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Polarization Properties of a Single-Mode Operating Gas Laser in a
Small Axial Magnetic Field
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The polarization properties of a single-mode operating gas laser in a small axial magnetic Geld (Geld
splitting«natural linewidth) with an initial cavity anisotropy are considered in detail. Expressions are
given for the efFects on the polarization parameters due to the active medium, the external Geld, and the
initial anisotropy of the cavity. The cooperation of these three efFects is discussed. Existing theories are in
this respect shown to be either incomplete or inadequate. Specializations are made to several types of atomic
transitions and cavity anisotropies. A group of low-Geld polarization phenomena observed on the He-Ne
1.153-I, mode is theoretically discussed. In particular, it is shown that the observed polarization Qip by
tuning through the line center and the hysteresis efFect, observed by Kannelaud and Culshaw, can be com-
pletely understood assuming a cavity whose main anisotropy is a linear phase anisotropy. At zero or very
small magnetic Geld the theory predicts a preference for linear or circular polarization, depending on the
type of atomic transition.

I. INTRODUCTION

GAS laser shows in general a variety of polariza-
.k tion phenomena, which have been the subject of

both experimental and theoretical studies.
An important group of experiments concern the

behavior of the He—Ne 1..153-p mode not too close to
threshoM. The mode then shows linear polarization.
Rotations of the polarization plane in axial fields of a
few Oe were reported by Statz, Paananen, and Koster, '
Culshaw and Kannelaud, ' and De Lang and Bouwhuis. '
Xo steady rotation was observed for 6elds smaller than
some critical H„;' (about 1 Oe or less). In the latter
case, the stable polarization azimuth 8 was observed
to depend on the external 6eld. 2 3 When H was varied
from 0 to &H„;t., the stable polarization plane was
observed to rotate through an angle of ~~~x. Further-
more, at H=o the stable polarization plane Qipped
into a position di6ering by about an angle ~x when
the laser was tuned through the center of the Doppler
pro6le. This polarization Qip does not occur abruptly
at line center'; it is furthermore accompanied by a
hysteresis effect. The latter effect, first observed by
K.annelaud and Culshaw, 4 implies that, in the direct
neighborhood of the line center, the polarization plane
chooses its position according to the tuning history of
the laser.

In the interpretation of the above experimental
facts, the 6rst question to be answered is why the
He—Ne j.153-p mode shows the observed preference
for linear polarization at all. Induced by experiments of
De Lang, Bouwhuis, and Ferguson, ' who were able to
measure the "strength" of this linear preference, this

1H. Statz, R. Paananen, and G. F. Koster, J. Appl. Phys. 33,
2319 (1962).

'%. Culshaw and J. Kannelaud, Phys. Rev. 136, 1209 {1964).
3 H. de Lang and G. Bouwhuis, Phys. Letters 19, 481 {1965).' J. Kannelaud and W. Culsha~, Phys. Rev. 141, 237 {1966).
~ H. de Lang, G, Bouwhuis, and E. T. Ferguson, Phys. Letters

19, 482 (1965).

question was solved by PoMer and Van Haeringen' by
applying Lamb's theory' to the case of degenerate
atomic levels (H =0). Depending on the type of atomic
transition, their theory predicted the kind and size of the
polarization preference. In the above case of a He—Ne
1.153-p mode (a j=1—+j=2 transition) there was full
agreement with the experiments of De Lang et ul, '
whereas later experiments' gave examples of He-Ne
modes showing circular preference. For instance, the
He—Ne 1.207-p mode (a j=2-j=2 transition) shows
circular preference, ' in agreement with the theory. In
this connection we should bike to mention the work of
Beer and Graft' and Doyle and %hite, ' who made
similar extensions of Lamb's theory, without, however,
giving the explicit medium-induced nonlinear effects on
the polarization ellipse for all types of atomic transi-
tions.

The observed stability of the polarization plane
(He—Ne 1.153-p mode) for external fields running from
zero to some critical value and the (nonuniform)
rotation of the polarization plane for fields surpassing
this critical value cannot be understood without the
assumption of a cavity with an initial anisotropy. This
view is commonly accepted. """The type of anisot-
ropy assumed by Kannelaud and Culshaw and
DTakonov" is a linear absorption anisotropy, which
indeed explains a number of polarization phenomena
at low 6elds. According to De Lang and Bouwhuis, '
however, such an absorption anisotropy cannot explain
the polarization Qip mentioned above. According to
them the most important anisotropy of the cavity is a
linear phase anisotropy, as the observed Qip is of a

6D. Polder and W. van Haeringen, Phys. Letters 19, 380
(1965).

~ W. E. Lamb, Jr., Phys. Rev, 134, A1429 (1964).
8 H. de Lang and G. Bouwhuis, Phys. Letters 20, 383 {1966)., C. V. Beer and R. D. Graft, Phys. Rev. 14O, A1088 {1965).
"W. M. Doye and M. B. White, Phys. Rev. 147, 359 (1966)."M. I. O'Yakonov, Zh. Eksperim. i Yeor. Fiz. 49, 1169

(1965) /English transl. : Soviet Phys. —JETP 22, 812 (1966)g.
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dispersive nature. Furthermore, a theory in which a
linear phase anisotropy is assumed neatly accounts for
the reported hysteresis phenomenon, ' as is shown in
the present article.

In our opinion the existing theories of mode polariza-
tion in anisotropic cavities with or without small
external magnetic fieMs are incomplete. The theory of
De Lang and Bouwhuis, ' ' " which does, indeed, ac-
count for all of the above-mentioned phenomena, is a
phenomenological one and needs a microscopic justifi-
cation. The theory of Culshaw and Kannelaud" assumes
absorptive anisotropies only and is restricted to j=
~~j =

~ transitions. Heer and Graft' treat the polariza-
tion problem for isotropic cavities only. The theory of
Doyle and White"'4 is claimed to be valid for very
small excitation densities only. In the theory of
D'Yakonov, the possibility of circular polarization
preference at zero magnetic field seems to have been
overlooked. Moreover, only cavities with a linear
absorption anisotropy are considered. The treatment
of the external magnetic field in this theory is, however,
rather general (field splitting « Doppler linewidth) .

