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By a suitable linearization of the isospin equations of motion, a calculation is made of the collective exci-
tations of a granular superconductor in the presence of a steady, uniform current flow. Aside from the case
of vanishing frequency or wave vector, only collective excitations with wave vectors perpendicular to the
direction of current flow can occur physically (all others violating the condition of electric charge neutrality
in the superconductor). This insures that the uniform supercurrent is stable against decay by excitation of
collective oscillations (excitations bounded in space and time) . Those excitations which can occur in the pres-
ence of the steady, uniform current are appreciably modified by the latter.

I. INTRODUCTION

N a recent paper! the writer introduced the idea of a

granular superconductor? and investigated a number
of properties of such a system with the aid of Anderson’s
isospin formulation® of the theory of superconductivity.*
The Hamiltonian of this superconductor can be broken
up into two parts: (1) the Bardeen—Cooper—Schrieffer
(BCS) Hamiltonian associated with the individual
homogeneous grains of superconductive material; (2)
the tunneling Hamiltonian associated with the Joseph-
son junctions separating adjacent grains. The latter
Hamiltonian, when recast in the isospin formulation,?
bears a strong formal analogy to the Heisenberg
exchange Hamiltonian of the theory of magnetism.
Invoking this analogy, the writer! passed to the limit
of a continuum theory, in exactly the fashion pioneered
by Landau and Lifshitz® in converting the Heisenberg
theory into a continuum theory of magnetism, so-
called micromagnetics.” With the aid of the commu-
tation properties of the isospin operators, it is easy to
obtain the equations of motion, which represent torque
equations for each spin precessing in an effective
pseudomagnetic field due to all the other spins. In
contrast to the situation commonly encountered in
magnetism, the pseudomagnetic field acting on a given
spin results from a very large number of other spins.
As was pointed out by Anderson,® this allows one to
solve the equations of motion, with no loss of accuracy,
by making the so-called semiclassical approximation
(treating the isospins as classical quantities when solv-

! R. H. Parmenter, Phys. Rev. 154, 353 (1967). This paper
will be referred to as A. Sections and equations from A will be
identified by the prefix A; e.g., A-Sec. 11T, A-Eq. (4.7), etc.

2 A granular superconductor is a system composed of many
microscopic grains of homogeneous superconductor, with each
grain boundary being an insulating layer (e.g., oxide) that is thin
enough to allow appreciable tunneling by the Cooper pairs of the
superconductor. In other words, the system is interlaced with
Josephson junctions.

3P, W. Anderson, Phys. Rev. 112, 1900 (1958).

4]. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108, 1175 (1957).

5 The tunneling Hamiltonian of a Josephson junction was first
reformulated in terms of isospins by P. R. Wallace and M. J
Stavn, Can. J. Phys. 43, 411 (1965).

( "L.) Landau and E. Lifshitz, Phys. Z. Sowjetunion 8, 153
1935).

7W. F. Brown, Jr., Micromagnetics (Interscience Publishers,
Inc., New York, 1963); S. Shtrikman and D. Treves, in Mag-
netism, edited by G. T. Rado and H. Suh! (Academic Press Inc.,
New York, 1963), Vol. III, Chap. 8.
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ing the equations of motion, but not when setting up
the equations of motion).

The equations of motion for these (now classical)
isospins are a set of coupled, nonlinear integrodiffer-
ential equations. The two solutions that are inde-
pendent of both time and position can be obtained
almost by inspection; namely the time- and position-
independent superconducting solution (BCS ground
state) and the time- and position-independent normal-
metal solution.® Time- and position-dependent solutions
that differ only slightly from one of these two time-
and position-independent solutions can be found by
linearizing the equations of motion. This procedure,
carried out in detail in A, enables one to determine the
collective excitations associated with either the super-
conducting or the normal phase of the granular super-
conductor.

