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The bulk critical field FI,b of a Sn-5%In alloy is
approximately equal to that of pure tin, ' 304 Qe.
For tin we take Xr, ——355 A and f& 2——300 A." From l*
we compute (l ) ri using Eq. (AS), and from (l ) rr we
compute (ln)rr using Eq. (A7); the la, tter is quoted in
Table I for comparison with the value derived from
the normal-state resistance measurements. (We quote
l~ rather than / since lg gives a better measure of the
total surface-plus-volume scattering for comparison
with the Strassler-Wyder theory, in which all scattering
is treated by means of a mean free path. Evidently
the concept of a mean free path is a bit indefinite in.

dealing with small real nonideal samples. ) We note
that the values based on superconducting properties
agree well with the values determined from the normal-
state resistance. There is no large systematic difference,
which is reassuring. The close agreement is perhaps
fortuitous, however, since the conductivity of tin is
anisotropic by 50%, and there may be preferential
crystal orientation in thin films. Further, the pl value
inferred from size-effect measurements is 1.9 times as
large as the anomalous skin-effect value used above.
Thus, l3pp could range anywhere between 88 and 200 A.
If it were in the upper end of this range, it would lead
to l/$p values in better agreement with those required
for a fit to the Strassler-Wyder theory. We do not

"M. Doidge, Phil. Trans. Roy. Soc. London 248, 553 (1956}.
'7 J. Bardeen and J. R. Schreiffer, Progr. Low Temp. Phys. 3,

170 {1961).

think such a large l value is likely, however, since it
would destroy the agreement with (lit)rr, it would be
based on a less reliable and less appropriate technique
(size effect versus anomalous skin effect), and further,
the sweeping approximations of the Strassler-Wyder
theory might well introduce an error as large as a
factor of 2 in the appropriate choice of l/fp

The theory to which the tunneling data are compared
requires that 6, the order parameter, be constant across
the film. For our films d $r, so it is not immediately
obvious that this requirement will be fulfilled. One of
us" has calculated the spatial dependence of 6 for a
thin film in a parallel magnetic field, using a variational
approach. This calculation shows that for Sn-In 1 at
H,

~~
the total variation of 6 across the film should be

6%. Thus, we expect the theory to be reasonably
applicable.

Because of the requirement that 6 be spatially con-
stant, the film thickness cannot be too great. In fact,
if d is much greater than $r, surface superconductivity
appears, and 6 may become much smaller in the interior
of the film than on the surface. The films also cannot
be very thin, since in that case the irregularities in the
shape of the film and the nature of the surfaces have an
effect on the density of states that is not easily calcu-
lable. The films studied in these experiments have
thicknesses chosen to lie between these two limits.

"M. Tinkham (unpublished).
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The linearized self-consistency equation, in the electron-phonon model, for the nucleation of supercon-
ductivity in the presence of a magnetic Geld is studied. It is found that near the transition temperature
this integro-differential equation is susceptible to analysis. The main results are that the ratio of surface to
bulk nucleation 6elds is predicted to have the weak-coupling value of 1.695, thus not con6rming a recent
experimental suggestion of a value near 1.9 for strong-coupling superconductors. The slope (BH.3/BT) ~, is
worked out both in terms of integrals over the parameters of the bulk-strong-coupling theory and in terms
of other experimental quantities. Comparison of this last result with existing experiments on pure lead is
attempted, with good success. In the Appendix an implicit equation for H,&(T) for all Tie derived, but the
numerical work necessary to solve this equation has not been undertaken.

1. INTRODUCTION

N this paper we discuss the theory of critical mag-
„„netic fields for the nucleation of superconductivity
in dilute alloys of materials in which the coupling
between electrons and lattice vibrations is strong.

With a view to understanding some recent experi-
ments discussed below, we have derived and studied

*Supported in part by the OAice of Naval Research under
Contract No. NONR-401(38), Technical Report No. 17.

t On leave of absence from the Institut fiir Theoretische Physik
der Universitat Gottingen, Germany.

