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By applying the theory of correlated wave functions, Hylleraas-type functions are computed for the
beryllium atom. The theory is applied in a form in which only two-electron correlations are considered.
Several different correlation factors as well as several different combinations of orbital functions are con-
sidered. It is shown that the Hylleraas method gives better results for the energy than the superposition of
configurations in the 1s shell as well as in the 2s shell. The problem of the additivity of the correlation
energy in pairs is analyzed and it is shown that the sum of pair-correlation energies is different from the
correlation energy computed taking into account correlation in both shells simultaneously. The difference
can be positive or negative depending on the wave functions, and it is not negligible if accurate values are
required for the correlation energy. Comparing the computed values for the correlation energy resulting
from two-electron correlations with the experimental value of the correlation energy, the size of the many-
electron (more than two-electron) correlation effects is estimated. It is shown that these effects can not be
neglected if accurate values are required for the correlation energy.

1. FORMULATION OF THE PROBLEM

IN a set of previous publications! a new method for
the approximate solution of the many-electron
Schrédinger equation had been developed by one of us
(L. S.). In this method, which we called the theory of
correlated wave function, the wave function of an atom
is written as a linear combination of variational trial
functions. According to the choice of the trial functions
we obtain the following special cases of the theory:

(1) If the trial functions are linear combinations of
central-field wave functions, the method is identical
with the conventional method of superposition of
configurations.

(2) The theory is formulated in such a way that the
trial functions can depend explicitly on the distances
between the electrons. Choosing the trial functions in
this way we obtain a generalization of the Hylleraas
method? originally developed for the He-like atoms.

(3) The trial functions can be chosen as the combina-
tion of the two possibilities mentioned above.

In the present paper we apply the theory to the cal-
culation of correlated wave functions for the beryllium
atom. The calculated wave functions are of the
Hylleraas-type, i.e., we followed the choice mentioned
under (2) above. The purposes of the calculations are:

(1) To show that the Hylleraas method gives better
results than the superposition of configurations;

(2) To test which particular type of one-electron
orbitals give the best results in a Hylleraas-type
calculation;

(3) To try to find the best numerical methods for

* Part of a Ph.D. thesis submitted to the Physics Department,
Fordham University, by J. Byrne.
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carrying out a Hylleraas-type calculation for atoms with
arbitrary number of electrons.

The calculations are carried out for the beryllium
atom because calculations had been done for this atom
with other methods,® so we are able to compare our
results with the results of other calculations. Also, the
mathematical difficulties occurring in Hylleraas-type
calculations for atoms with arbitrary number of elec-
trons, are already occurring in a calculation for the
beryllium atom (which is not true for the calculations
for the He- or Li-like atoms). In other words, the theory
of correlated wave functions which is developed for
atoms with any number of electrons can be fully
tested in the case of the beryllium atom.

2. THE THEORY OF CORRELATED WAVE
FUNCTIONS

The theory has been described in detail before?;
therefore in this section we restrict ourselves to the
essential formulas. Let us consider an atom with N
electrons. Let ¢1(q), ¢2(q), ¢3(q),- -, ¢n(g) be a set of
orthonormal spin orbitals which characterize the atom
in the Hartree-Fock approximation.® Let us denote the
spatial and spin coordinates of the jth electron by
¢;=(2;,9;,2;,05). In the Hartree-Fock (H-F) approxi-
mation the wave function of the atom is given by

e1(1) - eu(V)
e2(1) -+ o) |.

on(1)- - on(N)
(2.1)

1
Yr=-

- I . =
vV detl ¢102° - - o]

3 See the discussion in Sec. V.

4The theory was first developed to describe only 2-electron
correlations: L. Szasz, Z. Naturforsch. 15a, 909 (1960).

5 The general theory describing correlations of any order is
developed in the first part of this series: L. Szasz, Phys. Rev. 126,
169 (1962).

6 In other words these are the orbitals which characterize the
atom in the single-determinantal approximation. The ¢’s are not
necessarily the H-F orbitals.
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We now introduce correlated wave functions. First, let us expand (2.1) in terms of the orbitals ¢; and ¢x:

N N

w:\/ (N :21 t=s+1

1 ei(1)

— 1)i+k+s+t

__ 1 ( ¢i(2)
vy e o2

ei(s) i)
D

W=D (k| st
ox(s)  en(?) Gl

D<N—2>(z‘k[12)} . (2.2)

In this formula the first line is the ordinary Laplace expansion of the Slater determinant; DW= (zk|sf) is an
(N—2)X (N—2) determinant which is obtained from (2.1) by striking out the rows containing the functions ¢;

and ¢, and the columns containing ¢, and g¢,:

eia(1)
s0¢+_1(1)

«Dk—.l(l)
90k+_1(1)

ex (D)

DW=D(ik|st)=

In the second line of (2.2) 4, is a partial antisymmetrizer
operator’” which generates the totally antisymmetric
Yr from the expression in the curly bracket.

Let us introduce now the antisymmetric but otherwise
completely arbitrary function ®(ij|qiq)=®(i7]12).
The letters (4,7) indicate that this function will replace
the antisymmetric product of the spin-orbitals ¢; and
@;. To the right of the vertical bar in the ® we indicate
that this function depends on the coordinates ¢i, ¢o.
Let us replace now the (2)X2) determinant in (2.2) by
the function ®, and then we get a correlated wave
SJunction:

1
ik)= Y10 =2 (; . (@
f(ik) D {®(ik |12)DV-D(ik[12)}. (2.4)

v (
In this function the correlation between the electron

states ¢ and k can be taken into account by writing &
in the appropriate form. The wave function in which all

e1(1) - pls=Derls+1) - erlt=1) @1(t4+1) - - - (V)

(2.3)

- gn()

2-electron correlations are taken into account will be
written in the forms3

Y=yt 1), (2.5)
%]

where Y is given by (2.1) and f(45) by (2.4); the sum-

mation in (2.5) is taken for all electron pairs.

In the ansaiz (2.5) only the 2-electron correlations are
taken into account. Higher-order correlations are intro-
duced similarly. We define correlation functions® repre-
senting the higher-order correlations. Let us denote
these by

®(3,7,1[1,2,3)
®(i,4,l,k[1,2,3,4) (2.6)

&)(1:2)' : ',N11,2,' ) N)

Similarly to (2.4) we introduce higher-order correlated
Sfunctions by the following definitions:

1
f(i,j,l)z——ﬂﬂ A B(551|123)DA=D(;71[123)}

v (

1
1Gyg b k) =————A { ®(i5lk | 1234) DNV (35Ik | 1234)}
. v (V)

2.7)

' 1
f(1,2,-- ~,N)E;——¢(1,2,3,. S N|1,2,3,---N),

(W

"In the present papet we use the symbol A, rather freely in various expressions. It always means an operator which anti-
symmetrizes the expression on which it operates, although its specific meaning may be different in the different expressions.

8 First suggested in Ref. 4, Eq. (10).
9 The nomenclature was developed in Ref. 5, Sec. 2.
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where the 4, are partial antisymmetrizer operators.
The wave function in which all correlations are taken
into account is written in the form!?

where the summations are for all spin-orbital pairs in
the second term, for all spin-orbital triplets in the third
term, etc. The properties of the functions (2.5) and
(2.8) had been discussed in detail before.*® Here we
mention only that if the correlation functions are ex-
panded in terms of determinants built from central-field
wave functions, then (2.5) and (2.8) are identical with
the superposition of configurations. In this case (2.5)
represents a function with only the single- and double-
substitution configurations; in (2.8) configurations of all
orders can be included. The function (2.8) has the form
of the exact solution of the many-electron Schrédinger
equation. The generalization of the Hylleraas method?
on the other hand, is obtained by introducing the inter-
electronic distance 715 into ®(ik|12) in (2.5) and by
introducing the interelectronic distances 7y, 713, -,
in the higher-order correlation functions (2.6).