The purpose of the present paper is to lay to rest a
rather disquieting possibility unearthed in the course
of the previous computation of the collective excit-
ations. In A-Sec. VI it was shown that, under certain
conditions,’ the superconducting phase has associated
with it a collective oscillation®® of vanishingly small
phase velocity. But it is a well-known fact that the
minimum phase velocity of any collective oscillation
sets an upper limit to the drift velocity of the super-
fluid particles (here, Cooper pairs) in any superfluid
system,!* provided that there is no selection rule pro-
hibiting the generation of the collective oscillations.
In the absence of such a selection rule, this suggests
that, under the conditions described in Ref. 9, our
granular superconductor cannot superconduct in the
literal sense of the word, despite the fact that each
grain of the superconductor is in the thermodynamic

8 As was pointed out in A, the latter is unstable against decay
into the former via collective excitations.

9 The conditions are that the matrix element for phonon-in-
duced electron-electron attraction is, in absolute value, bracketed
by the effective matrix elements for electron-electron Coulomb
repulsion in (1) the superconducting phase and (2) the normal
phase. [It is a well-known consequence of antiparallel-spin elec-
tron-electron correlation in the superconducting phase that the
former Coulomb repulsion is numerically smaller than the latter.
See, e.g., P. Morel and P. W. Anderson, Phys. Rev. 125, 1263
(1962) ]

1 A collective oscillation is a collective excitation bounded in
space and time, i.e., one having a real (not complex) frequency
and wave vector.

1 See, e.g., I. M. Khalatnikov, Iniroduction to the Theory of
Superfluidity (W. A. Benjamin, Inc., New York, 1965), p. 6.
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superconducting phase. This conclusion is particularly
disquieting, since our continuum model of a granular
superconductor should, for the present purposes, be
a reasonable model for a conventional dirty super-
conductor.’? This would suggest that any supercon-
ducting metal satisfying the conditions of Ref. 9 would
lose its superconductivity upon alloying.

As we shall presently show, this difficulty is resolved
in the following fashion. The collective oscillations do
not quench the supercurrent; rather, it is the other
way around: The supercurrent quenches the collective
oscillations (via Poisson’s equation). In A-Sec. III,
it was shown that there are two classes of collective
excitations satisfying the linearized equations of motion,
but only one of these two classes is physically realizable,
since the other class violates the condition of electric
charge neutrality (the total conduction-electron density
being modified by the presence of the excitation). As
we shall see, the presence of a steady, uniform super-
current® causes these two classes of excitations to mix,
so that, with certain exceptions, all classes of excitations
now violate charge neutrality and are thus quenched.
The exceptions are excitations with wave vectors (either
real or complex) perpendicular to the direction of flow
of the supercurrent (and also the special cases of
vanishing wave vector or frequency). But such oscil-
lations are unable to extract both energy and mo-
mentum from the supercurrent, and thus cannot quench
the supercurrent.

The state of steady, uniform current flow was ob-
tained in A-Sec. V by direct solution of the equations
of motion. Because of the mathematical simplicity of
this solution, it is possible to carry through the same
kind of linearization procedure with respect to this
state of finite current density that was carried out in A
with respect to the superconducting state of zero current
density (BCS solution). This procedure can be carried
out using either of the two forms of net effective
electron-electron interaction (considered in A-Secs. ITT
and VI, respectively). Since the conditions mentioned
in Ref. 9 are appropriate only for the more complicated
form of interaction (A-Sec. VI), we should logically
work with this form. In the interest of simplicity of
exposition, we will go through the details of the lineari-
zation procedure only for simpler form of interaction
potential. It can be seen from the structure of the
linearized equations of motion that the same conclusion
(quenching of all collective excitations of finite wave

2 The continuum model of the granular superconductor differs
from a dirty superconductor only when the former contains electric
fields, as occurs, for example, with the electromagnetic modes
calculated in A-Sec. V. Note added in Proof. The effective Ginz-
burg-Landau coherence distance ¢ of both the granular and
the dirty superconductor depend in identical fashion on the
Pippard coherence distance of the corresponding bulk material
and on the normal-state conductivity mean free path (£ being pro-
portional to the geometric mean of the two).