the linearized self-consistency equation for the order
parameter of a strong-coupling superconductor in an
external magnetic field, allowing for spatial variations.
We have found that this equation is rather more
amenable to analysis than one might have imagined.
The solution can always be written as the product of a
position-dependent and a frequency-dependent func-
tion. Near the critical temperature (T,) the position
dependent part obeys a linearized Ginsburg-l, andau
equation, with its well-known solutions for surface and
bulk nucleation. The ratio of the surface (H.s) to bulk
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(H,2) nucleation fields is thus predicted to have the
value 1.695 calculated by St. James and de Gennes'
for the case of weak coupling. The strong-coupling
eQects appear, however, in the slopes of H, ~ and H,3

versus T just below T,. These slopes can be expressed
as ratios of integrals involving the parameters of the
strong-coupling theory. Further inspection shows that
apart from very small corrections all of the e6'ects of
the strong coupling can be expressed in terms of other
experimental parameters, When this has been done,
our result for (BH,2/BT) r, is obtained as a product of
two factors:

(1) The weak-coupling formula for (BH„/c)T)z; in
which, however, the Fermi velocity and the impurity
lifetime must be understood as being properly renormal-
ized to account for the effects of the electronic band
structure and the Coulomb and electron-phonon inter-
actions.

(2) A factor which reduces to 1 in the weak-coupling
limit and is made up of the ratios lV,b,/6'sos and
H'. ) s/H, '. acs, w, here A.b, and H, ,ob. are the empirical
gap and bulk critical helds, and hggq, B,M;s the values
given by the Bardeen, Cooper, SchrieQer theory.

It is also possible to discuss the bulk-nucleation field
8.2 for all temperatures, using methods previously
developed by one of the authors. ' The equation deter-
mining H,2(T) is an implicit one and requires numerical
analysis not given here.

Cardona and Rosenblum' have recently reported
measurements of H,3 and H, (the thermodynamic
critical field) for Pb and Pb-Tl alloys, these being
strong-coupling materials. In some cases II,~ has also
been measured. These authors have interpreted their
results as showing that the ratio of H, I to H, 2 is anoma-
lous (1.9 as opposed to 1.7) .

Our results are evidently in conQict with this inter-
pretation. However, the conQict may not be one
between theory and experiment for the following two
reasons. Firstly, in most of the cases studied in Ref. 3,
8,2 is a supercooling 6eld not directly measured but
inferred semiempirically from H, by methods we have

not been able to understand, but which apparently
make use of weak-coupling formulas, the validity of
which is not obvious. Secondly, the surface conditions
in the experiments may not have been ideal in that
adsorbed gases at the surface may have led to a higher
impurity concentration at the surface compared to the
bulk material. Since the nucleation fields increase with
impurity concentration, an experimental sample of the
sort described above would show an H,3 increased
relative to 8,2. Such an effect, if present, might account
for at least some of the discrepancy.

A more direct comparison between theory and
experiment could be achieved by working out the
prediction of the theory for the slope (BH.3/8T)z, for
the experimental materials. However, the residual resis-
tivity enters as a parameter of the theory, and its
value for the experimental samples is not reported. A
rough calculation carried out in Sec. 5 of this paper
shows that for pure lead there is satisfactory agreement
between theory and experiment, but more experiments
are desirable for a conclusive test.

(G Z'I
I

~

E„t G~)

The equation of motion is then

(2 3)

2. THE LINEARIZED SELF-CONSISTENCY
EQUATION

We start from the equations of motion for the
normal and anomalous electron Green's functions in
the phonon model. A useful form for these Green's
functions is the matrix

(2 1)

with

(A(, &))
0(*)= I

)t x', I,

and r3 the third Pauli matrix. The four entries in the
matrix (2.1) we define as follows:

! C(t'i, r, r')
i +u (2i—ri*) 'L~—'&+(%)~(r)l' V(r))—

= lb'(r —r') +f9'r, 'i()'„r, r) 0()', r„r') . (2.4),
Above V(r) is the scattering potential of the impurities
and tiis the usual 'Fourier-series variable

f'i= (2l+1)mi/P, 1/P=kiiT. (2.5)
' D. Saint-James and P. G. de Gennes, Phys. Letters 1, 306

i1963).' G. Eilenberger, Phys. Rev. {tobe published).' M. Cardona and B.Rosenblum, Phys. Letters 8, 308 (1964);
B. RosenbluIn and M. Cardona, i''. 9, 220 (1964); 13, 38
{1964).