In the present paper we use only the ansatz (2.5). The
actual calculations are done as follows. Let us introduce
a set of variational trial functions for the electron pair
(,k) denoted by ®4(ik|12) where A=1,2,---M. In-
troducing the variational parameters C4(ik), we write

M

B(ik|12)= 3, Ca(ik){Pa(ik|12)}. (2.9)
A=1

Introducing the notation

1
A ) E———J,, A ) N=2)(5 s . /
fa(ik) N {4 (ik|12)DV=2(ik[12)}, (2.9")

we get for the correlated wave function (2.4) by putting
® in the form given by (2.9):

f(ik)= ,:Z: Ca(ik) falie). (2.10)

Let us introduce the Hamiltonian of the N-electron
atom:

N N N
H= _Z(Ti"l“ Utz 2 X Wy, (2.11)
=1 1‘—('1:1?27].):1
where
Tz': %Ah
Z
Ui=——,
i (2.12)
1
Wij=—,
7ij

10 Suggested in Ref. 5, Eq. (2.11).
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the terms having their usual meaning (in atomic units).
Also let

N N
wW=% 3> Z Wi (2.13)
P

N
T=Z Ti’ U=ZUZ:

=1 =1

Let us simplify the notation in (2.10) by condensing the
indices (7k) into the single index @, and put

fl= :Z; Cu() fala). (2.14)

Let us assume that the values 4 =0, a=0 characterize

the H-F function, i.e., we put
Co(0)=1,
fo(0)=vr.

With this notation (2.5) becomes

(2.15)

V=3 % Cale)fala)

a=0 A=0

L M
=yrt+ 2. 2 Cal®)fale). (2.17)
a=1 A=1
The energy of the atom is given by
wlm)

(¥[w)
Z X Ca*(@CsB){fal@) [H| f5(8))

a,4 B,B

X CaH@)CsB)(fa(@) | f5(8))

a,A B,B

(2.18)

Applying the energy-minimum principle we get the
equation

g CrB){(fa(e) | H| f5(8))— E(fa(@)| f5(8))}=0,

(@=0,1,2,---L; 4=0,1,2,---M), (2.19)
from which the secular equation is obtained:
det[(fa(e) | H| f5(8))— E{fa(@)| fz(8))]=0,

(¢,8=0,1,---L; 4, B=0,1,---M). (2.20)

The calculations are carried out as follows. We choose
a set of correlated functions ¢ 4(ik|12) for each electron
pair (3,k). Forming with ¢4 the correlated function f,4
according to formula (2.9") we calculate the matrix
elements occurring in (2.20), and solve the equation for
the lowest E. The difficult part of the calculation is the
calculation of the matrix components.

General formulas for the matrix components have
been derived in the previous papers*®1! and it has been
shown that the calculation of these matrix components
can be reduced to the calculation of six relatively simple

11 Besides Refs. 4 and 5 a detailed presentation of these matrix

components is given in the paper by L. Szasz, J. Math. Phys.
3, 1147 (1962).
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basic integrals.!* (For an atom with an arbitrary number
of electrons.) The method for the numerical calculation
of the six basic integrals is outlined in the Appendix.
The convergence of the calculations can be improved
by introducing an over-all scale factor 2. We replace the
original function ¥(g) by the normalized, scaled function

U= OV DY (kg), (2.21)

where ¢ stands for all particle coordinates g1, go,* * * gn.
The only change in the formalism is that the secular
equation becomes

det[k*(fa(@) | T| f2(8)+k{{fa@) [ U] f5(8))
+{fa@) [ W] f58))} — E{fa(@)| f(8))]1=0,

(@,8=0,1,--L; 4, B=0,1,---M). (2.22)

In this case the solution E of Eq. (2.22) is computed for
different values of & and from the curve E(k), thedeepest
value being selected.

One word about the general character of the matrix
components. Let us reintroduce the indices (7,k) instead
of a. We call “diagonal” the matrix components of the
type

(fa(ik) | H| f5(ik)) (2.23)

in which, on either side of the operator H, the indices
refer to the same spin-orbital pair (3,k). We call this a
diagonal matrix component in spite of the fact that
fa(ik) and fp(ik) contains the functions ¢4(tk) and
¢5(ik) which may be different functions of r; and re, as
indicated by the different indices 4 and B. On the other
hand, matrix components of the type

(faGR) | H| f5(RD)),
(faGR) [ H| f5(5D))

are called off-diagonal matrix components.

The normalization and orthogonality conditions to
which the wave functions are subjected are as follows:
The one-electron orbitals are orthonormal:

(2.242)
(2.24b)

f‘Pi*‘Pkdq:aik) (1, k=1,2,---N). (2.25)

The two-electron functions are orthogonal to the one-
electron functions in the following way:

/ $a(ik112) 0 (Vds=0,

(G, k=1,2,---N;s#i, k). (2.26)

[The ¢4(ik|12) is not orthogonal to ¢; and ¢;.] The
orthogonality (2.26) can be accomplished as follows.
Let ¢4°(ik|12) be an arbitrary two-electron function
which does not satisfy (2.26). Then we put

ba(ik[12)

=[1-0(1)—22)+2(1)2(2)Je4 (ik|12), (2.27)
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where Q(1) is the following projection operator:

W= = o) [ e@idim. 229
i

It had been shown*?® that this type of orthogonalization
does not change the total wave function, i.e., we have

1
falik) =m21“ {94 |12) DV-D(ik|12)}

1
= A {$a(iE|12)DE-D(ik|12)}.  (2.29)
V(N

The normalization of the ¢4(ik|12) is not necessary if
we work with the energy expression as given by (2.18).

3. THE CALCULATION

The electron configuration of the Be atom is (15)2(2s)2
Therefore, the total correlated wave function is of the
form

W =yp+ f(1s,15)+4f(1s,25)+ f(25,25)
+2f(1s,15,25)+21(1s,25,25)+ f(1s,15,25,25).  (3.1)

In the present paper we neglect the 3- and 4-particle
correlations and the (1s-2s) correlation, i.e., we put

W=y f(1s,15)+ f(25,25). (3.2)

For yr we put
1
Yr= AL e1(1)ea(2) 0s(3)0a(4)],  (3.3)

v (4)
where

<P1=¢1s(t)a ) Y3= ‘PZS(r)a )

er=Y1,(1)B, 1=, (1)8, G4

(¢ and B are the spin functions). The ¥1, and », are
orthonormal, i.e,,

/\h*xl/kdv:é,-k, (1, k=1s, 25). (3.5)
We simplify the notation by writing
Vi=v1, Y2 =vo. (3.5)
For f(1s,1s) and f(2s,25) we put
1
(15,18) =———A p{¢"(15,15]12
f ) »{9"(15,15]12)
XD®-(15,15|1,2)}, (3.6)

1
£(25,28) =———A ,{¢"(25,25 | 12) DN-D (25,25 12) } ,
v (4)

where ¢°(1s,1s) and ¢°(2s5,25) are not satisfying any
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orthogonality conditions. We put now

¢°(1s,15] 12)=Z_ a:p(1s,15]12) 3.7

and

$°(25,25]1,2) = % bi6h(25,25(1,2), (3.8)

where the a; and b; are variational parameters. We put
the 2-electron functions in the form

6:°(15,15|1,2) =¥s(ri)ys(rs) gi(rirarz)

X [(1)8(2)—a(2)8(1)],
:°(25,25[1,2) =yu(rpa(re) gs(rirerie)

X [«(1)B8(2)—a(2)8(1)],

where ¥3 and ¥, are radial functions which depend only
on 7, g; is a correlation factor depending on 7, 79, 719,
and we assume that g; is symmetric. The spin function
in the bracket is the (unnormalized) singlet spin func-
tion for 2 particles. The ¢%(1s,1s) and ¢:°(2s,2s) are
antisymmetric, due to the spin part. They are not
normalized. In the following discussion we use the
notation 7(1,2)=a(1)8(2)—a(2)8(1).

