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Theory of Hot Electrons in Gases, Liquids, and Solids
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Boltzmann's equation for electrons moving in a steady electric 6eld is solved by the method due to
Lorentz, Pidduck, and Davydov Sp.ace-time correlations in the medium (gas, liquid, or solid) are included
exactly through the use of sum rules of the Van Hove spectral function, S(K,or), In liquids and solids the
rates of momentum and energy transfer are dif'ferent, the former being structure-dependent, the latter not.
The error from neglect of this difference in previous treatments for solids is fortuitously canceled at low
and intermediate fields by the error in the single-phonon scattering approximation also employed.

I. INTRODUCTION

~ 'HE mass m of an electron is very much smaller
than the mass M of an atom. Therefore an

electron colliding elastically with an atom will undergo
large deAections but very small changes in energy.
When an electric field is applied to matter containing
electrons which are free to move, these electrons will

accordingly attain a steady-state distribution of mo-
menta which will be almost isotropic, even though it
may be far from Maxwellian or Fermi-Dirac in form.

These facts facilitate solution of the problem of
determining the steady-state momentum distribution
function f(y) for electrons moving through aggregations
of atoms. Two expansions become rapidly convergent:
the expansion of f(p) into Legendre polynomials about
the direction of the field, and the Taylor expansion of
all energy-dependent quantities in powers of the energy
transfer. For electrons moving in gases, the solution
is known. In liquids and solids, however, correlations
among the atoms cannot be ignored, and their inclusion
is the concern of this paper. It will be shown that the
known properties of the Van Hove spectral function are
sufficient for the problem in hand (Secs. II and III).
In the remainder of this section we shall give a brief
historical review of the subject.

Lorentz, ' in 1905, in a paper on "The motion of
electrons in metallic bodies, " considered the electrons
to have a Maxwellian distribution of velocities, made
slightly anisotropic by the electric held:

f(li) e o tsmkT+P@ (Ps)—

By solving a simplified Boltzmann equation, he ob-
tained an expression for the drift velocity s& ——(p, )/rrt:

1/2

vD ——— eEA.
3 zmkT

Here E is the electric 6eld, and A the mean free path
between collisions. This is the correct drift velocity for
thermal electrons in gases or nondegenerate semi-
conductors, in the limit of low fields.

In 1908, experiments by Townsend' on the motion

' H. A. Lorentz, Proc. Amst. Acad. 7, 438 (1905); The Theory
of Electrons (Dover Publications, Inc. , New York, 1952) p. 267.' J. S. Townsend, Proc. Roy. Soc. (London) ASl, 464 (1908).
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of negative ions in gases indicated that at moderate
fieMs electrons are not in thermal equilibrium with the
gas molecules, but that they have a kinetic energy which
is several times larger. This situation was considered
theoretically by Pidduck' 4 in 1913 and 1916.Pidduck's
starting point in the latter paper is Boltzmann's
equation, transformed by a method of Hilbert. He
deduces a series of coupled equations by expanding

f(p) in Legendre polynomials:

For electrons, where ttt/M is small, the first two terms
are sufficient. Pidduck's equation for fp is

d'fp b) dfp
(x+b) + 2+x+

~
+2fp=0

ds x) dx

where

x= e/kT=Ps/2rrtkT, b= 's(eE A) s/(2 r-tt/M) ( kT)'

It is assumed that the collisions are between elastic
spheres, i.e., constant A.. The solution of Pidduck. 's

equation is fp (x+b)'e e P——idduck .also investigated
ion motion for rrt/IV=1 and trt/cV&)1, as well as
diffusion in a magnetic held.