In Eq. (2.1) we have accounted for the normal part of
the Coulomb self-energy Z,& I by using the effective
mass

m*= m(1+6m, i i/m) . (2.6)

Since we shall only be concerned with variations of
physical quantities on a scale large compared to atomic

'One of the authors (G. E,) thanks Professor Cardona for a
discussion of this point.
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dimensions, this would seem to be a good approxima-
tion. We also follow Scalapino, SchrieGer, and YVilkins
in treating the Coulomb contribution to the anomalous
part of the self-energy by introducing a Coulomb
pseudopotential. We have then

~(i-, , ")=-(1/WED(l, i-, , ")Gu', "), (2.~)
)f

where D contains the phonon interaction and the
Coulomb pseudopotential. Since the inhuence of the
anomalous part of the electron self-energy, be it posi-
tion-dependent or not, on the phonon propagator is
extremely small, it can be ignored. The same is true
for the pseudopotential, so that D depends only on
r —r'. Moreover, since D is essentially zero if

l
r—r'

l

exceeds a few atomic distances whereas G varies appre-
ciably only over distances f))ki ', it is a very good
approximation to replace the r—r' dependence of D by
a 8 function, We get thus

D(f-„ l-, , r, r') =P(r —r') X(P„l-,.),
R(f'i, r, r') =8'(r—r') 2(f i, r),

(2.8)

(2.9)

('z
~(l. , r)=l

l

= &-'Z&(«, «)G(l. r r)4' ~') „
(2.10)

It is convenient to introduce a hybrid normal-state
Green's function obeying the equation

Ii i+I', (2m—~) 'Ii 'V (e/—c)A(r) j' V(—r) IG„,(l'&, r, r') =P(r —r')+Z(f'i, r) G„,(f'i, r, r'), (2.11)

where Z is given by the upper-left entry of (2.10). Then the first column of the matrix equation of motion (2.4)
can be put in the form

a(p, , r, r') = G .()'&, r, r')+fd'r 0 , (),, r, r) yg„'„r )p(p, r, , r'), ,

F"(f'i, r, r') = d'roG .( fi, ro,—r) 4 (fi, ro) G(l i, r&, r') . (2.12)

Now it is a simple matter to linearize in g. To lowest order in p, G, must be replaced by G„, the normal-state
electron Green's function. Further, in the second equation of (2.12) the last G must also be replaced by G . Sub-
stituting the resulting equation for Ft into the self-consistency condition for pt one obtains

&'(&i r) = —4 'Z~(f, i )F'(f, r, r)
ll

= —p- g), (f'„ f',.) d r, (G„( g,., r„r)G„(l, , r„—r) )y&(l', , r,), (2.13)

where the brackets denote an average over impurity
configurations and we have, in the usual way, neglected
the weak correlations between @ and the product of 6's
that are due to the impurities. The similarities between
(2.13) and the weak-coupling result are apparent.

If there were no impurities and no magnetic field, G„
would be given by

G-(«, r, r')
d'k

expLik (r—r') jLf&Z„(l &)
—e(k)] ', (2.14)

(2~) '

where e(k) =k'/2m* —))i and Z (fi) is given, according
to the first row and column of (2.10), by

f'i(1 Z„(«) )=—(i)X(0)/P) gX(f i, fi )i sgn(Immi. ),

(2.15)

Above E(0) is the density of states (without phonon
enhancement) for electrons of one spin at the Fermi
surface. The eBects of electronic band structure have
to be included in X(0) .

5 D. J. Scalapino, J. R. SchrieBer, and J. %. Wilkins, Phys.
Rev. 148, 263 (1966).

The effects of the magnetic 6eld and the impurities
can now be included in exactly the same way as for the
weak-coupling case, since they inQuence only the spatial
part of the nonlocal kernel in (2.13). Since the details
of the calculation are essentially identical to those in
Gor'kov's first papers on this subject, only the briefest
sketch of the calculation will be given.

As far as the magnetic field dependence goes, we may
use the semiclassical approximation

I ie
G„(fi, r, r') =G„(f'i, r, r') l~=))"exp — ds A(s)

C

(2.16)

the integral being along the straight-line path. Further-
more, we may use the identity~

2ie
exp — ds A(s) yt(f'„r, )

= exp[ —i(ri —r) H~(ro) gp" («, ro) l„=„(2.17)
6 L. P. Gor'kov, Zh. Kksperim. i Yeor. Fix. 3&, 1918 (~959) p

3'7, 1407 (1959) LEnglish transls. ; Soviet Phys, —JETP 9, 1364
(1959); 10, 998 (1960)j.