Having determined the general form of the trial
functions we must choose specific functions for ¥4, ¥s,
Y3, ¥4 and for g;.

(3.9)

A. The Choice of the One-Electron Orbitals for ij;— ;4

We would like to choose these orbitals in such a way
as to get the best results with the minimum amount of
mathematical difficulties in the calculations. The most
obvious choices for Y1y are either the H-F functions
or analytic Slater type functions. The arguments in
favor of the H-F functions are the following: First,
since these are the best orbitals in a single determinantal
ansalz, the starting energy from which we try to ap-
proach the exact eigenvalue of the Schrodinger equation
is the best possible which can be obtained with a single
determinant; secondly, the analytic H-F functions are
becoming available for many atoms,? and can be used
conveniently in calculations of this type. On the other
hand, as we have pointed out before,'® in an ansatz of
the form of (2.5) the H-F functions do not make the
energy an absolute minimum. In other words, if we
derive the equations for the best one-electron orbitals
of the ansatz (2.5), these equations will be different from
the H-F equations, which means that the best orbitals
in an ansatz of the type (2.5) are not the (H-F) orbitals,
In our opinion at the present time there is no clear-cut
evidence which would show whether the H-F orbitals or
the analytic Slater orbitals (or some other possibility)
should be used in an ansatz with correlated wave
functions.

In the absence of a clear-cut method for the choice of

12 See, for instance, the recent calculations by E. Clementi [IBM
J. Res. Develop. 9, 2 (1965)7] and “Tables of Atomic Functions,”

which is a supplement to the paper above.
131, Szasz, Phys. Rev. 132, 936 (1963).
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the one-electron orbitals we decided to test various
types of orbital combinations for y;-¢4 and check which
combination gives the best energy. This is presented
below. Fortunately we were able to develop a completely
numerical method for the calculation of the necessary
integrals for the secular equation. This numerical
method works in the same way regardless of the form of
the orbitals y1-¢4, i.e., it does not matter whether the
orbitals are simple analytic expressions like the Slater
orbitals or more complicated analytic expressions like
the Roothaan-type H-F orbitals (or functions given in
the form of tables). The numerical method is described
in the Appendix.

B. The Choice of the Correlation Factors

Here we follow the method of Hylleraas.? In the
original calculations for He, Hylleraas suggested to put
the correlation factor in the form of a power series in
s, t, w, where s=r+ry, i=ry—r1, u=r12. These com-
binations are convenient for He but #ot convenient for
atoms with more than 2 electrons. For machine cal-
culations the best form is what was suggested by James
and Coolidge and used successfully for the Li atom.
We put
(3.10)

Here o, 8, v are positive integers or zero; g; is put in
symmetric form. The calculation was done in such a
way that a general program has been written for the
matrix components with an arbitrary combination of
the parameters «, 8, ¥ and for arbitrary one-electron
functions ¥1-¥4. In each case we have first calculated the
(1s-1s) and (2s-2s) correlations separately, and after
that we have calculated the combined total correlation
energy.

8= Gapy= (r1°7P+71Pre®)r1a.

C. (1s—1s) Correlation

In the case of the He atom a six-parameter wave
function gave good results. Therefore we first tried the
ansatz:

1
\I/=—““Av }011!#12
@) {@:(1)¥a(2)

F+s(Ds(2) a1t as(ritrs)+as(ri2+7:2)
+ a1+ asrrs D (34w}, (3.11)

where 4 is again the antisymmetrizer operator, w is the
spin function,

w=a(1)8(2)x(3)8(4) , (3.12)

and the variational parameters for the K shell are de-
noted by a; (=1, 2,--+). The coordinates of the two
1s electrons are denoted by 1, 2, the coordinates of the
two 2s electrons by 3, 4. For y1-¢s we have first tried
Slater type orbitals, which are

Y= A 27| Yo=A[re7r— Be2r],  (3.13)
14 H, M. James and A. S. Coolidge, Phys. Rev. 49, 688 (1936).
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TaBLE I. The correlation energy in the (1s) shell (all energies in a.u.).
Number of Percentage
Hylleraas-type Correlation of total
Wave function ¥ and ¥e ¥s terms Energy energy correlation
(3.11) Slater orbitals Ys=yn 6 —14.6118 —0.0388 41.1
(3.11) H-F functions Ys=in 6 —14.6140 —0.0410 43.4
(3.11) H-F functions Yz= S."7I‘.O.a 6 —14.6145 —0.0415 43.9
Z3=3.
(3.21) H-F functions Yy= S.:]I‘.O. 11 —14.6153 —0.0423 4.8
Z 3= 3

a Slater type orbital.

where 4; and 4, are normalization constants, B is
determined in such a way that ¥, is orthogonal to ¢ and
Z, and Z, are variational parameters. These are de-
termined by minimizing the energy with a single de-
terminantal wave function built from the functions

(3.13). We have

Z,=3.6847,
Z,=0.9562,

For ¢35 we put

A,=3.9905,

B=2.5883, (34

A2=0.2966.

Vs=y1.

(3.15)

Minimizing the energy with respect to the parameters
a1-a5 and an over-all scale factor & we obtain

i=—14.6118 au., (k=0991).  (3.16)

The Hartree-Fock energy is E=—14.5730 a.u. and the
exact eigenvalue of the total Hamiltonian is estimated
to be E=—14.6674 a.u.'? The results are collected in
Table I.

Next we tried H-F functions for ¢1-¢3. We have used
the analytic functions computed by Roothaan, Sachs,
and Weiss.?® These are of the form:

¥1=[0.088737(6.5%/7)/24+0.004895(6.55/37) /%] exp(— 6.57)
+[0.935313(3.4% /) 1/2— 0.022712(3.4%/31) /% ] exp(—3.47)

+[0.004590(0.9%/)/2—0.002201(0.9%/37) /2] exp(—0.97) ,

(3.17)

¥o=[0.075841(6.5%/)/24-0.028953(6.55/37) /%] exp(—6.57)
+[0.064546(3.4% /) 1/2+0.208057 (3.45/37) 1% ] exp(— 3.47)
—[0.386020(0.93/)1/240.740733(0.95/3) Y2 ] exp(—0.97) .

Minimizing again with respect to @1-a5 and & we get
E=-—14.6140 a.u., (k=1.000). (3.18)

Next we have tried a combination of H-F and Slater
orbitals. For ¢; and ¢» we put the H-F functions (3.17)
and for 3 we put the Slater-type functions

Ya=Age %, (3.19)

where 43 is again a normalization constant. This choice
enables us to test whether the energy can be improved
by varying Zs. We have computed the energy for various
values of Z3, minimizing the parameters a1-a5 and % with
each value of Z3. We obtained the following results:

Z3 E (a.u.)
4.33 —14.6133
4.00 —14.6142
3.85 —14.61445 (3.20)
3.70 —14.6145
3.60 —14.6143

It is clear that the minimum is at about Z3=3.7. In the
remaining part of the calculations we have used this
value for Z;. (For this Z; we get k=1.000.)