The present article deals with the single-mode
behavior of a gas laser, taking into account the eAects
of small axial magnetic fields (Geld splitting « natural
linewidth), of nonlinearities induced by the active
medium, and of the anisotropic cavity (anisotropies of
any kind). All types of atomic transitions are con-
sidered. Expressions are given for the medium-, the
cavity-, and the magnetic-field-induced effects on the
polarization parameters. In principle, the theory can
be extended to higher field regions and multimode
operation. Our main application will be the above-
mentioned polarization phenomena.

In the derivation of the equations of motion for the
polarization ellipse, we assume the presence of a nearly
monochromatic electric field. It has to obey Maxwell's
equations, with an anisotropic loss tensor, accounting
for both isotropic and anisotropic losses. Before the
induced polarization vector I (to the third order in
the electric field E and to the erst order in an external
magnetic field H) is calculated, it appears to be very
practica, l (Sec. II) to give a phenomenological equation
for the I' vector first, in terms of the E and H vectors.
It can easily be derived from symmetry properties that
the quantum-mechanical calculation of P can be con-
centrated on the calculation of six (complex) phenom-
enological constants. For convenience Maxwell's equa-
tions for the electric field (having right- and left-circular
amplitudes a,nd phases E& and g&) are transformed
from the beginning into equations for the ellipticity,
the phase difference, the intensity, and the total phase.
As the total phase is an insignificant quantity, we end
Sec. II with three phenomenological equations of

"H. de Lang, Physica 33, 163 (1967) .
"W. Culshaw and J. Kannelaud, Phys. Rev. 141, 228 (1966).' W. M. Doyle and M. B. White, Phys. Rev. Letters 1V, 467

(1966).

motion for the ellipticity, the polarization azimuth,
and the intensity. The effects of the active medium,
the magnetic field, and the empty cavity are clearly
separated. Section III and Appendices A and 8 give
calculations of the six phenomenological constants, in
which Lamb's theory is applied to the case of degener-
ate atomic levels. ~ In the third-order calculation of P
we do not limit ourselves to the Doppler limit, as in
Lamb's work. As a result, we find an additional disper-
sive nonlinear term proportional to the local derivative
in the velocity distribution of the atoms, which becomes
relevant for operation not too close to the line center.
At the end of Sec. III, the expression for P is specialized
to the case of equal Lande factors for the upper and
lower levels. In Sec. IV the equations from Sec. II, in
which the phenomenological constants are now known
from the calculation in Sec. III, are applied to the
following cases: (a) Zero magnetic field and isotropic
cavity; (b) Zero magnetic Geld and a,nisotropic cavity;
(c) Small magnetic field and anisotropic cavity. In
case (a) the pure medium-induced equations of motion
are obtained. Three classes of atomic transitions are
found, the first class having a preference for linear
polarization, the second class leading to circular bista-
bility, and the third class leading to no preference at
all. Only the predictions concerning the latter class
(0~1 and 1~1 transitions) seem to be in. disagreement
with experiments. ' "Representatives of this class show
a slight circular preference. Ke conclude that a subtle
prediction of precise balance (no polarization prefer-
ence) cannot be taken seriously in our approximate
theory.

In cases (b) and (c) the discussion is concentrated
on the atomic transition class with linear preference,
as the He—Xe 1.153-p mode will be our main applica-
tion. In Sec. V we deal more specifically with an
isotropic cavity, a cavity with linear absorption anisot-
ropy, a cavity with linear phase anisotropy, and a
cavity with combined linear absorption and phase
anisotropy. It is shown that a linear phase anisotropy
in combination with a relatively very small linear
absorption anisotropy has to be adopted in the descrip-
tion of the polarization phenomena mentioned above.
The theory gives a satisfactory explanation for all
low-field phenomena, including the polarization Qip
and the hysteresis effect, Finally, we note that the
predictions concerning the cavity anisotropies can be
checked experimentally by adding anisotropic elements
to the cavity. ' "

II. ELECTROMAGNETIC FIELD EQUATIONS

In accordance with Lamb, ~ the electric field within
the medium is assumed to obey the equation

curl curlE(s, t) +@01'~ (8/Bt) E(s, t)

+@pro(8'/BP) E(s, t) = —po(B'/Bt') P(s, t) . (1)
15 R. L. Fork, W. J. Tomlinson, and L. J. Heilos, Appl. Phys.

Letters 8, 162 (1966).
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The isotropic cavity loss, as well as all initial cavity
anisotropies (i.e., without the anisotropies induced by
the active medium and external field) are described
by the I tensor. It is assumed that all these cavity
properties may be treated in a "smeared out" way, i.e.,
continuously in time.

The eGect of the active atoms is contained in the
macroscopic polarization vector P(z, t), where z is the
coordinate along the axis of the interferometer. The
vector P will depend on the electric field E, on external
magnetic fields H, on the pump strength, and on the
characteristics of the atomic transitions. In Sec. III,

expressions are derived for P to the third order in E
and to the first order in an axial magnetic Geld H for
diGerent types of atomic transitions. This will be
suQicient for fields E and H which are not excessively
large.

It is our task to study the cooperative eGect on the
electric field in the cavity of the active medium on the
one hand and the (anisotropic) cavity on the other
hand.

We are confining ourselves to the case of one-mode
operation. The electric field satisfying (1) is supposed
to be given by

E(s, t) = i~ (E+(/) (x iy—) exp {—i/i t+P+(t) ]I+E (i) (x+iy) exp{ —iLvt+p (i))I ) sinEs+c c., (2)

where the right- and left-circular amplitudes and phases E+, E and P+, @, respectively, vary slowly in time;
v is the circular frequency of operation; E=27rN/I. , where L is twice the distance between the mirrors; x and y
are unit vectors. Once the P vector has been calculated Lby a treatment of the dipole transitions induced by the
electric Geld (2) ), the time evolution of the E Geld can be found f'rom (1).