7 For a proof see N. R. Werthamer, Sgperconductieity, edited
by R, Parks (M. Dekker, New York, to be published).
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where Ij:~ is the operator

IIt(r, ) = (—(1/') V„—(2c/c) A(ro) ). (2.18)

Retaining terms to second order in IIt we encounter
the zeroth and second moments of the kernel in (2.13) .
Performing the average over impurities' we obtain

d'r(G„( t'—
~, ro, r) G„(t ~, ro, r) )a~

=~&(0)/Iiz-(l ) I, (219)

d'r(r r, )—'(G, ( t'~,—ro, r) G„(i ~, ro, r})ii~

=kC~&(0)~F']CI hz. (h) I' (I hz-(t~) I +1/2«. )7 '

(2.20)

Above, cr ——8e(k)/Bk I~=i,~ again does not include the
phonon enhancement, and v&, is a transport lifetime
defined as follows CN, is the density of impurities]:

r„'=2irii;AT (0)
dQ1, ,1,

I V(k —k') I' (1—cos8q, q ). (2.21)
J k f=[1r,l'f=kp

Here again the density of states $(0) does not include
the phonon correction so that ~&, is not the lifetime
for the scattering of quasiparticle excitations of the
electron-phonon system. Later in this paper it will be
interesting to notice that physical quantities can be
expressed in terms of properly renormalized parameters.

The above discussion shows that for slow spatial
variations the equation for pt is reduced to

(2.24)

has a nontrivial solution.

—,', vr' (IIt(r) )'
'LIi z(i )I+1/

In contrast to the normal Ginsburg-Landau-Gorkov differential equation, this is an integro-differential equation.
It is extremely interesting to notice, however, that (2.22) clearly allows a separation of variables. Writing

~'8, r) =~0. )O(r), (2.23)

we get the linearized Ginsburg-Landau equation

((1/i) V+(2%)A(r) )'|l (r) =n(T)$(r).
The parameter o. has to be determined by the condition that

—s.E(0) 1 gg8p (xp, " '
I i,.z„(|,.) I I i, z.(i. .) I'CI i,.z(i, .)l+1/2 „],'

Since the strong coupling affects the frequency and
not the position dependence of the effective electron-
electron interaction, there is no reason for the boundary
condition appropriate to (2.23) to differ from the usual
one. It then follows as usuaP that

B.2= (c/2l) n(T), H.8/H. 2= 1.695. (2.26)

The last ratio is thus not affected by the strong
coupling.

Equation (2.25), which determines n(T), gives a
erst impression of intractibility, but we shall see that
in its region of validity (near T,) considerable progress
can be made analytically.

3. REDUCTION OF H, 2 TO QUADRATURES

Since Eq. (2.25) for the frequency-dependent ampli-
tude is only valid near T„we shall solve for n(T) by
an expansion about this temperature. We employ the
device of comparing (2.25) with the equation for the
(position-independent) order parameter of the super-
Quid phase of the bulk material in the absence of a
magnetic 6eld.

As a start it is convenient to consider p, Z„, t'~, X, etc.
as functions of l and T instead of f ~ and T. In addition,

'See Ref. 6 and also, e.g. , A. A. Abrikosov, L. P. Gor'kov,
and I.E. Dzyaloshinski, Methods of Quantum Field Theoryin Sta-
tistica/ Physics (Prentice-Hall, Inc. , Englewood CliGs, New
Jersey, 1963).

w(l, r) =
I g,z„(f ) I

Then (2.25) reads

x(i, r) = QK(l, i', r)

(3 2)

—,', vp'n(T)

W(P, T) CW(l', T)+1/27„]
where E is the real symmetrical kernel

K(l, l', T) = —(irAT(0)/P)CW(l T)7 '"
&&) (t, i. , T)LW(l', T)]-'". (34)

Now the equation for the order parameter pt, (i ~) of
the bulk superconductor with no magnetic field applied
1S

A(i ) = —( &(0)/0)
e («)

+~
As in (3.1) we define

x.(l, T) =~ (t )Cw«, T) (T.-r)]-

it is convenient to make the kernel of (2.25) more
symmetrical. VVe introduce the functions

x(l, r) =—yO ) CI f,z.(f,) I (r,—r) ]-"' (3.1)
and
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Then, clearly, using quantities defined above,

Xb(/, T) = QK(/, l', T)

(T —T) Xb'(l') Z'(l') —Z '(l') —"'
Xb /', T .

W(/', T) Z '(l')

(3.7)

We note that at T. the function Xb(/, T.) solves (3.3)
[and, of course, the linear part of (3.7)] thus showing
that n(T, ) =0 as it must be.