Comparing the first three entries of Table I, we see
that the combination which gives the best results is
H-F functions for y;1-¢» and Slater type functions for y;.
We note that the value of Z;=3.7 is very close to the
original value of Z;=3.6847 computed without cor-
relation factors.

Our next goal was to compute the best wave func-
tions for (1s-1s) correlation. It is clear that from the
6-term wave functions listed in Table I we have tried
to improve that one which gave the best energy, i.e.,
the third combination. The procedure is as follows.
We have added to the 6-term wave function those
terms of the Hylleraas expansion which have the next
higher powers of 71, 7, and 71,. First we have added one
term at a time observing the improvement in energy.
Then we selected those terms which gave the best im-
provement and extended the wave functions by adding
them to the 6-term expression. In addition to the higher-
order terms we have added also the term ¢3(1)ys(2)
without any correlation factor.

The best wave function for the (1s-1s) correlation

15 C. C. J. Roothaan, L. M. Sachs, and A. W. Weiss, Rev. Mod.
Phys. 32, 186 (1960).
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TaBLE II. The correlation energy in the (2s) shell (all energies in a.u.).

Number of

Percentage

Hylleraas-type Correlation of total
Wave function ¥1 and ¥ 2 terms Energy energy correlation
(3.23) Slater orbitals Va=y2 6 —14.58895 —0.0159 16.8
(3.23) H-F functions Ya=y2 6 —14.60585 —0.03285 34.7
(3.23) H-F functions Y= SQTO 6 —14.61565 —0.04265 45.1
Z4=0.
(3.28) H-F functions Y= S;I‘O 17 —14.61750 —0.0445 47.1
Z4=0.

then becomes

1
U =——A{@1(D¢1(2) +s(1)¥s(2) a1+ asrre
V/(41)

+as(rit-r2)+aa(ri®+r2) +-asri?

+aerirat ar(ritro)rit-asrie?

Fag(r14-r2)ri*+aro(ritre)rie¥])
Xpa(3)pa(4)w} .

In this function y1-¢» are the H-F functions (3.18), ¢
is the Slater function (3.19) with Z3=3.7, and the energy
obtained is

E=—14.61535 a.u.,

(listed as No. 4 in Table I).

We have established that with the given set of one-
electron orbitals Y1, ¥, ¥, the convergence limit for the
(15-15) correlated wave function is reached with the
value (3.22). This was established in such a way that
we have tried to add additional terms to (3.21) and
improve the energy (3.22); it became clear that the
addition of further terms does not have any effect on
the energy (3.22). Therefore the correlation energy of
the 1s electrons is

Eeorr(15-15)=—0.04235 a.u.=—1.152 €V,

(3.21)

(k=0.999)  (3.22)

D. The (2s—2s) Correlation

In the case of the (2s-25s) correlation we do not have
the guideline of the He calculations. In the absence of
such guidelines we have tried first the same 6-parameter
wave functions as in the case of the 1s electrons. We
have put

1
¥ =——A{@2(3)¢2(4)+¥a(3)¥a(4)
\/(4)) {

X [byrsat-ba(rstra)+bs(rs®+742)
Foarsl2+bsrr s DD (2)w} .

For the one-electron orbitals we have put first the
Slater functions given by (3.13). For ¢4 we put Ys=1:
and obtained

E=—14.58895 a.u.,

(3.23)

(k=1.004).  (3.24)

Next we have put H-F functions for the one-electron
orbitals, i.e., we put for ¢, and ¥, the functions given in
(3.17) and for ¥4 we again put Ys=v.. The result is

=—14.60585 a.u., (k=1.000),  (3.25)

which is a considerable improvement over (3.24).

Next we have tried a combination of H-F and Slater
functions, similarly as we have done in the case of 1s
electrons. For ¢, and ¢» we put the H-F functions (3.17).
For ¢4 we should put the 2s Slater function given by
(3.13). This can be simplified, however, remembering
that the 2-electron functions are orthogonalized to ¥y
in Eq. (2.27). Therefore the second term in the Slater
function (3.13) is not necessary. Also the 2s Slater func-
tion is of the form re¢=2¢"; in our case however, we can
drop the 7 because we have the option of selecting any
power of 7 in the correlation factor. Therefore we put
for ¥4,

Ya=A 7%, (3.26)

where 44 is a normalization constant. Then we calcu-
lated the energy with this combination and with the 6
terms given in (3.23). The calculations were done for
different values of Z4 to see which value gives the best
energy. The results are

Z4 E (a.u.)
0.95 —14.61525
0.90 —14.61565 (3.27)
0.85 —14.61555
0.80 —14.61505

from which it is clear that the best energy is at about
Z,=0.9. In the remaining part of the calculations we
have used the value 0.9 for Z, (£=1.001). The results
of the first three trials are given in Table II.

It is clear from Table II that the combination H-F/
Slater orbitals gives the best results for this particular
set of parameters. The next step was to take this com-
bination which gave the best results and try to improve
it by adding more terms. This was done in such a way
that we took those terms of the Hylleraas expansion
which have the next higher powers beyond the terms
given in (3.23), and added these terms one by one to
(3.23). Observing the improvement in the energy, we
selected those terms which gave the best results sepa-
rately and then added them simultaneously to the func-
tions (3.23). Repeating this procedure several times,
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we arrived at the following function:

1
Vo GO bt bt rd Fb e brid) oo
. Fberaratba(rstra)rsatbs(rstra)rsdtbo(rsiratrors®) +brorsr i +bursd+bia(rs'+rst)
+1)131’337’43+b147344+1)15(7’3+7’4)7'343‘1‘516(”337'4""7’8"43) ])¢1(1)¢1(2)w} P (3-28)

which gives the energy
E=—14.61750 a.u.; (k=0.999). (3.29)

Here we have established similarly, as in the case of the (1s-1s) correlation, that (3.29) is the convergence limit
for the energy with the given set of one-electron orbitals. In other words we have established that the addition of
further terms to (3.28) does not have any effect on the energy (3.29). Therefore for the given set of one-electron
orbitals the best value of energy for the 2s-2s correlation which can be computed with a simple Hylleraas type
power series is given by (3.29). The correlation energy for the 2s electron is therefore

FEoore(25-25) = —0.04450 a.u.= —1.210 eV..

E. Total Correlation

Our next task is to compute the total correlation energy. This is done in such a way that we include correlation in
the wave functions simultaneously in the (1s) and in the (2s) subshell. Naturally we expect to obtain the best
value by combining those wave functions which gave the best value for the 1s-1s and 2s-2s correlations separately.
Besides this, we have tried also other combinations.

Let us consider Tables T and II. In each of the tables the first entry is the correlated function with Slater-type
orbitals. Since this combination does not give a good result in the 25-2s case we started with the second entry which
is the correlated orbital with the H-F functions. We set up the wave functions as a combination of the functions
(3.11) and (3.23), i.e., we put

\I'=V—(14!~)Z {1 (DYa(2)¢2(3)¢=(4)
Fya(1)ys(2)[arriet-as(ritra)+ as(ri?+re2) +agio®+ asrirs JWa(3)ya(4)
F a3 a(4) [brrsatba(rs+trs)+bs(rs2+7a)+Fbarsd~+bsrsr s W1 (Dya(2))w} . (3.30)
In this function ¢, and ¥, are the H-F functions given by (3.17) and ys=y1, Y4=ys. We obtained the energy
E=—14.6455 au., (k=1.02). (3.31)

At this point we checked whether the energy value (3.31) gives a correlation energy which is approximately the
sum of the (1s-1s) and (2s-2s) correlation energies computed separately with the corresponding wave functions.
In Tables I and II the corresponding entries (the second line) give the following correlation energies:

E (15s-15)=—0.0410 a.u.,
E,(25-25)=—0.03285 a.u.,
E (15-15)+ E.(25-25)=—0.07385 a.u.