Fquation (1) is dealt with, by making the same approximations as Lamb, i.e., assuming B'P/BP= —v'P,
neglecting second time derivatives and products of Grst derivatives of E~, E, P+, and g and using poF ~ BE/Bt=—zppl ' VE.

In accordance with these approximations, we can write the P vector in the following form:

P(z, &) =l (9' (&)+iQ+(&))(x—iy) exp{ —iL &+4+(&)]I

+LP (&)+iQ (t)](x+iy) exp{ —iLvt+p (t))I) sinÃs+c. c., (3)
where the real functions I'+, I', Q+, and Q vary slowly in time. The explicit form of these four functions follows
from the quantum-mechanical treatment in Sec. III. The Q+, Q functions describe the absorptive properties of
the medium; the P+, P functions describe the dispersive properties.

Before calculating, however, the I'+ and Q~ functions, we can give phenomenological expressions for them for
considerations of symmetry. This runs as follows:

In an isotropic medium with an external dc magnetic Geld H and an electric Geld of the form Lsee (2))
E= 8 exp ( ivt) +—8* exp (+ivt), (4)

it is easy to find a formal expression for the polarization vector at frequency v Lsee (3)]in terms of E and H. Let

P =Q exp( —ivt)+Q* exp(+ivy).
We then Gnd

i{3=s 8+s (8xH)+s, (8 ~ 8*)8+s4(8 8) 8*+s&(8 8*) (8xH)+s&(g g) (g*xH)+g, (g&&g+) (g.H) y. ..
(6)

In (6) we limit ourselves, as announced above, to the third order in 8 and the Grst order in H. The
seven constants si to s& are generally complex. The E and P Geld in (2) and (3) are perpendicular to the z axis.
This implies that the s&, s5, and s6 terms in (6) contribute only when H has an axial component. The s7 term in (6)
drops out if we specialize to the case of axial magnetic fields. Substitution of (2) and (3) in (6) directly
provides the desired phenomenological expressions for the absorptive Q~(t) functions and the dispersive P+(t)
functions. Specializing to axial magnetic fields H, we Gnd

(i'/eo) Q~ = nE~~n'E~H, +P,E—~'+P2E~E~'~P'iE~'&, ~P',E~E~'H, ) (7)

(p/&0) P~ = ~E~&0''E~P, +piE~'+piE~E+'~p'iE~'H, ~p'2EyEV H„
where the twelve coeflicients n, n', 0, 0.', Pi, P'i, P2, P'2, pi, p'i, p2, and p'2 are real. The factor p/60 in front of Q+ and
I'+ is written for (later) convenience.

Writing the loss tensor

(F F+ lI =op
I

(F+ F



as the sum of an isotropic loss, a linear absorption and phase anisotropy (different main axes in general), and a
clrculal' absol'ptloI1 Rlld phRsc Rnlsotlopy (scc Appendix A), wc call caslly rewrite Eq. (1) by substituting (2)
(3) ~ (7), Rnd (8) 1I1 R sct of folll' dlffcl'cILtlal cqllatlolls fol' thc amplitudes Ey' RIld tile pllRscs p~. It is however
practical to introduce the quantities

(13)

(14)

(»)
c082X(d~/«) = 8 (Pl—PL)»in4X+kKL~'+k(P'I+P'2) Ij c082X+k (X &),

I L(dI/dh—) =a—12(pl I) (1+ sin'2X) ——', (p2I) cos'2X+H. (n'+p'lI) sin2y —Rel'+ha(x, g),

wllcrc tile effect of thc RIllsotl'oplc cavl'ty (AppcIldlx A) sllows lip 1I1 thc kl, k2, Rlld kg 'tcl'ms

hl(X, 8) =-', a cos2(8 —81) sin2X+~~40»Q2(8 —4)+-,'0',

h2(x, 8}=-', LI sln2(8 —PL}—', &0 cos2(8—82) sin2X —',p',

k1(g, 8) =—8 c082 (8—+) c082X+8 sln2X.

(16)

(17)

(18)

x(t) = arctan(E=E+)/(E +E+), (10)

&(~) =k(4-—4+) (11}

I(t) =E '+E+', (12)

where y is thc angle indicating the cllipticity of the mode (—4s.&x&+~1r), p is the angle made by thc long axis
of the polarization ellipse with a 6xed axis (0&8&m), and I is the intensity of the mode. A fourth lndependc„t
quantity is 2 (p +p+), in which we are not interested.

Rewriting (1) in terms of y, 8, and I gives the following equivalent set of coupled equs, tions

dxl«= l (P1 PL)»—m4x+l II.L~'+2 (O'I+0'1) Ij c082x+kl(x, &),

Tile IllcRI11Ilg of 7& 0, g 0, @, 81, Rnd 81 18 glvcn lxl

Appclldlx A. Equations (13)—(15) Rl'c ouI' basic cqllR-

tions. There is a clear distinction in the right-hand

sides of (13)—(15) between the effects due to the
medium and those duc to the empty cavity.

An inspection of (13}—(15) already shows something

of the physical signihcance of the respective terms. Let
us 6rst discuss the CGects of the medium. Suppose wc

start Rt 1=$0 wltll R field characterized by I(tp), X(fo),
and 8(to). As I and x are functions of E+ only, the
initial behavior of I(t) and x(t) will be completely
determined by the absorptive part of the P vector.
This manifests itself in (13) and (15) where we meet

only codBcients from the expansion of the absorptive

Q+ functions (i.e., CL, n', pL, p2, p'I, and p'1). On the
other hand, 8(t), being half the phase difference of the
left and light clI'culaI'ly polRrlzcd pRrts of thc %'avc) lsd

1D its lnitlRl behavior de termincd by thc dispel slvc

part of the P vector. Therefore, (14) contains only
coeffLcicnts of the dispersive I'~ functions (i.e., e', Pl,

p2~ p 4 Rnd p &) ~

Consider thc case where left and right circular parts
of the wave are uncoupled D4=Pm=p'2=P'2=0, see

Eqs. (7} and (8}j, and take II,=O. If there is an
initial difference in E+ and E, i.e., if initially x(to) &0,
both the ellipticity x(t) and the phase difference 8(t)
change Lowing to the 6rst terms in (13) and (14)j.
This is awdl-known saturation phenomenon: Because of
nonlinear CGccts, the less saturated part of the mode

can grow more rapidly than the more saturated part.
If there is a nonvanishing coupling between the two

parts of the mode (p2, PI, p's, P'2WO), the former effect

is slightly altered because of additional conversion of
left- and right-polarized parts into each other. In this
way the origin of the terms in (13) and (14) propor-
tional to sin 4X canbe Understood. This saturation CGect
also shows up in Eq. (15) in the terms proportional to
pL Rnd p2.