For temperatures slightly below T, we develop all
functions in powers of (T, T—):
a(T) = (T,—T)no&+ ~ ~,

X(/, T) =Xb(l, T,)+(T, T)—X"&(/)+ ~ ~ ~

Xb (/, T) =Xb (/, T,) + (T. T)—Xb"' (l) + ~,
E(l, /', T) =K(l, l', T,)+(T, T)K—(»(/, l')+ ~ ~

(Z'(/, T) —Z„'(l, T) )/Z„'(/, T)

=2(T —T)Z"'(/)/Z-(l, T.)+" (3 g)

In the last line a,bove

Z(l, T) —Z„(l, T) dZ„dZ,
r~r, T, T — dT dT r=r,

(3 9)

It is reasonable to stop the expansions with the first power of (T, T) be—cause we have already neglected
higher powers of the operator IIt which would give rise to higher powers of n in (3.3) .

Equating terms linear in (T, T), we get—from (3.3) and (3.5), respectively:

P( ti. —K(/ l' T.) )X"'(l') = Q Ki'&(/, l') —, ' ', Xb(/', T,), (3.10)
W(l', T,) [W(/', T,) +1/2rb, ]

P(/'&it K(l,—l', T„,) )Xb"'(l') = Q K'"(/, l') IC(/, l', T—.), + Xb(l', T,). (3.11)
Xb'(l') Z"' (/')

2W(/', T,) Z(/, T,)

~'(l )= hm
, (T, T)—(3.16)

In this way we finally obtain

—( 4l/4&T)II, & Ir=r, ——(e/2e) n&'&

= (e/e) (I,+I',)/I„
The sums (3.13)—(3.15) may be readily converted

into integrals along the positive real-frequency axis. In
this form, given below, one has reduced the calculation
of (BII.2/BT)r. to integrals over the solutions of the
[real-frequency] gap equations. Since these solutions
have been obtained numerically for various materials,
one can then consider that the problem has been
reduced to quadratures. Another approach is to try to
express Ij, I'y, and I2 in terms of experimentally mea-
surable parameters. This approach is the topic of the
next section.

Since the analytic continuations Z(1 & +b&), 6(/'&-~b&)

are sufficiently well behaved in the upper and lower
half-plane of the complex variable co, we get, after
converting the bi sums to contour integrals in the
standard way

(3.12)

2 X(0) Z(/-, ) [ai &(/, )]
p;

(3.13)

2~X(0) Z(»(t, ) P oi(t-, )]2
p.

(3.14)

2~X(0), , [ai'&(/-, )]'
P. '",

I /, l~[l t.,z(g'„.) I+ 1/2.„]
Above, all sums are to be evaluated at the
temperature, i.e.,

(3.15)

critical

/ 4= 7rk»T, (2/+1) i.

We multiply these equations by Xb(l, T,) and sum The new symbol in these equations is defined according
over l. Using the symmetry of E, the left-hand sides to
are seen to give zero. The erst terms on the right of
(3.10)—(3.11) cancel on subtraction, and in the second [~"&(/ )]'= »
term we a,ga, in use .-.. (T.—T)Z'(f 4)

QXb(/, T,)K(l, l', T.) =Xb(/', T,).

Z (b&) [g&'& (b&) ]4 2ZO& („)[gi» („)]~Ii+I'i —/lt (0) d&u Re—— tanh-, ,' (P.b&),
0 CO

cc& [~"i(~)]'
I2= —E(0) —',Vb' db& Re . tanh-', (p,co) .

QP COZ b& + b 274,

(3.17)

(3.18)



158 BULK i H, g) AND SURFACE {H, I) NUCLEATION FIELDS 337

Above we have used the well-known symmetry proper-
ties of Z(~) and A(~) . We also note that for finite tem-
peratures Z(~) has a nonvanishing imaginary part at
co=0. The quantity Z(~) = 1—Z(co)/~ therefore has a
pole, and A"'(~) vanishes at &v=0. Thus no singularity
occurs in the integrands of (3.17) and (3.18). These
equations are thus in a form suitable for numerical
evaluation, and we hope that they will prove useful
for this purpose.

4. RELATION OF II„TO OTHER
EXPERIMENTAL PARAMETERS

Our formulas (3.12)—(3.15) may also be used to
express (8/BT)H. 2 Ir, quite accurately in terms of
other measurable quantities. This possibility is a con-
sequence of the observation that the co-dependence of
Z and 6"' will contribute a rather small correction to
the integrals Ii and I~. Inspecting the tables of A(a&)

and Z(&u)" for lead, we find that these vary by no more
than a few percent in the range —,'OkgT, &co&4kgT, . The
variation at small values of ~ comes from the singu-
larity of Z(co) mentioned below Eq. (3.18). This
variation can be easily taken into account, and the
variation for large or is unimportant for the problem at
hand because of the high power of co in the denominator
of the integrand.