The total correlation energy, denoted by Er., as given by (3.31), is
Ep,=—0.0725 a.u.
Therefore we see that E,(1s-15)+ E,(2s-25)5% Ep, and the difference is
En=Ep,—[E.(15-15)+ E:(2s-25) ]=+0.00135 a.u.

If the correlation energy would be additive in electron pairs, Ex would be zero. The size of Ex shows to what
extent the correlation energy is not additive.

Next we have combined the functions given in the third row of the Tables I and II. We considered again the
functions (3.30) but now ¥, and ¥, are the HF functions and ¢35 and ¥4 are Slater functions given by (3.19) and
(3.26) with Z3=3.7 and Z,=0.9. We have the energy

E=—14.6542 a.u., (k=1.012) (3.32)
considerably better than (3.31). Again we calculated E, and we got LEa=-0.0034 a.u.
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At this point we wanted to check how good the results would be if we replaced the H-F orbitals in this ansatz
by Slater functions. Therefore we considered again (3.30), but now ¥, and ¢ are the Slater functions (3.13) whereas
Y3 and 4 are again given by (3.19) and (3.26). We obtained

=—14.6525 a.u.,

(k=1.012), (3.33)

and for Ea we get Ea=—0.0115 a.u. It is interesting to note that E, is negative with this combination.
Finally we combined the functions in the fourth rows of Tables I and II. We considered the function

1
W= ——A{W1(1)Y1(2)¢2(3)Wa(4) +¥s(1)¥s(2) [a1+ axriat-as(ritr2) +as(ri2+7:2) + asrio®+aerirs

V(4)

+ar(ritr2)r1at asried+ag(ritre)r102 4 aro0(rit-ro) 1o Wa(3)we(4) +¥4(3)Wa(4) [b1t-barsa+ba(rs+rs)
Fb4(rs2F72)+bsrs+bersrat-br(rstra)rsat-bs(rst-7a)rsd+bo(r2rs+rars?) + o107 241173

F-b12(rs* 742 +b1575%r 4-b14734 - b15 (st 74738+ b16(rsratrar®) W1y (2))w}

and we obtained

E=—14.6565 a.u., (k=1.015) (3.35)

and
Ea=+0.0033 a.u.

The best result for the correlation energy is therefore
obtained with (3.34) and we have

Ep,=—0.0835 a.u.=—2.2719¢V. (3.36)
The results of the calculation of the total correlation
are given in Table III.
F. Simplified Wave Functions

We wanted to see how good the results could be when
obtained by using just one 712 term in both shells. First
we considered the two shells separately. We put for the
1s shell

1
=——A {1 (D12 3a() [ 1+-ar12Jw),  (3.37)
v (4)

and for the (2s) shell
1
=——A (D 23e(4)[1+brrssTw};  (3.38)
v (4))

and finally we combined the two functions above and
put
T
= ——A{Y1(1)¥1(2)¢2(3)¢=(4)
v (4
X [1+¢117’12+b17’34:]w} .

In these functions y; and s are the H-F orbitals. The
results are as follows?®:

(3.39)

Function Energy Corr. energy  Ea k
(3.37) —14.60465 —0.03165 1.034
(3.38) —14.59355 —0.02055 oo 1.009
(3.39) —14.6316 —0.05859 —0.0064 1.045

16 Al energies are in atomic units.

(3.34)

It is interesting to note that in this case the combined
result computed with (3.39) is much better than the
sum of the separate results calculated with (3.37)
and (3.38) and therefore Ex is negative and fairly
large. This can be easily explained by looking at the
scale factors. The scale factor in the combined function
(3.39) is larger than in the separate cases (3.37) and
(3.38). Now a larger & means deeper energy, since the
center of the charge distribution is shifted toward the
nucleus with increasing k. In the wave function (3.37)
and (3.38) one of the shells is uncorrelated. On the
other hand, since the scale factor is common to both
shells, if one of the shells is uncorrelated the scale fac-
tor tends to be closer to 1 since if both shells are un-
correlated its value is exactly 1. If both shells are cor-
related as in (3.39), the scale factor can be (and is)
larger, resulting in the negative Ex and in the good
energy obtained with the function (3.39).

4. EVALUATION OF RESULTS

The correct value of the total correlation energy is
estimated to be!? E,=-—0.0944 a.u. We obtained
Ep,=—0.0835 a.u. which gives 88.49, of the correla-
tion energy. This can be considered a very good result
since now the accuracy of the calculation is improved
from 0.649, in the H-F calculation to 0.0749, in the
present calculation. The rest of the correlation energy
is probably due to the (15-2s) correlation which we have
not considered and to the 3- and 4-electron correlations
which are also neglected. The size of the (1s-25) cor-
relation is about —0.0050 a.u. (see next section).
The size of the many-electron effects is not known; the
calculations of Watson'’ indicate that the 3-electron
correlations are negligible, but the 4-electron correla-
tions are not. If the estimate —0.0050 a.u. is correct
for the (1s-2s) correlation, then the size of the 4-electron
effects is about —0.0060 a.u.

The main result of the calculations is that the
Hylleraas-type expansion gives good results for the Be

17 R. E. Watson, Phys. Rev. 119, 170 (1960).
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TasLE III. The total correlation energy (all energies in a.u.).

Number of
terms % of total
Wave function Y1 and s s and ¥y s 2s Energy E, Ea corr.
(3.30) H-F functions Vs=yy, Ya=a 5 5 —14.6455 —0.0725 -+0.00135 76.8
(3.30) H-F functions Y3 by (3.19); ¥4 by (3.26) 5 5 —14.6542 —0.0812 +0.0034 86.0
(3.30) ¥1 and ¢z by (3.13) ¥3 by (3.19); ¥4 by (3.26) 5 5 —14.6525 —0.0795 —0.0115 84.2
(3.34) H-F functions Y3 by (3.19); ¥4 by (3.26) 10 16 —14.6565 —0.0835 +0.0033 88.4

atom. As we will show in the next section, the results
are better than the results of the calculations with super-
position of configurations, and this is true in the (1s)
shell as well as in the (2s) shell. It is interesting that the
correlation energy is not additive in pairs. The validity
of this statement depends of course on the degree of
accuracy we require. Example: The best results (indeed
the convergence limits) for the (1s-1s) and (2s-25)
correlations are

E (1s-15)=—0.04235 a.u.,
E (2s-25)=—0.04450 a.u.,
E,(15-15)+ E,(2s-25s) = —0.08685 a.u.

On the other hand, the total correlation obtained with
the function (3.34) gives Er.=—0.08350 a.u. The dif-
ference E, is only —0.0033 a.u., which is about 49, of
the total; therefore one could say that correlation
energy is additive in a very good approximation. On
the other hand, if E5 would indeed be zero, then the cor-
relation energy obtained with (3.34) would be E (1s-1s)
+E.(25-25)=—0.08685 a.u., which would be a con-
siderably better result than the result actually obtained.
A byproduct of this consideration is the observation
that the whole concept of “(1s-1s) correlation” or
“(2s-2s) correlation” has limited validity only. It is
not exactly clear what is meant by these concepts, since
we get different results for these quantities if we
compute them separately or if we compute them
simultaneously.