In 1934, Landau and Kompanejez' considered the
deviation from Ohm's law in semiconductors at high
electric fields. They derived a collision term for phonon
scattering, assuming emission and absorption of single
acoustical phonons. Their equation for fp is

d'fp ( b* dfp
(x+5*) +i 1+x+— +fp 0, ——

dx' 4 x dx

where b*= ', (eEA)/2rrtc'kT, c=s-ound velocity. Davy-
dov, ' in 1935, treated the problem of electrons in gases,
and rediscovered the results of Pidduck. In 1936 he
extended his results to semiconductors, ~ and pointed

~ F. B. Pidduck, Proc. Roy. Soc. (London) ASS, 296 (1913).
4 F. B. Pidduck, Proc. London Math. Soc. 15, 89 (1916).
~ L. Landau and A. Kompanejez, Phys. Z. Sowjetunion 6, 163

(1934).
6 S. Davydov, Phys. Z. Sowjetunion 8, 59 (1935).
7 8, Davydov, Phys. Z. Sowjetunion 9, 433 (1936).
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This fact was pointed out by Davydov' in 1937.
Davydov's equation for fo may be integrated, even
when the mean free path is energy dependent. The
result, rederived by Chapman and Cowling" in 1939, is

f&
——exp

Ed'

x+b(ee)

In 1951, Shockley" discussed physically the problem
of hot electrons in germanium. He showed (as was
pointed out by Landau and Kompanejez) that the
transition from linear to nonlinear (non-Ohmic) be-
havior should occur at vD c. ExpeIimentally, however,
it occurs at several times this value. He also gave a
derivation of the Davydov result of the equivalence
of phonon and particle scattering, Finally, in 1954,
Vamashita and Katanabe" rederived the Landau-
Kompanejez-Davydov results for acoustical phonon
scattering, and extended these to include scattering
by optical phonons.

In the above treatments of hot electrons in semi-
conductors, it is assumed that energy and momentum
transfer occur by emission and absorption of single
phonons, and further, that the rates of energy and
momentum. transfer are governed by the same mean
free path. After a discussion of scattering in dense
systems in Sec. II, we derive and solve in Sec. III the
kinetic equation for hot electrons in dense systems.
Finally, we show in Sec. IV that the single-phonon
approximation and the assumption of a single mean
free path for energy and momentum transfer are both
incorrect but that the errors cancel from the anal result
except for high fields. The criterion eD c for the limit
of the linear region remains correct. The explicit de-
pendence of the present theory on atomic structure is
new and of particular importance for liquids.

IL SCATTERING IN DENSE SYSTEMS

Electrons, neutrons, or gamma rays moving through
matter are scattered by atoms which are in interaction

L. Landau and E.Lifshitz, Phys. Z. Sovrjetunion 9, 475 (1936).' B. Davydov, Phys. Z. Sowjetunion 12, 269 (1937).
'e S. Chapman and T. G. Cowling, The 2rratheraateeat Theory of

Son- Uniform Gases (University Press, Cambridge, England,
1939), Sec. 18.7.

"W. Shockley, Bell System Tech. J. 30, 990 (1951)."J. Yamashita and M. Watanabe, Progr. Theoret. Phys.
(Kyoto) 12, 433 (1954)~

out an error in the Landau-Kompanejez collision term.
This error, the omission of a phase-space factor, was
corrected by Landau' in a 1936 paper on the photo-
electromotive force in semiconductors. The corrected
equation is the same as that of Pidduck and Davydov,
with b* replacing b. It was therefore clear that scattering
by phonons is kinetically equivalent to scattering by
particles of eRective mass 3f*, where

M*c'= kT.

with each other, and therefore correlated. A erst ap-
proximation in the microscopic description of the
scattering is the "single-scatterer approximation, " in
which the scattered amplitude at any point is the
coherent sum of amplitudes scattered from individual
atoms but the sum of amplitudes multiply scattered
from different atoms is taken to be negligible. The wave
incident on each atom is approximated by a plane wave.
A necessary condition for the validity of the single-
scatterer approximation is that the average distance
between scattering events, i.e., the mean free path A,
be large compared with the de Broglie wavelength X

of the electro~. The same condition is clearly sufficient
for the validity of the Boltzmann equation. %whether

X/A. being small is a sufhcient condition in the former
case or a necessary condition in the latter is not known.

From the most general point of view, a particle wave
moving through a liquid or a solid transfers energy to
collective excitations of the system. In the single-
scatterer approximation, all the necessary information
about the excitations is contained in the Van Hove"
space-time pair correlation function G(R, t), or more
directly in its Fourier transform S(K,~). The proba-
bility of an electron, neutron, or gamma ray scattering
with the loss of momentum" K and energy to (i.e., by
creating a density fluctuation of momentum K and
energy to) is proportional to the product of the single-
atom diRerential cross section, and of the spectral
function S(K,co). The spectral function must in general
be determined by measuring the Qux of neutrons,
initially with momentum p and energy e, emerging with
momentum y —K and energy e—co. However, S(K,to)
has some general properties"" which are true for any
quantum-mechanical system. One of these is the de-
tailed balancing condition (P= 1/kT)

S(—K, —a&) =e—e"S(K,M).