We introduce

Z(~) =Z(~)+(&(0)/~)=1 —(&(~)—&(0) )/~, (41)
4 (~)

( )
(7 T)i/2Z( )

~ ( ' )

i/2r~q= Z (0) /Z(0), 1/r t,,= 1/Z(0) rt, (43)
Using these definitions, the formulas for I~ and I2
[(3.13) and (3.15)]become

2s.S(0)
Ij

pc

Z(i ) [A&"(i-)]'
.[(-/P.) (»+1)+(I ~(0) I/Z(i-) )]'

(4 4)

27rlV(0), [I &'&(i- ) ]'/Z(f )

P, ',=0 ((w/P, ) (2l+I) +[X(0)/Z(i i) ])'[(m/P, ) (2l+1)+[Z(i i) ]-'(I Z(0) I+ (1/2«, ) )]
2&(0)P.' [A"'(0)]', , "Z(0), 0 (21+1+P,/2mrpi, )2(2l+1+(P,/2m) (1/rph+1/rg ))

The remainders E& and R2 can easily be expressed as
integrals over real cv. They can be seen to contribute
not more than a few percent of the main terms, and
they also partially cancel when the ratio Ii/I2 is taken.
The same cancellation occurs for the contribution of
P,/2nr~h, which is, in any case, of order 0.5X10 ' in
lead and negligible.

The quantity Z(0) = 1—((8/Bco) Z (e) )~=0 enters in
the above formulas in precisely the correct way to
renormalize the various parameters. Thus if we intro-
duce,

vp* ——kp/m*Z(0) and X*(0)= Ilt (0)Z(0), (4.6)

the quantity S(0) disappears from (4.4) and (4.5).
Incidentally, r&,=Z(0) ri„ is the renormalized lifetime. "

Finally we have to deal with I &. It is interesting
to notice that the same factor occurs in the calculation
of the free-energy difference of normal and super-

conducting states as worked out by Sardeen and
Stephen. "Prom Eq. (13) of this reference we 6nd

I,—I',=4[(f).—n.)/(T. —T) ], ,
= (2m-) '[BH, (T,)/BT]'. (4.7)

We thus have

(4.8)I',= Ii (2m-) '[aH, (T,) /8—T]',
which together with Eq. (3.12) yields

8 e 2Ii—(1/2m. ) [BH,(T,) /BT]'
I2

To identify explicitly the effects of strong coupling,
we introduce expressions from the Bardeen, Cooper, and
Schrieffer theory:

(—(&/BT) A'(Ta))Bcs=7r'(-'i'(3) ) 'T (4.10)

(2~) '(BH. (Tc)/&T)ncs'=2~'(e'i (3) ) '$*(0), (4 11)
' See, e.g. , V. Ambegaokar and I,. Tewordt, Phys. Rev. 134, A805 (1964), Appendix A.

J.W. P. Woo, thesis, Cornell University, 1966 (unpublished). The functions tabulated there were kindly provided by J. C. Swihart.
"Referring to Eq. (2.21) we see that 7.„is not obtained from Tt, by simply correcting the density of states. This correction

gives a 5 in the numerator of (2.21). However, to get the renormalized lifetime one must also remember that U{k—& ) in
(2.21) is a matrix element between electrons and not quasiparticles. Renormalizing each of the four wave functions in the
matrix element squared by the probability that a quasiparticle is contained in a bare state, namely, (Z) 'I', we get a net factor
of g in the denominator of (2.21). This small but amusing point is also discussed in J. S. I.anger, Phys. Rev. 124, 1003 (1961),
Eq. (3.17), and V. Ambegaokar in Astrophysics and the Many-Body Problem (W. A. Benjamin, Inc. , New York, 1963), p. 398.
In these references the renormalization constant is defined in the conventional manner of field theory, namely, as (g) '."J.Bardeen and M. J. Stephen, Phys. Rev. 136, A1485 (1964).
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where

( cjrfo2(Ts)/c)T)Bcs= 3m'(c/e) (T,/ST*2)

(4.12)
t p (2l+1)'(2l+1+1/2orT, Ti)

Then, using (4.4), (4.5), and (4.9) we get

~f+coobs , ( + obs Jf sobs ,+ BCS)

~+c2,BCS T~Tc k ~ BCS +c,BCS ~ obs T~Tc

where the right-hand side gives the explicit strong-
coupling correction.