5. COMPARISON WITH OTHER CALCULATIONS

For the Be atom there are two large-scale calcula-
tions with the superposition of configurations and one
calculation with the perturbation method. (These are
the only large scale ab wnitio calculations, i.e., calcula-
tions in which the exact Hamiltonian is used.) In
the calculation of Watson!” 37 configurations gave
E=—14.6574 a.u. The breakdown according to con-
tributions in the various shells is as follows!8:

E, (1s-1s)  =-—0.0376 a.u. (22 configurations)

E, (2s-2s) =-—0.0417 a.u. (5 configurations)

E, (1s-2s) =-—0.0022 a.u. (4 configurations)

E, (4-electron=—0.0028 a.u. (3 configurations).
effects)

Eq, =—0.0843 a.u.

18 Two configurations listed by Watson do not improve the
energy given to six figures.

For comparison our results are

Eo(15-15)= —0.0423 a.u.
E,(25-25)=—0.0412 a.u.

(10 parameters),
(16 parameters).

There is an ambiguity in this presentation, since we
cannot write here the best value for the 1s-1s and for the
2s5-2s correlation but only their contributions to the
final energy (3.35), and we get different values for
E.(15-1s) and E,(2s-2s) depending on which one is com-
puted first (this is the result of Ea520). There is no
ambiguity, however, if we compare the sumE, (1s-1s)
+ E.(2s-2s). Then we get

Watson:

E (1s-18)+E,(25-25)= —0.0793 a.u.
(27 configurations);
Present calculation:

E (1s-15)+E,(25-25) = —0.0835 a.u.
(26 parameters).

The comparison is very favorable for the Hylleraas
expansion since we have a better energy with the same
size expansion. It is demonstrated clearly that in this
case the Hylleraas method gives better results than the
superposition of configurations. There is one feature of
the calculations with superposition of configurations
which we want to discuss here. It was pointed out by
Watson'” that in the (2s) shell the superposition of just
2 configurations, the (25)?4-(2p)? gave an improvement
in the energy E,=—0.04116 a.u. The addition of the
configuration d? to the above two configurations im-
proved the energy only by —0.0004 a.u. From the total
correlation energy in the (2s) shell, for which Watson
obtained E,(2s-25s)=—0.0417 a.u., 98.79, is supplied by
the configuration p% The effectiveness of the p? con-
figuration was also shown by Linderberg and Shull.?
This fact had been interpreted in such a way that it was
assumed that in the (2s) shell the electron correlation
is entirely different from the electron correlation in the
(1s) shell; it was assumed that whereas in the (1s) shell
one 712 term gives the larger part of the correlation, in
the (2s) shell the 715 term is not effective.

Our calculations show that although the single 712
term is indeed not as effective as the ? configuration,
the Hylleraas expansion if carried far enough, gives
better results. Let us consider again the function (3.28).

19 J. Linderberg and H. Shull, J. Mol. Spectr. 5, 1 (1960).
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TasLE IV. Improvement in the energy term by term.
All energies are in atomic units.

Improv.
Corr. in
Function Energy energy energy
H-F —14.5730 ..
Va(3)ya(4)[b1+b2rsa] —14.5991 —0.0261 —0.0261
7374 —14.6078 —0.0348 —0.0087
(rs24-r42) —14.6085 —0.0355 —0.0007
734 —14.6152 —0.0422 —0.0067
7374 —14.6157  —0.0427 —0.0005
(The remaining 10 terms) —14.6175 —0.0445 —0.0018

We give in Table IV the improvement in the energy
term-by-term.

As we see the 715 terms gives a large improvement
in the energy; but also the contribution from some
of the further terms is fairly large, and eventually
the series gives a better result than the superposition of
configurations.

In our opinion this result shows that one has to be
very careful when attaching particular physical mean-
ing to terms in a variational wave function. It is true
that the p? configuration gives a very large part of the
correlation energy; but an even better result can be ob-
tained with a Hylleraas series, in which the dominant
terms are 713, (r1-+72), and 7122, Contrary to the ex-
pectations, the Hylleraas series is capable to describe
the electron correlation not only in the (1s) shell but in
the (2s) shell as well.

The other large-scale calculation with superposition
of configurations was done by Weiss.? In that cal-
culation the individual contributions from the various
subshells are not given. Comparison with the present
calculations is difficult since in our calculations the 1s-2s
correlation is not considered while in Weiss’s calcula-
tion it is included. If we accept for the 1s-2s correlation
the value computed by Kelly?! (see below) E,(1s-2s)
=—0.0050 a.u. then by adding this to our result we
would get Er.+ E (15s-25)=—0.0885 a.u. The correla-
tion energy computed by Weiss with 55 configurations is
E,=—0.0879 a.u. The comparison is again favorable
for the Hylleraas-type expansion.

The correlation energy in the Be atom was computed
with perturbation theory by Kelly.?! In that calcula-
tion the correlation energies of the various subshells
are computed separately. We can compare these re-
sults with the best results we have obtained, for each
subshell, computing the correlation energies sepa-
rately. The comparison gives

Kelly Present calculations
E.(1s-15)=—0.04212 a.u. —0.0423 a.u.
E,(25-25)=—0.04387 a.u. —0.0445 a.u.

E,(15-25)=—0.0050 a.u. Not computed

20 A, W. Weiss, Phys. Rev. 122, 1826 (1961).
21 H, P. Kelly, Phys. Rev. 131, 684 (1963).
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When we compare these two sets of data, we must be
careful to remember the difference between the per-
turbation theory and the variation method. In the
variation method the computed energy is always an
upper limit to the energy; it is not clear whether this is
the case in the perturbation theory used by Kelly. The
agreement between the two sets of numbers is good.

Calculations for the Be atom were also done with the
method of Sinanoglu.?? In this method the starting point
is the function (2.5). After several simplifications in the
energy expressions differential equations are derived
for the two electron functions. The correlation energy
of each electron pair is computed separately; the total
correlation is assumed to be the sum of pair energies.

Calculations for the Be atom were carried out with
this method by Sinanoglu and Tuan (ST)? and by
Geller, Taylor, and Levine (GTL).2* We compare here
the best results obtained by us for each pair with their
results (all energies in atomic units):

ST GTL Present paper
E.(1s-1s) —0.04395 —0.04208 —0.0423
E,(2s5-2s) —0.04392 —0.04438 —0.0445

The comparison between our results and the other
results is difficult because it is not clear what effects
the approximations carried out in the energy expression
in the Sinanoglu theory have on the computed energy.
The agreement between the results obtained by us and
those obtained by ST and GTL is good.

There is one point in the calculations of Sinanoglu
which we want to discuss here. In the theory of cor-
related wave functions we have introduced the fol-
lowing orthogonality condition between the two-
electron functions and the one-electron orbitals [Eq.

(2.26)7:

/¢A(ik|12)<ﬁs*(1)d(1150,

(s=1,2,--+, N;s%4, ). (5.1)

In the calculations mentioned above the stronger con-
dition is introduced??:

/¢>A(ik [12) ¢, *(1)dg:1=0,

(s=1,2,-++, N;iand % included). (5.2)
It is worthwhile to analyze which of the above two
conditions gives better results in the calculations. First
let us investigate which of the two conditions involves
more numerical work.

