
for this field-induced absorption. We shall develop some
general expression for the absorption and then make
some very crude estimates of the effects of the surface
states.

We shall begin by treating the electromagnetic Geld
as a perturbation:

electric fieM vector is rotated in the plane of the
surface. For these reasons and to simplify the notation
we shall restrict the electric field to the y axis, and then

A' = A„j'= (c/—u0) e'"'E(x)g, (3.2)

where ~ is the applied frequency and E(x) is the electric
field amplitude which, because of the surface screening
currents, falls o6 to zero in the interior of the sample
over distances of the order of the penetration depth X.
The coupling Hamiltonian may be written io second-
quantized form' by

X,it=a +*(r, n)XV(r, n)dr, (3 3)

+(r J ) =Z[&. u (r)+7 t'v *(r)j (34)

where e denotes the spin index and the field operators
0' are given in terms of the creation and annihilation
operators for quasiparticles in the state e, y„~, and p by

e(r, t' ) =g[p.tu„(r) —p„„tv„*(r)],

~'= —(e/2mc) g[P; A'(r, )+A'(r, ) P,j, (3.1) The second-quantized coupling Hamiltonian may be
written as

where the sum is over all electrons and A' is the vector
potential associated with the oscillating electric field.
Clearly the coupling of the electromagnetic field to the
surface states will be greatest if the electric field is
polarized along the direction of the Meissner current,
i.e., along the y axis. In fact Budzinski and Garfunkel
have indeed observed a strong anisotropy in the micro-
wave absorption when the polarization direction of the

jeff +D++1& (3 3)

where Xo and Ki describe, respectively: (a) the ab-

sorption of a photon accompanied by the creation of a
pair of quasiparticles (or the inverse process); (b) the
absorption of a photon by a thermal quasiparticle which
is then scattered into another quasiparticle state. Sub-
stituting (3.4) into (3.3), we find

u„'(r)R'v„*(r) dr+ u„*(r)K'v„*(r)dr +H.c., (3.6a)

+i= Q(Ynt Vyt+Vmt Vvt) u„*(r)X'u„(r)dr — v„(r)X'v„*(r)dr . (3.6b)

Using (3.f) and (3.2) for the electromagnetic perturbation together with (2.6), the pair-breaking and quasi-

particle scattering terms become

Xo ——Qv„ttv tt~ bi„„),„bi„„,),,„+H.c., (3.7a)

+i= Z(Vnt Vvt+V~t Vnt) +m~iar»ws~isv»ye~ (3.7b)

where the matrix elements M~ and 2V~ are given by

M~ = (eh'„„/imce) u„*(x)E(x)v„*(x)dx — u„*(x)E(x)vv*(x) dx, (3.8a)

(3.8b)
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AM =p~+6& (3.10)

Furthermore, the momentum conservation selection

rule requires that the two excitations have wave vectors

whose y components are equal in magnitude and oppo-

sitely directed. Therefore only one of these quasi-

particles can belong to the quasidiscrete spectrum of

surface states (described in the last section) with

energies less than d. Since we are interested in ab-

sorption at frequencies less than (2h/k), we must

excite one surface state with d&e &6—V and one

tunneling state with 2+V) p~)b, . It is interesting

to note that no such mechanism can occur in a super-

conductor with a uniform current. In that case the

Inomentum conserving quasiparticle pairs would have

a minimum total energy of 2h.
In principle, the absorption (2.9) could be explicitly

calculated using the results of the previous section.

This would, however, be rather tedious and we shall

therefore content ourselves here with making some

very crude order of magnitude estimates. First of all

the oscillating electric 6eld extends into the metal a
characteristic distance 8 which is typically of the same

order of magnitude as the effective penetration depth X.

Thus, the domain of integration in the matrix elements

(3.8) is limited to 8. In order to calculate the matrix

element M„„, we need the amplitudes u;(x) and w;(x)

The formulas (3.7a) and (3.7b) exhibit explicitly the
conservation of electronic momentum in the plane of
the surface when the photon momentum is negligible.

The electromagnetic power absorbed is given quite
generally by

W=2~ppg ((f ) X.gf ) i))'h(pg —p; —M), (3.9)
i,f

where i and f denote initial and 6nal electronic states,
respectively.

A. Absolute Zero

We shall erst restrict our discussion to absolute zero

where there are rigorously no excited states occupied.
Then only Xo is operative, i.e., the only absorption
mechanism is the excitation of a pair of quasiparticles.
The energy conservation condition is then

for both the surface and tunneling states. Near the
surface, from Sec. II, we can determine roughly that

e„(x),w„(pp)~X 'I' expL —x(P,r) "'7 (3 11)

for the surface states. The factor A. '" is a result of the
normalization condition (2.21). Notice that in our
rough approximation we have lost the distinction be-
tween the hole-like and electron-like amplitudes. This
does not imply a cancellation of the two terms in 3f~.
A more exact treatment keeping the phases of the I's
and ~'s indeed shows that no such cancellation occurs.
Similarly the tunneling-state amplitudes in the surface
region, x &6, can be given by

u (x) w (x) L "'exp(x(P, r)»'7 (3.12)

where I is the thickness of the sample. Then the
matrix element 3f~„ is of order

M„~(elk„/imam) 8(XL)»'. (3.13)