This is a consequence of the principle of microscopic
reversibility, and of the thermal equilibrium of the
system. The other general properties of 5 are the first
two sum rules

(1)—= dco S(K,to) =S(K),

(to) = tlute toS(K,to) =K'/2M.

The first equation is simply the normalization condi-
tion—the probability of scattering with momentum
transfer K, integrated over all energy transfers, is in
the sing1e-scatterer approximation proportional to the

"L.Van Hove, Phys. Rev. 95, 249 (1954).
~4 We set 0= 1 in this paper."P.G. De Gennes, Physica 25, 825 (1959).
"A. Rahman, K. S. Singwi, and A. Sjolander, Phys. Rev. 126,

986 (1962).



HOT ELECTRONS IN GASES, LIQUIDS, AND SOLIDS

structure factor S(K), the Fourier transform of G(R,O).
The second sum rule states that the average energy
transfer is exactly equal to the free-atom recoil energy
for the same momentum transfer, independently of
structure or thermal motion. The next sum rule is only

approximately structure-independent:

((v') —= d(o a S(K,(o) 2k'(oo).

Omitted from (4) are structure-dependent terms which
are smaller by the factor

(a )/kT- (m/M) e/k T. (~)

This quantity, which is essentially the ratio of the
energy transferred in a collision to the thermal energy
of an atom, is very small except in the case of hot or
degenerate electrons at low temperatures. The higher
moments of S(K,a) are, on the scale of kT, smaller by
the factor (5) times Og&/T, where Bz, is the Debye
temperature. Thus at sufIj.ciently high temperatures,
energy transfer in collisions is well described by the
sum rules (2), (3), and (4). We shall use this fact in the
next section to reduce the collision term of the Boltz-
mann equation.

III. THE KINETIC EQUATION FOR ELECTRONS

By symmetry, the steady-state momentum dis-
tribution function f(y) of electrons moving in a uniform
electric 6eld is a function. of p' and of the angle f
between field F and momentum y. Following Pidduck, '
we expand 1n I~egendre polynomials:

f(p) = fo(e)Po+f~(~)P~(«st )+f2(~)P~(cosf)+ (6)

It. Will be shown ln the following paragraph that f2 ls
negligible; we have therefore omitted all terms in
P3(cosf) and higher spherical harmonics.

In the steady state, the number of electrons acceler-
ated by the electric Geld out of the element d'p per
unit time is

~f p
eE d'p= eE d'p—(Po , (fz'+—fg/e)-

Bp

+Pi(cosf)(fo'+5 f~'+5 f~/&)

+P~(cost)k(2f~' —f~/~)}+", (&)

where prime denotes d/de. This loss is balanced by the
net gain in the number of electrons entering and leaving
the element d'p because of collisions. The number
scattered from d'p into d'p'= p"dp'dQ' in unit time is

p'
ndQ' do~ S(K,co)—

i
F(y-+ p') i'f {p)d'p.

This expression is built up as follows: f(p)d'p is the
number of electrons available for scattering out of d'p;

n is the number of scattering centers (atoms) per unit
volume; F(p —+ p') is the scattering amplitude for
transition from p to y' in collision with a single collision
center. The Aux of electrons into dQ' is the number of
possible events nf(p)d'p, times the scattering proba-
bility S(K,cu)

i
F (p ~ y') i', times the Anal velocity and

solid angle (p'/m)dQ'. This is integrated over all energy
transfers w. The momentum transfer K and energy
transfer co are given by

p =p K) (9)

Similarly, the number of electrons scattered into d'p
from d'p' is

ndQ d S(—K, —)—iF(p' p) i'f(p')O'P'. (10)

d'p'= (p'/p) (dQ'/dQ) d'p. (12)

Using (11) and (12), the net number of electrons
scattered into d'p per unit time is, integrating over dQ',

d'pn dQ' d~ —o. (e—I/2, 8)(S(—K, —a&)f(p')