S. COMPARISON WITH EXPERIMENT

We first express our results in terms of quantities
susceptible to direct measurement, and also re-introduce
factors of 5 and k&, equated to 1 so far.

The relevant measurable quantities are: the coefh-
cient of the linear electronic specific heat y; the Fermi
wave number kT ——(3m')'io; the area of the Fermi
surface S; and the residual conductivity cr. The rela-
tions between the quantities that enter our formulas
and these are"

( BB.(Tc—) /8 T)Bcs= 173 Oe/'K. (5.9)

For the other quantities in the enhancement factor,
I',q. (4.13) we use the experimental result (BH,/BT) T, =
235 (Oe/'K), " and the fact that for lead A(T)/&(0)
versus T/T, follows the 3CS curve very closely" to get'2

kpo) yo) S ' 10'
p= (fi/2akBTsrps) = 11.6

i

—
i

— 'K jj, .
Toj y) Sp Qcm

(5.7)

These formulas should prove useful for other applica-
tions.

The only application of our results we shall make
here, in view of the somewhat unclear experimental
situation described in the Introduction, is to pure lead.
The relevant experimental data for Eqs. (5.5)—(5.6)
are kT ——1.57 X; (S/Sp) =0.7 (Ref. 14); (y/yp) =2.05
(Ref. 15); T,= '7.2'K. Using these data we obtain

(—cjH,2(T,)/BT)Bcs=56x '(p) Oe/'K, (5.8)

and

Z*(0) = (y/yo) (mkT/2m' P)

pp* ——(AS/ySp) (Sky/m),

T„= (37romu/kgpe2) (y/yp) (Sp/S) ',

(5 1) (+ obs/+ BCS)T~T, (~ obs/~ BCS)T~P

(5.2)
= (h,b, (0) /1.76kBT,)2= 1.52.

(5 3) With the above values and the result (5.9), we obtain
for the factor on the right of (4.13)

(5.10)

( &B.o/BT) T, = 1.7—X1.8X56X '(p) Oe/'K

where we have introduced the free-electron parameters
S& and p&, corresponding to S and 7, namely, Sp= 4xk&' ~ obs + c,obs ~ BCS

and yp= (2irokB2/3) (mkT/2m' fi2), m being the free-
electron mass.

Substituting these formulas into Eqs. (4.10)—(4.12), We thus have the prediction from (4.13) and (2.26).
and introducing numerical values for universal con-
stants, we And

8/BT(DBCS/kBT—,) 'T.=9.4/T„

(~&.(T.)/cjT)'Bcs («'/ot (3) )kB'&*(0)

(5.4)

"These relations are perha s most self-evident in the form
y= (2ws/3)kss¹(0) ' o = (2e' 3)Ns(0) (pss)sr«and ¹(0)=
s/(2 )Shan, *.

=0.93X 104k'(y/7p) (Oe/ K) 2 A.

(5 5)
t' ~K2(T.) l 3~', t'kB2c T,

) Bcs pf (3) E lie &Js
X p

=2 36x '( p) (T /4 ) (%So/7oS)

X Oe/( Z ~)2. (5.6)

The symbol X(p) in this formula denotes the function
introduced by Gor'kov'

co

x(p) = g[(2l+1) (2l+1+p)] '
i=o

=170x '(p) Oe/'K. (5.11)

(—M'.2/cj T)T„,——206 Oe/'K. (5.12)

For the bulk of the experimental material one wouM
certainly expect X(p) =1 to be an excellent approxi-
mation. This would then suggest a 20% discrepancy
between theory and experiment, which would be dis-
turbing since we have reduced our results, with small
errors, to a consistency check between experiments
with no free parameters whatsoever.

'4 N. Ashcroft (private communication).
'5 D. L. Decker, D. E. Mapother, and R. K. Shaw, Phys. Rev.

112, 1888 (1958).
' R. F. Gasparovic, B. N. Taylor, and R. K. Eck, Solid State

Commun. 4, 59 (1966)."I. Giaever and K. Megerle, Phys. Rev. 122, 1101 I', 1961).

Cardona and Rosenblum' reported that for pure lead
(H.o/H, )T,=0.88. Using the experimental value for H,
given below Eq. (5.9) we find
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One source of the discrepancy may be the assump-
tion of isotropy inherent in the relation between the
parameters of the theory and empirical quantities
(5.1)—(5.3). Different averages of the Fermi velocity
over the Fermi surface occur in the formal expressions
for the conductivity o and the density of states 1V*(0).
Equating these average velocities may have led to
error of perhaps 10%%uo.