An axial magnetic Geld gives risc in general to a
rotation of thc polRI'Izatlon clllpsc. TlM magnetic Geld
induces a dispersive anisotropy /see Eq. (14)g and an
absorptive anisotropy Lsee Eqs. (13) and (15)j. The
magnetic-6eld term in (15) will be negligible in the
cases to be considered (Zeeman splitting (( natural
linewidth) .

The c8cct of the empty cavity on the behavior of
and I ls compl1catcd 1n the cRsc of a general I

tensor. HO%'ever& wrltlng thc r tensor Rs a sum of Rn
isotropic part and "a 6nite number of known anisot-
ropies LAppendix A] is very helpful; we can easily
specialize the cavity terms (16), (17), and (18) to
ca,ses of 1ntc1cst 1D which oQc oI' morc of thc RD1sot-
I'oplcs 0) Qoq 0, tf& Rlezclo. Fol' R'll lsotl'oplc cavltyi tlM
only remaining cavity term is the isotropic loss —Rcl'
appearing in Eq. (15).

Thc active medium is assumed to consist of atoms
each of vvhich has two relevant energy levels a and b.
These levels are degenerate and are characterized by
angular-momentum quantum DUDlbcx's g~ and Jg. In an
external magnetic field H, they split up into 2j,+1
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sublevels with energy axis to be the s axis. We further need the quantities

~.„=&~.+tttg. t e I
H

I

and 2jb+1 sublevels with energy

(19) e,„*X+iy b ~,dV = (23)

X~b„=r~b+mgbpe ) H (, (20)

where ns is the magnetic quantum number running
from j—, to +j, or j—b to +jb, g (gb) is the Lande
factor for the upper (lower) level, and ttttt is the Bohr
magneton.

If an atom at s'0 with axial velocity v, is excited in
one of the above states at to, the atom can make
transitions owing to a disturbance of the electric-
dipole type

X'= —er ELs,+v, (t—t,), tg, (21)

where E is given by (2), and where e and r are the
electron charge and coordinate. Let the undisturbed
eigenstates be P,„tand tabb„, respectively; we then define

Let the spontaneous (density) decay times for each of
the upper and lower levels be y, ' and yb ', respec-
tively; let y,b=(y, +yb)/2 and let the number of atoms
excited per unit volume and time in sublevel n, by
means of an external pump, A, be independent of
place and time. This A is distributed over the respec-
tive atomic velocity groups by the velocity distribution
function W(o,):

tt (i,) do, =8'(o,) h.,do„ (24)

where tt (it,) do, is the number of atoms in the velocity
interval (o„ tt, +do, ) excited in state n.

Consider one atom with axial velocity e,. When
excited at a point so, at an instant to, at a sublevel e, its
dipole moment p(it„s, t) at t and s=so+tt, (t to) is-
known once its wave function tP(tt„s, t) is known. Let

tP..'X'tPb„„dr= ftV (tJ„,—b b), +la +3b

4(o*, s, t) = Z a-4..+ g 4A. , (25)
where, because of the selection rules, h can be —1, 0,
or +1.As we are specializing in axial magnetic fields,
the k=0 case is absent if we choose the quantization

m—ga

by substitution of (25) we then find the dipole moment
to be

p(it„s, t) —= tp*(i„s, t) ertp(o„s, t) dr

+Pa

2 g jPa b~+tpm, m+1(x —zy) +PC b~ —tpts, wl—l(x+zy) j+c.c.t

where we introduce the density matrix elements

p.„b„.——P.„}bott„s —~.(t—to), to, tj =a„b„.*, (27)

P(s, t) =-,' Q A..
being density matrix elements at time t for an atom with velocity it„excited at so=s o (t to) a,t, to in state n-
The macroscopic polarization vector can then easily be written as follows:

dit, W(o, )

+Pa

X dto g Ip b (ttt 5„s—s (t to) to tjp,~i(—x—iy)+p, „b„,[n, s„s—o, (t to), to tjp „ i(x+zy) I+c.c.

(31)

(28)
The wave function (25) fulfils the Schrodinger equation with (21) as a perturbation Hamiltonian. The Schrodinger
equation, extended with spontaneous decay terms, can be written as a set of 2( j,+jb+1) coupled equations:

tttb = (~.. zzv. ) &b+ «—(ttb, bb+i) bb+i+ «(ab, bb i) bb i, -- (29a)

ziti (tobt zzvb) bl+ Vt (ttl+1& bl) ill+i+ Vt (ttl-lt bl) ttl —1 (29b)

They are to be solved by iteration in the desired order in the fields. It is convenient, however, to derive from (29)
an equivalent set of equations for the density matrix

&patbt =t boat toot zYabjputbt+ Z LVt(ttbt bbbb) pbt+tbt Vt(ttl+ht bt) patat+t jt (30)
h=+1

&pabst = LtOat oint &7N)patat+ g [Vt(tbbt bb+b) pbt+tat Vt (tbtt bl+b) patbt+t$t
k=+1

zpbtbt =$oobt tobt L'rbfpbtbt+ g'[Vt (at+tt bb)pat+tbt Vt(ttt+bt bt) pbtat+t]t (32)
h=+1
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where

Pc(,a) CI'cd) j Pgggg 6jg6$ (33)

The iteration procedure leading to expressions for p
in the third order in the E field and the specialization
on terms in the zeroth and first order in the external
H field is outlined in Appendix B. The respective
velocity integrations are dealt with in Appendix C.
We finish with an expression for the third-order P
vector valid when the Zeeman splitting is much smaller
than the decay constants y and yp.