13 The assumption of spatial uniformity of our supercurrent
means that we are restricting the discussion to specimens with
small enough cross-sectional dimensions (e.g., thin films) that the
real magnetic field due to the total supercurrent is ignorable.
The conclusions to be drawn, however, are probably valid for all
sizes of specimens.
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vector and frequency except those moving normal to
the supercurrent) will be obtained for either form of
interaction. It might be added that even those collective
excitations which are not quenched will still suffer
modification by the presence of the supercurrent.

II. MATHEMATICAL ANALYSIS
The isospin equations of motion are
fi(ds/dt) =s xH, 1)

where the isospin s=s;(R) and the effective pseudo-
magnetic field H=H,(R) are both functions of internal
momentum 7k and center-of-mass position R of the
Cooper pair. It is more convenient for our present
purposes to think of s and H as functions of the one-
electron energy e=g¢, corresponding to k (the zero of
energy being taken at the Fermi level). The =z, ¥,
and 2 components of s are given by

$1=7% sinf cose,

$9=1% sinf sing, (2)
and
s3=1 cosf,

respectively, where the angles 6 and ¢ are functions
of R and e. The «, v, and 2 components of H are given by

Hy=2[14+£8Vp? A,
H2= 2[1-'*22 VR2]A2,
Ha= 26, (3)

respectively, where (for the simpler form of interaction
potential) the order parameters A; and A are defined as

i
A=NOV | side,
~fiw
i
A2=N<O) V Szde. (4)
~fiw

The constant &, defined in A, is an effective coherence
distance. Just as in the BCS theory, ==fiw is the range
in e over which the interaction potential V is finite
(and constant). It can be seen that the x and y com-
ponents of H are functions of R alone, the 2 component
a function of e alone.
We write
0=0,+90,

where both (6, ¢) and (6, ¢o) are solutions to the equa-
tions of motion, and 89, d¢p are small in the sense that
we may ignore terms of higher order than linear in 60
or 8¢ when solving the equations of motion. This
procedure represents a linearization of the equations
of motion with respect to the solution (6, ¢o), chosen
to be the case of steady, uniform current flow obtained
in A-Sec. V. Thus

fp=arctan(g/e), (6)
¢0=KO'R’ (7)
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where g and xg are constants. The corresponding order It is convenient to define
parameters are 102 2V —12.50— _
Ano= Ao cosco, dse=21(+g%) 1250 (¢/g) bs3
Asy= Ao singo, (8) = C0S¢0s1+5Ingyds2,
h
o " sss=}(¢-+£) g0
A=1N(O)V . sinfode = — singyds;+ cospydsy (14)
and
(17}
=N(0 2.1 g2) 12 i
0)Vg \ (eé+g) € A =N (O)V Ss.de,
N (0) Vg In(2fw/g). ) e
In order to satisfy the equations of motion, x, and g _ i
must be related by the condition 88,=N(0)V e Bspde. (15)
[1— (&x0)*JAv=¢. (10) Thus
The dc current density is proportional to Ag*kg, so SA1= A1~ A= cosgodAa— sinichpdAs
that a given value of g uniquely specifies Ay, ko, and “ ’
the magnitude of current density. As 8A9= Ag— Ago= singodA,-cosdedAg, (16)
A;—g—re=2Hw exp[ — 1/N(0) V], (11) and
%, and the current density approach zero, and our oH\=H,— Hy=2[1+£VE?]64,,
unperturbed state approaches the BCS ground state _
at the absolute zero of temperature. SHy=Hy— Hy= 2 1+£Ve" JoA,
We expand the sines and cosines of § and ¢ as power SH,=Hy— Hyy=0 (7
series in 80 and 8¢, getting ’
cosh= cos (o+00) =2 (&+g2) 12 (e— g8b) , The linearized equations of motion are
sinf=sin (6o 660) == (&-+g2) 2 (g+ed0), 7(d/dt) 6s1= Hyydso— Hogbs5— 5300 H,
cos¢p= cos(po+8¢) =Zcospo— 6¢ singy, #(d/dt) 8sy= s300Hy+ H1ods3— Hgdsy,
Sln(ﬁ: s (¢0+6¢) gSlﬂ¢o+5¢ COS¢0’ (12) h(d/df) 653= Hgoasl— H106$2+S105H2— 5205H1. (18)
so that
These three equations are equivalent to two independ-
081=$1—"510 ent equations for 7#(d/df)ds, and 7#(d/df)dss. The
221 (24 g%) 12 (e coschodl— g singodeb) , equation for 7i(d/dt) 8s, is obtained by multiplying the
_ equation for 7 (d/dt)dss by —e/g; alternatively, it is ob-
955= 52— S0 tained by adding the equation for %(d/dt)ds;, multiplied
=1 (&4-g2)—12( e singydf-g coshedp) by cosey, to the equation for #(d/dt) ds,, multiplied by
S5r Se sing. The equation for 7 (d/dt)dsg is obtained by adding
6= 55— 530 the equation for #(d/dt)8s;, multiplied by —singy, to
—2(&+g2)12g80. (13)  the equation for % (d/df) 8s,, multiplied by —+cosgo. Thus