The power absorbed then becomes

W—2spp Q ~ M,~ ~'b(p, +p„5&v).— (3.14)
gP ff4

Then assuming M„„is constant and replacing the sum
over the continuum states by an integral with the BCS
density of states, we find

2~pp
~
M PQ(0) g(5(d p„)f(~——p„)'—rg7—»'

(3.15)
where the BCS density of states is

Q(p) =+)0)QI pP gP7 »—P — (3 1$)

and E(0) is the normal metal density of states at the
Fermi surface. The sum over the bound states of the
quasidiscrete spectrum is now estimated in the following
way. Given k„and k„ the eigenvalue problem de-
termines k, . If we now assume that the states of interest
lie very close to the Fermi surface, we may use (2.14)
in the form

6+~6—Vp cos(j&, (3.17)

where Vp is the value of V for k„=k~ and cosp = (k„/k~) .
Then the sum is rewritten as an integration over k„
and'k„. which in cylindrical coordinates is

Q(~—p„) [(g(g—p„)2—627»'~gkgS/(2m)'7 dk~(happ —p„)f(5(o—p )'—LP7 'I' (3.18)

(3.19)

where 5 is the surface area of the sample. The k integral is restricted by the condition that the angle 0 between

the quasiparticle propagation direction and the surface must be small, i e., the limits on the k integral are kr (1—cosg)

and kr. The p integral is limited by the fact that the minimum continuum energy is 6, i.e.,

&co c~+ 6&

or using (3.17), the maximum value of p is given by

P, =cos 'L(26 —5&v)/Vp7.

The absorbed power then becomes
(3.20)

W pp I M ~'E(0) Sky'(8'/4n)
&max

@(Spp—p ) f(5(u —p„)2—hp7»2 (3.21)
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If we form the ratio of this to the normal-metal absorption in the usual way, we find.

Ws/W„~ (hkyP/2nuoX)
4'max

dy(ke —e„)[(A(o—e„)~ —6'] 'l2 (3.22)

where we have used the free-electron expression for the
density of states

E(0) =mkr/2s'P. (3.23)

For aluminum we have seen in the previous section
that |1' 10(kryo) ' Rewriting (3.22)

&
we have

Ws/W„~5s (6/A~) (kryo) 'I(5~/6, Vo/5), (3.24)

where I is the @ integral. In the frequency regime where
absorption can occur (Sa&)26—Vo), I is a slowly

varying function of ~ and is of order unity. For alumi-

num H~(-', )H, gives Vo 5 and thus Ru;„b, as
observed by Budzinski and Garfunkel. In this case

kryo 10' which gives a relative absorption Ws/W„~
10 '. This seems to be about a factor of 5 smaller than
the observed absorption below 2A. We must emphasize
that these estimates are very crude.

B. Finite Temperature

At a finite temperature T ((T.), aside from the
temperature dependence of the energy gap, there exists
a further modification of the electromagnetic absorption
caused by thermally excited bound-state excitations.
In particular, a thermally excited surface state can
absorb a photon and be excited into the continuum

preserving the initial values of k„and k, . Of course in
addition there may be transitions between bound states.
We shall neglect such processes because of their low
density of states. However, they may play an im-
portant role in low-frequency (6'so«2d) microwave
absorption such as performed by Richards. "

The matrix elements E„„for the microwave-induced
transitions from a bound state to the continuum are
enhanced over the quasiparticle pair excitation mecha-
nism considered in the last section by the fact that the
continuum states with energies of the order of b do
not now tunnel into the surface region but are more
nearly plane-wave-1ike, i.e., they involve quasiparticles
traveling antipara11el to the screening current, for which
there is no potential barrier at the surface. The power
absorbed from the electromagnetic wave is then

W=2~~ g ~
X~ ~'( f„f,)S(;—.„5~—),—(3.25)

where the states n are the surface states and p labels
the continuum states with the same values of k„and
k, . The factors f„and f„are the corresponding Fermi
distribution functions, and

M~ exp[@(Pr) '~']. (3.26)

The analog of (3.15) is now

W 27r(o
~
X [ $(0)Q(5(o+g„)[(~+e„)2 —&2] ~12[1'(p ) —f(p +$&)] (3.27)

If we now assume Ss»k~T, the second Fermi factor appearing in (3.2T) is approximately zero, and in a similar

way to the last section the analog of (3.22) is

4'max

Ws/W„(Mp'/2euoX) exp[25(p.r)-'I']
4'm ia

~ (5co+e )[(Sa)+e„)'—S']-'I' (3.28)

where p, is now determined by the condition e„&k&T
which is

=cos ~[(D—kgyT)/Voj. (3.29)

The minimum value P;„is determined by the condition
that the state p be in the continuum, i.e., e~&A. This
gives

tf; =cos-'(Ro/Vo), (3.30)

provided that Ro(b, . If 5~)b,, g; is zero. Again

analogously to (3.24), we have

Ws/W —5~(a/k~) (kryo)
'

X exp[2h(Pf) ' ']J(&~/6 Vo/6 k~T/~) (3 31)

For example, for V0 5, k~T~B/3, 5~~(+~) 5, J is of
order unity, the exponential term is of the order 10

and we see then that this mechanism may dominate
the pair-creation term calculated before. The rough
orders of magnitude are consistent with Budzinski's
and Garfunkel's observations in aluminum and may
therefore provide the physical mechanism for the ab-
sorption below the gap. Better surface-impedance calcu-
lations should be able to prove or disprove the con-
jectures given here.