The absorptive parts of the P vector are calculated
in the Doppler limit, except for a (magnetic-field-
induced) absorptive part, in which the slope of the
Doppler profile enters (see the n' coeKcient) .

The erst-order dispersive parts largely depend on
the full shape of the Doppler profile.

Besides giving contributions in the Doppler limit,
the third-order dispersive parts give contributions pro-

1V =A./y A—b/Pb, (34)

where, in the absence of oscillations A,/y is the density
of atoms in any sublevel {bb, while Ab/yb is the same
for any sublevel b~. Sums over matrix elements run
from m= —j, to +j . We write o} {ob={o—, and intro-
duce the notation

&(~—v) =L(~—v)'+v «'] ' (35)

The twelve constants follow from the analysis in
Appendices 8 and C:

portional to the slope of the Doppler proGle, which
may be of comparable size, far from line center.

The resulting P vector is given by writing down the
explicit expressions for the twelve phenomenological
constants in Eqs. (7) and (8). All twelve constants
are proportional to the "excitation density. "

n = (2rv/2ooSE) XWDco v) /E—]ZP,~12, (36)

+, v'WL({o—v+v') /E]
(v"+~~') WE(~ —v)/E]

0{'=(2rv/2oo&E)&({IW/&2}) -{—.}(x(Ilr}/&)Lg«ZP, +1'—(g.—gb) Zp . +1 m]

(37)

(38)

0 =cx 'r
+, (v"—p~2) wL({o—v+v')/E] Z p, +1'm

={2J2(Il&/&) L
—gb+ (g.—gb) ( ZP-;+1'ml ZP-;+1') ]

m tQ

p, = (2rv/16oofi«Ey. yb) EWL ({o—v) /E]L(oo —v) '+2y~']Z (o}—v) Zp„,„+,',

(39)

(40)

(43)

(44)

Vab(dW/dl ) a={a—t}/K
p =a~-'( —){:( —)'+2&. '5-' v. ( —)~( —)-

EWL (o}—v) /E] (41)

p2 pl ( Z[pm+2, m+1 pmm+1 +pm, m ,—1 pm, m+1 ]/Zpm, m+1 ) t (42)

P2 Pl (P2/Pl)

g =(-~. /4"~E~.v )~wL(- )IE](- )~'-( )(p./-~)Lg Z—p-,-.'-(g.-g) Zp-. ' ],
m na

p'1=(~vv~/8oo&'Ev. vb) &WL(~ —v)!E]L(~—v)' —7~'5&'(& —v) (ps/&) I g«ZP;+1' (g. gb) ZP, +—1'm]—(43)
m fQ

P 2 = (2{v/8«oVE Pay«) EW(({t}—v) /'E] ({d—v) Zr ({t}—v) (}{2}}/fb)Lga {Pab(Pa+ 2yb) 2 ({t}—v) +yea —'
}

X Zptnpo, en+1 pm, m+1 +gb( {'rab ra+({t} v) +VaA }Zp +1 pmmmm 1,2 rab ,+—({t} v) Zptn+2, m+ppm, tn+1 )
m m m

2(g, gb—)V~'&—(o} v) Z (ptl—l,tll+1 pat, nt 1+pm+2, tll+1 pnl, tn+1 )—m], (46)

p'2 = (2rv/8«o&'EVaV«) &WL ({o—v) /E] (}{«2}/&){ ga {(Vv+7«) L({o—v) ' —
V~'5&'(o}—v) —y.AA. '2 ({o—v) —2y

X Zpm+2, m+1 pmm+1 +gb {(2',raL({t} v') yab ]aC ({t} v) 'rab"ra'rb aC({t} v) —2' —)

XZp , +1 p ,mmlVma«mL({t} v) Yab ]+ ({t} v) Zpm+2, m+1 pm—,m+1 } (ga gb) Yab{ ({t}—v) 2—ya«2]gP({t}—v)
tn m

X {Z(pm, m+1 pm, m—1 +pm+2, m+1 pm, m+1 ) m}5. (47)
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--+10

~ (..r) ..+o.e

~ ~ +0,6

- o.e

.-+ 0,2

0.8

Pro. 1.J(s, r) [Eq. (49)j asafunction
of s= (&v

—v)/yn for r=y, b/yn 0 02 —a—nd.
0,04.

"-1.8

Both of the two velocity integrals J~ and J~ entering in the dispersive coeKcients 0 and 0. largely depend on the
full shape of W(n). We do not calculate J,, as the o. coeKcient does not enter into the equations of motion (13),
(14), and (15).The coefficient o, however, does. If we choose a Maxwellian distribution

W(n) = (m'") ' exp[ —n'/24'j,

the J2 integral in (39) is easily seen to be y& 'J(s, r), where

(48)

J(s, r) =2r ' +co (y2 r2)dy. . .expL —4 (y'+2sy) In2 J,(y'+r')' (49)

yn is the Doppler width, s= (a&—v)/yg&, and r=y~/ya. The function J(s, r) is an even function of s. In Fig. 1,
J is plotted as a function of s with r =0.02 and 0.04.

We wish to specialize on the case of equal Lande factors g, =gb (the more general case g, /gb can in principle be
handled). Therefore only a limited number of polarization sums are needed. They are calculated using the well-
known expressions for the matrix elements. "Calling j =j we find

Qp„,„+t'—=ft( j)p'=-', (2j+1)(j+1)jp', for j~j
=—', (2j+1) ( j+1)(2j+3)P', for j~j +1

gptg, m+24= f2(j ) p4 =ra (2j —+1) ( j+1)(2j '+2j +1)jp4, for j—+j

(50)

=rx(2j+1) ( j+1)(6j'+12j+5) (2j+3)p', for j~j+1
PP +2,~PP, +t'=fs(j)P =&'&(2j+—1) (j+1)(2j+3) (2j—1)jP4, for j~j and j j&+1—(51)