In order to see that let us denote the nonorthogonal
two-electron function by ¢,4°(i%|12). Then the or-

2. Sinanoglu, J. Chem. Phys. 36, 706 (1962); 36, 3198 (1962).

28 D. F. Tuan and O. Sinanoglu, J. Chem. Phys. 41, 2677 (1964).

2 M. Geller, H. S. Taylor, and H. B. Levine, J. Chem. Phys.
43, 1727 (1965).



158

thogonalized function satisfying (5.1) is given by (2.27).
b4 (ik|12)
=(1—2(1)—2(2)+2(1)2(2))p4°(ik[12), (5.3)

where Q(1) is given by (2.28). Let us consider the special
case of the beryllium atom and let ¢=2sa, k=2sB,
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where o and 8 indicate the spin directions. Straight-
forward calculations give the formula for ¢4(2s,2s5]1,2):

64(25,25|1,2)=¢a(25,25]1,2)1(1,2),  (5.4)

where 7(1,2)=a(1)B(2)—a(2)8(1) is the spin function
and ¥4 is given by

Va(25,25|1,2) =y 4%(2s5,25|1,2) —xpls(l)/gbl,(S)n//A"(Zs,Zs [3,2)dvs

—¥14(2) / Y1:(3)¥.4°(25,25|1,3)dvs+1,(1¢14(2) f Y1:3)W1(D¥a"(2525 | 3,4)dvadvs,  (5.5)

where y4° is the spatial part of the nonorthogonal ¢4°. On the other hand the spatial part of the function satisfying

(5.2) has the following form:

Va(25,25(1,2) = 4%(25,2s| 12)~¢1,(1)f¢13(3)¢40(23,23{32)dv3—¢1,(2)/¢13(3)¢A°(23,25l13)dv3

F1.(1)¢14(2) / Y1e(3)1a(H)¥ 4°(25,25(3,4)dv sdvs— (1) / Yas(3)94°(2s,253,2)dvs

—¥2(2) / ¥2o(3)Y4(2525 | 13)dvstaa(1)¥2(2) / V2o(3)2s(H)9 4°(25,25] 3,4)dvsdvs

+1:(1)24(2) / Y1:(3)¥2s(4)¥.4°(25,25 | 3,4)dvadvstipas(1)¢14(2) f Yaa(3)¥1a(4)¥4°(25,253,4)dvadvs.  (5.6)

In order to get the matrix components in the secular
equation we have to form the expectation value of the
Hamiltonian with respect to the functions (5.5) and
(5.6), respectively. A typical integral occurring in the
matrix components is of the form:

I= /¢A*(2s,2s]12)r12‘lll/.4(2s,28|12)dv1d7)2. (5.7

Now if we form this integral with (5.5) we get an ex-
pression containing 16 integrals; if we form it with (5.6)
we get an expression containing 81 integrals. It is clear
that the function (5.5) which is the result of the or-
thogonality condition (5.1) involves much less numerical
work than the function (5.6) which is the result of the
orthogonality condition (5.2).

Now let us compare the results obtained with the two
different sets of orthogonality conditions. We consider
here the functions used by Geller, Taylor, and Levine :24

=A{@(1¥(2)
+@s(DYs(2)[1+{arrio)+ (aa(ritr2))
+{asr12?)+(au(ri—r2) ) D B)(4)w} , (5.8)
where the angular brackets around the function symbols

mean that these terms are orthogonalized to the 1s
orbitals as well as to the 2s orbitals, i.e., they are put in

the form satisfying the conditions (5.2). For comparison
let us consider one of our functions used above:

W=A{:(1¥:(2)
FYs(DYs(2) 14 arr1at aa(ri+-72) +agris?
+aq(r 12+rz2)+amrz])‘l/z(3)xbz(4)w} , (5.9)

in which we have no restrictive orthogonality condi-
tions, i.e. the two-electron functions satisfy only (5.1).
In both wave functions y¥; and ¥, are the H-F orbitals
and ¢3 is the Slater function (3.19); in (5.8) Z;=3.6
and in (5.9) Z3=3.7. It is clear that the nonorthogonal-
ized two-electron functions are almost identical in
both functions. The essential difference is that by
using (5.8), Geller, Taylor, and Levine used the or-
thogonality condition (5.2); by using (5.9) we used the
simpler condition (5.1).

The results are as follows: (5.8) yielded the cor-
relation energy E,=—0.0421 a.u. and (5.9) gave
E,=—0.0415 a.u. The difference is very small (1.4%).
Therefore the two functions gave essentially the same
results.

Summarizing the comparison between the two or-
thogonality conditions (5.1) and (5.2) we conclude that
the condition (5.2) involves much more numerical work;
on the other hand the results are essentially the same
with both conditions.
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6. DISCUSSION
A. The Main Result of the Calculations

The main result is that in the case of the beryllium
atom, the Hylleraas-type expansion gives better re-
sults than the superposition of configurations. This is
true not only in the (1s) shell, for which this fact was
evident before the present calculation, but it is also
true in the (2s) shell. As we have discussed above pre-
viously it was believed by several workers that the
correlation between the two (2s) electrons is such that
the best way of describing it is to write the wave func-
tion in the form of the superposition of the two con-
figurations (2s)24-(2p)2. It was generally believed that
this wave function gives better results than the Hylleraas
expansion. The present calculations show, however, that
a Hylleraas-type expansion if carried far enough gives
better results than the superposition of configurations.

It is evident now that in the case of the atoms,
He,? Li,1%:?® and Be the Hylleraas method proved to be
effective. There is a fair probability that it will be effec-
tive also in the case of more complex atoms.

B. The Mathematical Difficulties

In the earlier literature of the many-body problem it
was generally stated that the Hylleraas method is too
complicated to be applied to more complex atoms. In
the set of previous publications! we have shown that
this is not the case. We emphasize here that the method
of correlated wave functions! is formulated in such a
way that it can be applied to atoms with any number of
electrons. The calculations for the beryllium atom pre-
sented in this paper are special cases of a general
formalism which can be applied to atoms with any
number of electrons.

The mathematical difficulties may be characterized
as follows: In the variation method the solution of the
problem boils down to the calculation of the energy
from the secular equation. The only problem is there-
fore essentially the calculation of the matrix components
occurring in the secular equation.

In a previous paper!! we have shown that the com-
plexity of the integrals occurring in the secular equa-
tion does not increase with the increase of the number of
electrons. We have shown that if the calculations are
restricted to two-electron correlations, i.e., if the wave
functions (2.5) is used, and the two-electron functions
&(i,k) are written in the form of Hylleraas series, then
the matrix components can be reduced to six types of
relatively simple basic integrals. (See the Appendix
where the technique of computing these integrals is
described.) From these six integrals five can be com-
puted easily in closed form. The only difficulty arises
from the sixth type [Eq. (A5)] which, like some of
the many-center integrals of the molecular physics, can
be computed only in the form of a series. If there are

25 E. Burke, Phys. Rev. 130, 1871 (1963).
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many such integrals to compute for a particular atom,
the calculations become very time consuming, since the
convergence of the series may not be very fast for some
cases. In the present calculation for the beryllium, we
had only ome such integral in each diagonal matrix
component which was always very small compared to
the other integrals; therefore in this particular case this
was a minor problem. For larger atoms, however, the
formalism would require the computation of a much
larger number of such integrals which may not be small
compared to others, therefore it will require a careful
treatment. The recent paper by Roberts? is a signifi-
cant development toward the solution of this problem.
Roberts suggested a method by which even these inte-
grals could be computed in closed form.

If the method of Roberts can be effectively applied
to machine calculations, then one of the major difficul-
ties is removed from the application of the theory of
correlated wave functions to larger atoms.