)4

Another way out of the dif6culty is to assume that
the value of 1.9 for H,3/H, 2 quoted by Cardona and
Rosenblum rejects a concentration gradient of im-
purities in their sample so that

x '(p)-.z-./x '(p)b-»=19/1 7. (5.13)

If we take y(p) b„z. to be 1 and substitute (5.13) into
(5.11) we get (z)H, q/BT) r„zz,«,r= 190 Oe/. 'K, leaving
an g%%uo discrepancy which is as small as one could
reasonably expect, particularly in view of the remarks
in the preceding paragraph. However, this interpreta-
tion is speculative and can be criticized because the
thickness of the surface sheath' is roughly 3X ()rzc/eH) zz'

which becomes large near T,(~10' A for H~10' Oe).
It may not be reasonable to assume that the surface
imperfections extend to such a depth.

It is, of course, also possible that we have taken the
experimental numbers too seriously above, and that
some of the error is experimental.

Our conclusion, therefore, is that the theory of
(z)H, 3/BT) r, is in good, though not perfect, agreement
with existing experiments, but that more of the latter
are clearly desirable. As a last remark it is interesting
to notice that without the explicit strong-coupling
correction (5.10), theory and experiment would be in
serious disagreement.

[Pote added irz proof: After submitting this paper for
publication we became aware of related work by N.
Menyhard [Nuovo Cimento, 44, 213 (1966); Acta
Phys. Hung. 21, 277 (1966)7. In this work the Gins-
burg-Landau equations, including the nonlinear term,
for strong-coupling superconductors are derived. The
separation into a differential equation in space and an
integral equation in frequency is pointed out, but no
specific applications are made. We are grateful to Mrs.
Szepfalusy for bringing this work to our attention, and
apologize for not having been aware of it.

An unpublished report by E. D. Yorke and A. Bar-
dasis has also recently reached us. This work has much
the same aim and approach as ours, and reaches much
the same conclusions by the use, however, of numeri-
cal methods.

Dr. H. Rosenblum has informed us that we have
taken too seriously what was intended to be a tentative
suggestion that the measured ratio j..9 might have
something to do with strong coupling. 7

APPENDIX: THE BULK NUCLEATION FIELD FOR
ALL TEMPERATURES

2
I
i-zZ(t-z)

I + 1!r.,L(e/c) H,~(T) 7'"' (A2)

and the functions f and D are those defined and dis-
cussed in Ref. 2. As in Sec. 2, the assumption was made
that zt)t(i'z, r) separates [Eq. (2.23)7 and that P(r) is
an eigenfunction of Eq. (2.24) with n(T) = (2e/c)H, 2

(T), where H,2(T) still has to be determined.
Using Eq. (A1), we get the self-consistency condition

~z f(~z ) 14(i'z)0(r—)
D(nz, ) I

|-zZ(t-z)
I

The position-dependent function )p(r) cancels out of
Eq. (A4), proving the correctness of the assumption
(2.23) for the general case. If we were to assume )),

constant (and to employ the well-known procedure for
removing the consequent divergence of the sum) g(i z)

would be constant and also cancel out. We would then
be left with an algebraic equation, identical to Eq. (4.7)
of Ref. (2), which contains H,2(T) rather implicitly
and has the meaning that H,~(T) is to be so deter-
mined as to satisfy this equation.

Equation (A4) is now an even more implicit equation
for H,2(T), since, for any given temperature T, H,2 has
to be chosen so as to allow the homogeneous integral
equation to have a nonzero solution g(iz). We have
chosen not to undertake the large numerical effort
required to solve this equation, but have thought it
worthwhile to make the formula known.

In Sec. 2 we have seen that the procedure which
leads to an expression for Ft is essentially independent
of the strong-coupling assumption; one simply had to
replace 1 z and A(r) in the weak-coupling expression by
t zz(i z) and zt (t z, r), respectively, to get the strong-
coupling expression.

This principle may be applied to derive an equation
for II,2 at arbitrary temperatures. In doing this, we

apply step by step the methods developed in a recent
paper by one of the authors, ' arriving at

z ) (,+
v zzn ) —) z zz )z z~)

D(gz) I fzZ(fz) I'

for the term of Ft which is linear in zz)). The new symbols
in this formula mean