=Ts(2j+1) (j+1)(2j+3) (j+2) (2j+5)p4 for j+1—+j

PP~,~t P~,~ 2 =—f4( j)P =ra (2j+1) ( j+1)(2j+3) (2j—1)jP4, for j +j and j+1~j—
(52)

=ra-(2j+1) ( j+1)(2j+3) ( j+2) (2j+5)P4, for jr+1, (53)

(54)

'6 H. Weyl, The Theory of &oNPs and Qguntgm Mechanics (Dover Publications, tuc. , Ne~ &or&).

where p is a reduced matrix element. The p can easily be related to the excitation and loss characteristics: Let
X(v, x, 8) be the critical excitation density at frequency v for laser operation, i.e., the density for which

n(v, X) = ReI' —hb(y, 0) —=G(X, 8),
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where G(x, 8) is the x- and, 8-dependent loss of the empty cavity /far enough from threshold, the cavity term

~
h~(x, 8)

~
will be much smaller than ReI', implying a cavity loss G almost independent of x and 8). Introducing

the excess excitation density

F(r, g, 8) =E/E(«, x, 8) =u(r, E)/G(x, 8)

which also depends on r, x, and 8, we can write, according to (36)

P'= I2epfcEFG/7«v'JtIW[(co —«)/K]fg(j ) ).

Specializing to the case of the Maxwellian distribution (48), and taking g, =gq=g, we 6nally obtain for the co-
eRcients (36) to (47), abbreviating F(r, x, 0) =F and G(x, , +) =G,

n'= 8FG—s ln2(pgg/Ayn),

FG(u~—gj&vn)I(» r)

FGp2 t's'+2«' f2{j)pi= 8' v~ Ls'+r. ')f, ( j) '

FGp'rs (1+8(s'+r') 1n2) f~( j)
8a'7.~, & s'+r' ) f,(j) '

P.=P, (f.(~)+f«~) )jf.(~),

p =pi(fs(j)+f4(j) )/f2(j)
FGp' r s pzg f2(j )

2&'v.v~ (s'+«')' ~vlf~(i)
'

FGp' «(" «') p~gfs(i)—
4fPy. yg (s'+r')'Ayr) f&(j)

'

FGp' ping v»r v» fa( j)
4&'v.v &v v (s'+«')' ~.(s'+«') f (j}

V.sr V.s f4(j)
p (s'+r')' p, (s' +r) f,(g')

(36')

(37')

(38')

(39')

(42')

(43')

(44')

(45')

(46')

FGp' pgg «tp(s' «') «V~ —2'Yn f~ ( j)"
4~&.~.~7. ».("+") ~.("+") 7. f (j)

y, (s'—r'} ry, 2'rn f4(j) (47')2'(s'+r')' v~(s'+«') v~ f~( j)
where the expression (56) has to be substituted for p' in Eqs. (40') —(47'). By the introduction of F and G we
thus 6nally arrive at expressions for the twelve coefficients in Eqs. (7) and (8), depending on both experimental
and theoretical parameters, which are in principle all known. Inspection shows that e, a', P~, P2, p'q, and p'2 are
even in s = (I—«) /7n, whereas n', 0., pq, pm, P ~, and P'~ are odd in s.

We are now ready to discuss Eqs. (13)—(15).

A. Zero Magnetic Field; Isotroyic Cavity

In the case of an isotropic cavity, i.e., h~(x, 8) =h2(x, 8) =he(y, 8) 0, and a zero magnetic 6eld, Eqs. (13)-
(15), reduce to

dx/Ch=s (P2 —P~) I sm4X,

cos2x(d@jdh) = 8 (ps —py) I s1114+,

I '(dI/Ch) = —'(P I) (1+— '2 )—'(PsI) o '2 —R I'

(57)

(58)

(59)

P& Pl P&j (f~(i)+f4(j ) )/fm( j)—1I (60)

If operating (I)0), the behavior of y, according to (57), is largely dependent on the factor (P&—P,).&ccording
to Eq. (42') we have
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where Pi) 0. From (51)—(53), we find

(fs( j)+f4( j))/J2( j)—1=2(jm+j —2)/(2j2+2j+1) for j~j
4j—(j+2)l(j'+12j+5) «r j j+1. (61)

(P2 —Pi) is therefore negative when the atomic transition is either a j=-,—jj=2 type transition, or a jr+1 type
transition (j)0); positive for j—+j transitions (j)1);zero for j=0&-+j=1 and j= 1—+j=1 transitions. In the
6rst case the mode becomes linearly polarized; in the second case it becomes right or left circularly polarized
(bistable); in the third case there is no preference for any ellipticity.

Both tendencies towards linear and circular polarization have been reported for a variety of modes. ' "A well-
known example is the He—Ne 1.153-p, mode, being of type j= 1—+j=2, showing linear preference. Circular pref-
erence has been observed for a j=2—+j=2 transition in agreement with the above theory (the He —Ne 1.207-ti
lines) .
It seems that isolated j=0—+j =1 transition laser modes show slight circular preference, ' " disagreeing with the
above predictions. The small bistability in these cases is not understood. None of the existing theories has solved
this problem.

B. Zero Magnetic Field; Anisotroyic Cavity

In this case, Eqs. (13)—(15), read

dy/dt= ', (P, P-)I sin—4X+ti (x, i7),

cos2y(d8/dt) = 8 (p~ pi) I sin4—X+@(x,0),
I '(dI/dt) =n s(PiI)—(1+ sin'2x) —

2 (P2I) cos'2X —Rel'+ha(x, i7),

(62)

(63)

(64)

where Ii&, hz, and hz are given by (16)-(18),respectively. Assume that a' =$'=0 (the effect of circular anisotropies
is incorporated in a later stage). The asymptotic solution (for high enough intensity, excluding 8-+1 and. 1—+1
transitions) of (62)-(64), is given by

dx/dt = cos2x(d8/dt) =I '(dI/dt) =0.