We may summarize the mathematical side of the
problem as follows. The calculation of a Hylleraas-type
function for an atom with small number of electrons
(2= N =30) is much more complicated than an atomic
H-F calculation but much less complicated than a
calculation using a linear combination of atomic
orbitals for a diatomic molecule of the size of, say Nas.
In our opinion no serious difficulty stands in the way of
applying the method to larger atoms.

C. The Additivity of Correlated Energy

If we are making a calculation in which only two-
electron correlations are considered, we have to use the
function (2.5) in which all two-electron correlations are
included but the higher-order correlation effects are
neglected. However, it is clear from the presentation in
Sec. IIT that from the function (2.5) it does not follow
that the correlation energy is additive in pairs. As we
have seen, we can compute the correlation energy for
each electron pair separately or we can compute the
total two-electron correlation by taking into account all
pairs simultaneously. We have seen above that the cor-
relation energies computed in the two different ways are
different; the difference which we have denoted by Ea
may be positive or negative, depending on the wave func-
tions used. This result is somewhat unexpected since in
the beryllium atom the overlap between the (1s) and
(2s) shells is very small, and therefore one would ex-
pect that the correlation effects in the two shells are
independent; however, the calculations show that this is
not the case.

D. The Higher-Order Correlation Effects

We have pointed out in Sec. IV that the size of the
higher-order (more than two-electron) correlation effects
in the Be atom is about —0.0060 a.u., which is con-

26 P. J. Roberts, Proc. Phys. Soc. (London) 88, 53 (1966).
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siderable compared to the total correlation E= —0.0944
a.u. (6.3%). According to Watson!? the higher-order
effects are coming mostly from simultaneous excita-
tions in the (1s) and (2s) shells which could be taken
into account by using quadruple substitution configura-
tions. The fact that the many-electron effects are fairly
large even for the Be atom which has only four electrons
emphasizes that the function (2.5) is only an approxima-
tion, although it is a much better approximation than the
H-F method. It is clear, however, that results which are
as accurate as the results of Hylleraas for the He atom
can be obtained for more complex atoms only if the
higher-order effects are included in the wave functions,
i.e., if the complete function (2.8) is used.

E. The Choice of Orbitals in the Correlated
Wave Functions

Our results presented in Sec. ITI show that using the
same correlation factor g; we get very different results
depending on the choice of the one-electron orbitals in
the wave functions. This means that the rate of con-
vergence depends on the choice of the one-electron
orbitals used in the wave function. From the combina-
tions tested we have found that the combination H-F
orbitals for the determinantal part-Slater functions for
the correlated part, gives the best results.

As was mentioned in Sec. 3A we have investigated
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in a previous publication!?® what kind of one- and two-
electron functions give the absolute minimum for the
energy with an ansatz of the type (2.5). It was
pointed out that the equations found for the one-
electron orbitals?” are quite different from the H-F
equations. In the light of our present results we conclude
that the H-T orbitals are probably good approximations
to the solutions of the equations, defining the best
orbitals in an ansatz of type (2.5).28 It must be em-
phasized, however, that the results of our calculations
for one atom does not allow us to draw general con-
clusions regarding the nature of the best orbital com-
binations in an ansatz of the type (2.5). In the present
calculations the combination H-F/Slater orbitals gave
a good result, but we have tested only a very limited
number of other combinations, and we do not know
whether the convergence would be faster with an en-
tirely different combination.

In our opinion the central difficulty with calcula-
tions of this type is, and is going to be, that we have to
search for the best orbitals by doing the calculations on a
trial and error basis, which means that in future cal-
culations we shall have to test again different orbital
combinations and check which gives the best results.
Fortunately, the mathematical technique is developed
in such a way that one electron orbitals of any form
can be used.

APPENDIX : THE CALCULATION OF THE MATRIX COMPONENTS OF THE SECULAR EQUATION

As stated in Sec. 3, and shown first in Ref. 10, all matrix components occurring in the secular Eq. (2.22) can be
reduced to the following six basic integrals (the notation is from Ref. 10):

I,= /pAB(l)pCD(Z)rl"rg)‘rmadvldvz,

I,= /pAB(].)p(jD(2)pEF'(3)7,‘Kf'z)‘f’g“flzafszed?)ldvzdvg,

I3= / p43(pen(2)prr(3)pem(4)ri*ro sty #1125 307 12Pdv1dvaduadyy
I,= /pAB(l)pCD(2)pEp(3)pGH(4)h"rg"rg“r4”7125732*r41"d1}1dv2dv3dv4,
Is= / pas(1)pen(2)prr(3)r1tra 118 asria dvidvadus

16=/!PA*(1)PBC(2)71672“’7’127|:—%A1](¢D(1)pw(3)7'1’73’37'13‘)dv1dv2dv3.

% See Egs. (4.12), (6.6), and (7.2) of Ref. 13.
28 At least for the Be atom.

(A1)

(A2)

(A3)

(A4)

(AS)

(A6)
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Let us consider (A1). Let us assume that psp=v¥.4¥s and pep=v¥c¥p depend on 7, and 7, only. Then putting the 2
axis of the coordinate system into r; and introducing 7. and ri» as integration variables we get

A -—/ (ro)re ristdva= ! ’§2M+2)I‘(k
gco (1'1)= pcep\72)72 712 '7)2—2(”_'_2) k=0< B : )

0

1
X {rﬂ‘“‘" / Pop(ra)radt*1dyy+r 1 / Pep(ro)radteth=ldy,: - (AT)
0 s

1

where Pep(re)=4mr2o¢p(r2) and T(k)=1—(—1)* With (A7) we get
I1= /pAB(h)?’l"gcp)‘”(rl)d?}L (AS)

The calculation of I is carried out in such a way that first (A7) is computed by numerical integration which can be
done easily for any pep(r1) and for any combination of A, u. After (A7) is tabulated, I is computed by numerical
integration from (A8). The integrations can be carried out without changing the interval length by introducing?®
the new independent variable o=7r"4 Since the Slater functions, as well as the Roothaan-type H-F orbitals are
given in analytic form, there is no difficulty in tabulating them in o scale.

The integrals I», I's, I, can be obtained similarly as I1. We get, for instance,

Ir= / gap*(r2)ger*(r2)pcn(ro)radvs, (A9)

which again can be computed by 3 successive numerical integrations. Similar procedures can be applied to I3

and /4.
The calculation of I's was described elsewhere before.?® The calculation of I is also straightforward since we can
integrate first with respect to dv;:

grr(r)= /¢E(73)¢F(73)786713‘d03 . (A10)

The Laplacian A; operates on this function, which does not lead to any difficulties since g depends only on 7;.
The necessary formulas are

0

dgur® 1 e (e-I-Z

>F(k) { (€+ 1 —-k)rf‘"‘/ PEF(f'z)Yza'l'k_ldrz‘l‘ (k—' 1)7’1k_2/ PEF(72)1’25+‘+1~kd72} (Al 1)
0

dri 2(e+2) k=0\ & "
and
d2 de 1 P 2

Lo iz(“r )r(k>{<e+1—kxe—k>

drt 2(et2) =\ £

0

1
Xf';[e"k—lf PEF(72)725+b_1d7’2+(k—1)([6—2)71k~3‘/
0

71

P E’F(72)7'25+¢+1_kd7’2} ,  (A12)

where Ppp=4nriypyr. Again (A11) and (A12) can be computed easily by numerical integrations. Following the
above procedures all six integrals are computed numerically; the procedure is the same regardless of the special
form of the one-electron wave functions.

2 E, Trefftz, A. Schluter, K. Deitman, and J. Jorgens, Z. Astrophys. 44, 1 (1957).
30 L. Szasz, J. Chem. Phys. 35, 1072 (1961).