7(d/dt) 6so=2eds5— e (&4 g%) V2 ( cosgod Ho— singod Hy)

#i(d/dt) bsg=— (2/€) (€+g?) 8satSe(&+g2) 712 (singod Ha+cosgod Hy) .

(19)

The terms in (19) involving 6H; and 6H, can be rewritten in terms of A, and 8As.
cospod Hy— singod Hyi=2 cosgo[ 1 +£2V? ][ singypd A+ cosdpdAs |— 2 singo[ 1+ £2Ve? ][ cosodA,— singpdAs ]

= 4% Vo AL~+-2[ 148 (— ke V&?) 104,

(20)

singodHa+-cosdod Hi= 2 singo[ 1+4+£2VE? | singedAq—+cosgodAs |+2 cosdol 1 +£2VE> ][ cosgodA,— singedAs ]

= 4E2ko' VR6A5+2|:1+$2(— K02+V132) ]5Aa.

Thus the equations of motion become

+1A(d/dt) 80=gdp— [1— £ (ke — Vi2) J0As— 2820+ VdAs,
—1hg(d/dt) sp= () 80— e[ 1— £ (ke— Vi?) 16Aa—+ 2620 VRdAs.

(21)

(22)
(23)
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Let us assume solutions of the form

60= [Al(e) +6B1(€) :I exp[l (K'R'— wot) ], (24:)
dp=[As(e) +eBa(e) ] exp[i(x-R—wt) ], (25)
where A1(e), As(e), Bi(e), By(e) are all ever functions of e. Define the two constants
i
B=N(O)V / &(@-g2) 1By (e) de, (26)
0
i
A=N(0)Vg f (e4-g) 12 A5(e) de. 27)
0
Thus we have
8A,= B exp[i(x*R—wof) ], (28)
808s= A exp[i(x-R—awyt) ]. (29)

Substituting Eqs. (24), (25), (28), and (29) into (22) and (23), the equations of motion, and breaking each
resultant equation into a part odd in e and a part even in ¢, we finally get

+iifiwod1(e) +g42(e) = [1— & (xP+x?) JA+2iE% x B,
(é+4g%) A1(e) —Fifmgds(e) =0,
+3ificoBi(€) +gB2(e) =0,
(€-+g%) Bi(e) — FihwogBs(€) = [1— £ (ko +4?) ]1B— 2ifxo 4. (30)