The latter equation, using (54) and (55), gives

I=F4(&(.x, ~) -1)G(x, ~)/((3tt+tt )+(a-tt ) - 4x)],

(65)

being the asymptotic energy, which depends on the asymptotic x and 8 through Ii, G, and the cos4X in the denorn-
inator. In general 0( (P—1) &0.5, whereas LG/c~0. 03 per pass. Insertion of (66) in (62) and (63) gives (in the
asymptotic state)

where

dx/dt = ,'[F(v, x, 8) —-1]G(x, i7) LS sin4x/(S cos4x+1) ]+hi(g, 8) =0,

cos2y(de/dt) =-', LP(v, x, 8) —1]G(x, i't) ITS sin4X/(S cos4X+1)]+hm(y, 8) =0.

S=L(j—1)(j+2)/5j(j+1)] for i~i
= —Lj(j+2)/5(j+1)'] fo j j+1

(67)

(68)

(69)

T=pi/Pi mrs/(s'+2r') ]L1+——8 (s'+2r') ln2]. (70)

The medium-induced absorptive anisotropic effect in
(67) was derived by Polder and Van Haeringen. e As is
seen in (68) there is an additional medium-induced
effect on the phase. Both medium-induced eBects have
been calculated earlier by De Lang'~ for a phenome-
nological model, providing the same expressions, except
for the explicit j dependence of S. The ratio of both
medium-induced dispersive and absorptive anisotropic
effects in (67) and (68) is equal to T. The T function
is plotted in. 1'"ig. 2 as a function of s for the values
r=0.02 and r=0.04. Equations (67) and (68) with hi

'7 H. de Lang, thesis, University of Utrecht, 1966 (unpublislied) .

and h../0 can be solved in principle, giving the asymp-
totic y and 8 values.

Let us specialize to the j=l—+j=2 transition, for
which 5= —2'~. In this case the medium-induced
anisotropy favors linear polarization (see Sec. IV. A)
If the cavity has a linear phase anisotropy only Lk& =

sin2 (0—82), h2 = —~go cos2 (i7 —82) sin2X] the
stable solution of (67) and (68) is given by X=O;
8=82. If the cavity has a linear absorption anisotropy
oillv Lki —g8 cos2(8' 8i) sin2X, h~ ——-', a sin2(its —Bi)]
the stable solution is X=O; 6=8~. A combination of
both a linear phase and absorption anisotropy gives a
stable x value, which in general is diGerent from zero.
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Fro. 2. The ratio T=
pl/Pl of 81spel'Slve slid ab-
sorptive nonlinear coeKcients,
as a function of s=(~—y)/y~
for the values 0.02 and 0.04
of the parameter r=y, f /7~.
The dotted lines represent
the contribution due to hole-
hole interaction. The solid
lines are found if the nonlinear
dispersive effects, originating
from the local slope in the
velocity distribution, are taken
into account. The effects in
the local slope have been ig-
nored in the vrork of Lamb
(Ref. 7).
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In practice we have linear phase and absorption
anisotropies, which are very small. '8 However, where
(F—1) is small enough the cavity terms in (67) and
(68) can nevertheless be dominant in the determina-
tion of the stable x and 8 values. In the experiments
on the He—Ne 1.153-p, mode, referred to in the Intro-
duction, the polarization is always linear. This implies
a high enough (F—1) to reduce all cavity or magnetic-
Geld effects on the ellipticity X. In order to guarantee
linear polarization, (F—1) should not be too small.
More precisely, in order to l ave

~ x ~

&
) x, ~

&&~/4, the
excess excitation density should fulG1

F(v, x, 8) —1 &8)0, (71)

where 8 of course depends on
~ xo ~, u, &po, and external

magnetic Gelds. In practice 8 is about 0.1. As I" de-
creases monotonically as

~
cv —v

~
increases, condition

(71) implies in general a restricted frequency range
{ifat all) around line center.

Furthermore, where the cavity anisotropy is small
enough, we have

G(~, a) = Rel —I,(~, a)= Rel. (72)

Taking LG/c=3X10 ' per pass and L
~

7i, ~/c(3X10 '
per pass, which are reasonable numbers, the error is at
most 0.1+0. G can thus be considered to be independent
of x and 8. The same applies to F Lsee Eq. (55)j.From
this (F 1) can be conside—red to be independent of x
and 0, the error being at most 1/0.

C. Small Axial Magnetic Field; Anisotropic Cavity

We now discuss the full Eqs. (13)-(15).The mag-
netic GeM is subject to the condition

psg ~
H

~
((fby~, fbyb. (73)

"Th. Ha, nsch and P. Toschek, Phys. Letters 22, 150 {1966).

The main eGect of this Geld will be on the phase
difference 8. If (F—1) &0.1, magnetic fields of at most
1 Oe Lsee (73)] are incapable of changing the ellip-
ticity x appreciably. This follows from a comparison
between the respective medium- and magnetic-Geld-
induced terms in Eq. (13). Take for instance

psg ) H (/fr=2 Mc/sec; Vii ——1000 M%ec;

y.b =40 M%ec; i
M —v

i
=200 Mc/sec;

5= —2'0, F=1.1; LG/b =0.03

per pass, and k~=0. The ratio of both terms is then
found to be

=».g
i
.2x I, (74)

&H,o. COS2g

which is equal to 1 in the equilibrium situation. This
leads to

~ x ~

~0.04 rad. With increasing (F 1) the x-
values decrease in inverse proportion to (F—1). The
(nonlinear) magnetic-field term ~II,(P'i+P'2)I cos2X
in (13) does not change the above picture.