—S(K,~)f(y)}. {13)

A similar collision term has been written down by
Baym. '7 If there is no phonon drag, the detailed
balancing condition (1) is valid. Combining {I) and
(13), the Boltzmann equation for electrons in a steady
electric field is thus~f, p
eE =n dQ' —d~ —o (e-(u/2, 8)S(K,a)

Bp tS

Pidduck's method of solution is to expand both sides
in Legendre polynomials of cos(y, E) and equate co-
efficients. The left-hand side (LHS) has already been
written in this form in Eq. (7). To evaluate the right-
hand side (RHS) both f(y) and f(y') are expanded as
in (6); terms in P„(cosf') are reduced to terms in
P„(cosf) by the spherical harmonic addition theorem:

P„{cosf')=P„(cosf')P„(cos0)+terms which give zero
on integration over the azimuthal angle.

"G. Bayrn, Phys. Rev. IBS, A1691 I', 1964).

From unitarity or time reversal and isotropy, the
absolute squares of the two scattering amplitudes are
equal. The average of the initial and final energies is
in each case ~ —cu/2. We shall therefore set

i
F i'= o (e—co/2, 0),

where o (e,8) is the differential cross section at energy
e, with 8 the angle between y and y'. From Eq. (9)
it follows that
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We now expand all energy-dependent quantities of the
RHS, to first order in co outside the bracket, to second
order inside. Since IC is a function of the energy transfer
~, we must write

M 8
5(Kcp)=5(Kpcp) ——Kp 5(Kpcp).

46 t9Kp

When E is zero, fp —e—'isr and fi and fs are zero. At
low fields, f, is linear in E and fs quadratic in E. At
high iields, fs/fi is ot the order of eEAs/(e). By Shock-
ley's arguments" about energy balance at high 6elds,
this is of the order of (res/M)"'. Therefore fs may be
neglected at both low and high fields. We dehne

(21)b(x) =-,'(cEAp) (eEAi)/(2m/M) (kT)s.

p

(x+b(h)] +xfp 0. ——
dS

To evaluate the second term, we shall interchange the
order of 8/8Ep and j'dcp. Here Ep 2p sin——-, 8 is the Fliminating fi between (18) and (19) gives a homo-
momentum transter in a, Perfectly elastic collision, i.e., geneous linear differential equation for fp.
with co =0.When we expand in powers of co as described,

fand use the sum rules (2), (3), and (4), the RHS of
(14) becomes (22)

e2rr d8sin8{ApPp+AtPt(cosf)+AsPs(cosf)), (16)
p

where

A p
= (2m/M) (1—cos8) Peer (fp'+ bTfp")

+ («'+2~) (fp+&Tfp')]

m oz)
+term ot order — — fper,

3f kT 3E kT

When b is constant, fp (x+b)——Pe '.
The results above apply to a dilute gas of electrons.

For a Fermi gas of electrons, such as in degenerate
semiconductors or in metals, the term s &"f(y')—f(y)
in (14) is to be replaced by

& '"f(1i')L1—f(li)]-f(P)9—f(1i')].

Omitting terms with fs and ft', we get

-'seEApft ——(2m/M) eLfp(1 —fp)+kTfp'] (23)
A, = —L1—Pi(cos8)]fioS(Kp)

+term of order — ftcr,
3f kT

As= —L1—Ps(cos8)]fscrS(Kp)
PE

+term of order — fscr.
3E kT

eEAifp' fi. ———

The equation for fp is now nonlinear:

L*+b(*)] +*f.(1—f)=o.
Is

(24)

(25)

Now define the "mean free Paths" Ap, Ay, and A2 by The solution for constant b is

Ap '=m27r d8sin8(1 —cos8)o. (e,8), f.= {C-/(*+b) +»- (26)

Ay '=m2x

The mean energy and the drift velocity are given in

d8 8/1 p ( 8)] ( 8)5(K ) (17) terms of the solutions of (22) or (25) by

As '= rc2s. d8 sin8L1 —Ps(cos8)]cr(s, 8)5(Kp) .
0

Ch x"fp(x)

(27)

', eEApfi= (2m/M)e(fp-+/pTfp').