IV. CONCLUSION'S

We have shown that in a pure type-I superconductor
in a static magnetic field H ((H,) there may exist
quasiparticle excitations, bound to the surface, which
have energies less than the zero-field energy gap.

».P. L Richards, Phys. &Rev. 125, 912 (1962}.
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Assuming that (1) the order parameter is independent
of field and spatially constant (which is not self-

consistent), and (2) approximating the vector potential
by a square well (or barrier) we have calculated the
spectrum of these excited states. The bound states
occur for electrons traveling rather accurately anti-
parallel to the screening current. It would seem difficult
to observe the bound states by single-particle tunneling
because such experiments are most sensitive to quasi-
particles traveling perpendicular to the surface.

The bound states give rise to electromagnetic ab-
sorption at frequencies hen(26 even at absolute zero.
The mechanism is the excitation of a bound state and
a continuum state from the condensate. At finite tem-
peratures, such that the thermal energy is greater
than some typical bound-state energies, there exists the
somewhat stronger mechanism of the scattering of a
bound state by a photon into the continuum. Very
approximate order-of-magnitude estimates of these
processes seem to be in rough agreement with the

microwave absorption in aluminum. Furthermore at
low frequencies (f'tco((26) the electromagnetic waves
may induce transitions between bound states. This is
possibly related to Richards" observations in tin.

In addition to more precise calculations of the phe-
nomena discussed here, further studies should include
a consideration of the important effects of nonmagnetic
impurities as observed in aluminum. ~
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The ferromagnetic stability of an electron gas (with uniform positive charge background) interacting
through a Yukawa potential with an arbitrary screening parameter has been examined previously. Here
three evaluations of the screening parameter based on Thomas-Fermi, self-consistency, and plasma-cuto8
considerations are given and the corresponding ferromagnetic stability is discussed. It is concluded that for
r, &9.4, where -437f.r,' is the volume per electron, such a system may become ferromagnetic for the third type
of screening, while the other two do not exhibit ferromagnetism at all.

t 1HE first to point out that an electron gas with a..compensating positive background becomes ferro-
magnetic in the Hartree-Fock approximation if r, & 5.45
when bare Coulomb interaction is assumed to exist
between the electrons was Bloch. ' Here r, is the radius
of the sphere whose volume equals the volume per
electron and is measured in units of Bohr radius.
Wigner' pointed out that this calculation is not quite
reliable because of the neglect of Coulomb correlations
Pines3 showed from his collective description of this
system that as a result of long-range Coulomb correla-
tions, the electron-electron interaction is reduced to
an interaction of range k, ', where k, is the cutoff
momentum beyond which plasma oscillations do not
exist as stable excitations of the system. Assuming k,
to be independent of magnetization, he surmised that

' F. Bloch, Z. Physik 57, 545 (1929).
2 E. P. Wigner, Trans. Faraday Soc. 34, 678 (1938).

D. Pines, Elementary Excitations in Solids (W. A. Benjamin,
Inc. , New York, 1964); and in Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic Press Inc. , New York,
1955), Vol. 1, p. 427.

the tendency towards ferromagnetism is absent in
such a system. A more detailed calculation based on
these ideas was made by Shimuzu, 4 confirming the
conclusions of Pines. Very recently, Hedin. ' and, in
more detail, Misawa, ' used the G-ell-Mann —Brueckner
formalism to compute the tendency towards ferro-
magnetism. This calculation takes into account more
fully the dynamical correlations in the system and it
was surmised by Hedin and more conclusively by
Misawa that ferromagnetism could occur for r, )10.
A detailed discussion of the various calculations as
well as a conjecture that for r, &10 ferromagnetism
may occur, one may refer to the recent book of Her-
ring. ~ It seems to be of some interest to investigate the
effects of correlations in the form of Yukawa interac-
tion as a model. 7 Such a model, however, overlooks
completely the dynamical correlations such as plasma

' M. Shimuzu, Proc. Phys. Soc. Japan 15, 376 (1960).
~ L. Hedin, Phys. Rev. 139, A796 (1965).

S. Misawa, Phys. Rev. 140, A1645 (1965).' C. Herring, in 3fagnetism, edited by G. T. Rado and H. Suhl
(Academic Press Inc. , New York, 1966), Vol. 4, p. 29.