Solving these four equations, we get

I =
]
e
e () D et "

The above solutions for 4;, 4s, B, and B, must be made consistent with the original definitions of the constants
A and B. Thus, defining

_ 12 62 (€2+g2> 1/2 )

L=N(O)V fo (a +g2)( ) ) (35)
i (e4g2) 12
L=N0O)V (m)d , 36
=NOV [ (7= ) 36)
we can write the consistency relations as

[1—8(k?+12) ]B—2ie v A= B/I,, (37
+2i8ug kB[ 1—E(xd+i2) JA= A /L. (38)

This leads to the secular equation
[1—-8(++) — 1/ 01— (ke + 1) — 1/1,]— [ 2801 T=0, (39)

the solutions to which give the characteristic frequency wy versus the wave vector x for the collective excitation.
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Substituting (38) into (31) and (32), and (37) into (33) and (34), we get

Ay= (3ifico/I) [ (€487 — (o) 174,

By= (1/I) [(é+¢") — (3Tw0)*]7B,

R. H. PARMENTER 158

(40)

Ay=[(é+g) /el (é+g) — (3hiw)* ] 4, (41)
(42)

(43)

By= (—%ihwn/gI) [ (€+§") — (3Fiwo)* I7B.

Consider the possibility of charge unbalance due to the collective excitation. The net charge density is pro-

portional to

“+iw

+iw
syde= N (0) cosf de

—hw —Fiw

2N(0)

+iw
~_N(0)g (e+g2)~11200 de

—fiw

Fiw
= 2N(0)g [ (@) mAx (o) de
0

e
= — 1w N (0) gA 5 / [(e+g2) — (Ricn)? T (E4g2) 12 de.
0

Under what conditions will (44) vanish? It cannot
vanish from setting g=0, since g>0 here. (A vanishing
g corresponds to setting our unperturbed state equal
to the normal state of zero current at 7=0.) It can
vanish if %w,=0. However, here we are only really
concerned with finite wy (and finite ), since the super-
current can lose both energy and momentum by emis-
sion of a quantum of collective oscillation only if 7y,
fik>0. For finite fiwy, (44) can vanish only if 4=0.
But 4 can be zero (with B0) only if the nondiagonal
terms in the secular determinant vanish, i.e., only if
+2iE%°x=0. (45)
Thus, the only collective excitations which satisfy the
condition of charge neutrality are those whose wave
vector x is perpendicular to the direction of dc current
flow (in addition to those having vanishing % or wp).
For the case of finite % and wy, we could have
inferred this result directly from an inspection of Egs.
(22) and (23). If it were not for the offending term
— 282 VoA, in (22), it would be possible to find
solutions 80 and 8¢, both odd in e, satisfying Eqs. (22)
and (23). Similarly, if it were not for the offending

(44)

term +2effge VedAg in (23), it would be possible to
find solutions 80 and d¢, both even in e, satisfying
Egs. (22) and (23). The presence of these additional
terms insures that no solution 86 is purely odd in e.
But in order for the charge unbalance to vanish, it is
necessary that 60 be odd in e. Thus, unless the additional
terms can be made to vanish (by setting 1 x=0),
one cannot find collective excitations which satisfy
charge neutrality. Exactly the same situation occurs
when one sets up the equations of motion using the
more complicated form of interaction (that of A-Sec.
VI), this being the form appropriate to the case® where
collective oscillations® may occur. Thus collective oscil-
lations cannot cause the dc supercurrent to decay.

When « is perpendicular to x, so that (45) is satisfied,
then the secular equation [Eq. (39)] becomes

1=1—8(x+«) 1. (46)

This differs from the corresponding secular equation
of A [A-Eq. (3.15)] only in that (x?+4«%) replaces
%, and g replaces ¢ in /1. This indicates that the col-
lective excitations which still exist in the presence of a
finite dc current have a modified dispersion relation
(i.e., wp is a function of ¥y as well as of ).