The other two equations are

sEAt(fp'+-sfs'+ s fs/e) = fi, —
—seEAs(2fi' —fi/e) = fs. —

(18)

(19)

(2O)

1'The mean free path A1 is the same as that introduced by
H. Gerstenkorn /Ann. Phys. (Leipzig) 10, 49 (1952)g and J. M.
Ziman LPhil. Mag. 6, 1013 (1961)g in the theory of the resistivity
of liquid metals.

We equate coeKcients of P„(cos{)and neglect terms
smaller by (m/M)c/kT, to obtain three equations for
fp, fi, and f&. The first equation may be integrated
once:

Ck x'"fp(x)

1 2kT)'" p

3 m)

dx xfi(x)

dx x'"fp(x)

(28)

~9 Reference 11, p. 1005. The energy-balance argument runs as
follows: Electrons gain energy at the rate vzeE from the 6eld, and
lose energy at the rate (v/A) (m/3E) (c) by collisions. In the steady
state these rates are equal. (There is little di6erence between the
various A's at high Gelds. ) Because v~~eEA/mv from general
kinetic arguments, it follows that eEA/(e)~(ra/M)'cs.
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IV. DISCUSSIOÃ

For electrons moving in gases which are sufficiently
dilute to obey the perfect gas law (P=nkT), S(K)=1
and our result reduces to that of Pidduck, Davydov,
and Chapman and Cowling. ' In liquids and solids
structure becomes important and two distinct "mean
free paths" enter into the problem. Physically, this
means that the rates of energy and momentum transfer
are different. In (18), the RHS is the average energy
lost per collision, while the LHS is the average energy
gained from the field between collisions. Thus Ao, which
is independent of structure, determines the rate of
energy transfer. Similarly, writing (19) or (24) in the
form

ft&p+eErtd fp=0, rt= At/e,

we see that this equation represents the balance between
the gain in momentum due to drift down the field and
the loss due to collisions. Therefore Aq, which is
structure-dependent, determines the rate of momentum
transfer 2'

The ratio At/Ap is close to unity for very hot or highly
degenerate electrons since the structure factor tends
to one for large momentum transfers. For thermal
electrons, however, the e%ciency in energy transfer is
greater by the factor 1/5(0) Mc'/kT. On the other
hand, the magnitude of the average energy transfer to
all multiphonon excitations [given by the sum rule

(3)j is smaller than that to single phonons only by the

"Iiootnote added in proof. More generally, the sum of x ' times
Eq. (22) and the derivative of Eq. (22) with respect to X gives
Pidduck s equation for f0 (of introduction), but with the dehnition
(21) for b(x) and provided the x dependence of b is neglected in
the differentiation."The fact that equating the Pp and P~ icosi l coetiicients gives,
respectively, the conditions of energy and momentum balance
was pointed out by P. M. Morse, W. P. Allis, and E. S. Lamar,
Phys. Rev. 48, 412 (1935).

factor M*/M=kT/Mc'. Therefore at low and medium
fields we do not di8er numerically from the theories of
Landau and Kompanejez, Davydov, Shockley, and
Yamashita, and Watanabe. The criteria for the limit
of the low-field region, where by definition the electron
distribution is close to equilibrium (i.e., Maxwellian or
Fermi-Dirac) are, respectively,

(29),'(eEAp) (eEAt) (2m/M) (kT)'
and

', (eE—h.p) (eEAt) (2m/M) e pk T . (30)

The criterion (29) reduces to the Landau-Shockley
criterion eD c. Using the experimental mean free paths,
these fields come out to be about 200 V/cm for electrons
in liquid argon and about 20000 V/cm for the con-
duction electrons in liquid sodium.

To summarize, we have constructed a hot-electron
theory equally valid for gases, liquids, and solids. The
primary approximations made are the assumptions
of no multiple scattering and a suKciently high tem-
perature for the average energy transfer to be small
compared to thermal energy. The present theory is
identical to the Pidduck-Davydov-Chapman-Cowling
theory for gases. For solids, in particular semicon-
ductors, it reduces to the Landau-Davydov-Shockley-
Yamashita-Watanabe theory only because of a for-
tuitous cancellation occurring at low and medium fields.
For liquids it is new and includes through 5(K,cu) the
structural e6ects essential therein.
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