The magnetic-6eld term in the intensity equation
(15) is ignored. In the above numerical example it is
at least fifty times smaller than n —ReI' = (F 1)G.i-

If we now try to solve Eqs. (13)-(15)„ in the
magnetic-Geld case, allowing for a general cavity
anisotropy (including small circular anisotropies) the
first important observation is that there is an asymp-
totic energy value )see (66)$ which is independent on

x, 8, and the magnetic-Geld

I=2(F—1)G/(Pi+Pal),

where we write cosy~1. This energy is frequency-
dependent (it shows the "Lamb dip"i). Insertion of
(75) in (13) and (14) leads to two coupled equations
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(taking sin4x~4x; cos2~ cos4x,—1}:
dx 2(F—1)GSx, h, (F—1)G(P'i+P'2)

+-',B, I
n'+ +ux cos2(hali —8i) +-,'yo sin2 (8—82) +-,'u',

(S+1) ' *
~ (P+P.)

disci 2(F—1)GSTX, (, (F—1)G(p'i+p'2)
+i~H, I

~'+ +i2u sin2(8 —8i) —qboy cos2(8—82) —~i&'.
dh (S+1) ' *

E (Pi+Ps)

A first type of solution is characterized by dx/dh=d8/dh=0 It .is obtained for relatively low magnetic fields. In
this case, Eqs. ('?6) and (77) can be solved exactly. A second type of solution is obtained for relatively large
magnetic fields. The angle 8 is unstable then, and the plane of polarization will rotate in a nonuniform way Lsee
(77}$.In the latter case, as long as condition (73) applies, the angle x is very small depending smoothly on 8.
T"erefore

I dx/dh I « I
da/dh I

the ratio b~~ng of tl «rder 2
I x I-i~ In th» «se w«a»«give an exact

solution to (76) and (77), but a nearly correct equation for d8/dh can be obtained if we put d?h/dh=0. I In fact,
this approximation is a 6rst step in an iteration procedure, solving (76) and (77) for the case of an unstable
polarization plane. ) Thus in the cases of both stable and unstable polarization plane we use d?h//dh=0, or

—k4o »n2(& —&2) —2u'-2KL~'+(F —1)G(P'i+P'2)/(Pi+P2) j
2 (F—1)GS/(S+1)

where we omitted, the u-dependent term, which is permitted with (F—1)&0.1 if 1.
I

u I/c«10 ' per pass. Insertion
of (78) in (77) gives the desired equation for the angle

d8, . $02(S+1) u'yg (S+1)
Ch

—= —2TQO sln2(8 —82) + 8(F—1)GS
sin4(8 —8~) + cos2(8 —8u) +-', u sin2(8 —8i) +-', Tu' 2&'—

4(F—1)GS

(F—1)G(p'i+p'2), (F—1)G(P'i+P') ~ A(S+1) „,2 q @
(Pi+A) (Pi+Ps) 2(F—1)GS

In the next section Eq. (79) is applied to the He-Ne 1.153-hi mode.

V. POLARIZATION PHENOMENA IN WEAK MAGNETIC FIELDS

A. Isotroyic Cavity; u, $0, u', Q'=0

Inserting the expressions from Sec. III for 0', n', p'i, p'g, Pi, P'i, Pm, P'2, we find in this case (magnetic-field
term only)

d+/dh=G(prigH. /Syg)) M(F, s, r, y„yi„yh), j),
u=iVr+ur, Pt j+m, ,Pj,

3Ep = —P'P(s, r) —8s2' ln2j,

~ —I 1~=(F—1) I f (j)+f (j)+f (j)3-f.(j)("+2")-'("+")-'(-'-~ 2" 2'), —
h}dr,L2j = (F—1)Ef2( j)+f1(j}+f,(j))-&(s'+2r2)-i(s'+ r')-&

XL j-,'yips '(s' —r' —2rs2') —p&p '(s'+r') (r—sT) —2&i&p, '(s'+r')'}f3( j)
+fzp~phi '(sm —r~ —2rsT) —p,y& '(s'+r2) (r—sT) —2yiiy& '(s2+r')~}f4( j)j,

(80)

(81)

(82)

(83)

which is valid only for jr+1 transitions (j)0) or a
j=~i~j=~~transition. The (dimensionless) M function
is written as the sum of three parts Mr, Mr iI 1j, and
3Er i}2j. The iVr function is proportional to F. It
has a (major) contribution from the field-induced
dispersive part of the P&'i vector, and a (minor) contri-
bution orlglnatlng from the 6eld-induced absorptive
part of Po&. The latter absorptive part causes x to be
different from zero I see Eq. (78)j, and therefore has

an effect on 8 Lsee Eq. (79)j. The Mr i functions
are proportional to (F—1). They have quite similar
contributions originating from P{3~. A distinction is
made between Mr iL1j and Mr iL2j. The 3IIr iL11
function consists of contlibutions orlglnatlng froIQ the
p'i and P'i coefficients (and therefore excludes the
effects of coupling of right- and left-circular parts of
the mode). The Mr &I 2j function contains contribu-
tions originating from p'~ and P'g (it contains the
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J
d in kc Is Oe
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Fro. 3. 3E, Ms, and Mr & L1$ PKqs.
(81), (82), and (83)g as functions of
s for F=& 2; yaf=20, pa=4, yt=36,
go=1000 Mc/sec. The atomic transition
is j=$~j=-,'. The corresponding d8/dt
is indicated (taking G=0.03 per pass of
length L=24 cm) in kc/sec per Oe.
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effects of coupling). In Figs. 3 and 4 the M functions
are plotted as functions of s for a j=-,'—+j=-', and
a j=1~j=2 transition, respectively. The excitation
parameter P is 1.2 at line center in both cases. Further-
more, y~ =1000; 7~ =20; y, =4; ps =36 Mc/sec. The
duty cycle (i.e., the frequency region where F&1) is
about 500 Mc/sec in this example. The Mt function
(independent of the type of transition) is almost
constant over the whole frequency region. It causes
the plane of polarization to rotate in a positive direc-
tion around the H vector. The Mt tL1$ function is

large in the vicinity of the line center only, due to
hole —hole interaction eGects. In the direct neighbor-
hood of the line center its sign is opposite to that of
MF. The contributions to Mt t[2j are of a quite
different nature. The (negative) contributions are quite
large in the whole duty cycle. The reason for this is
that, in the case of coupling, the magnetic Geld induces
another type of dispersive eGect arising from the non-
diagonal second-order density matrix elements p„,, &" and
p&,.s,.&s& (in the case of no coupling, only the diagonal
p„„"&and p~,.~,.&'& are relevant and give rise to hole —hole

24

z/d—in kc/s Oedt
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Fro. 4. M, 3fp, 3Er r (1g, and
Ms & L2$ LEqs. (81), (82), (83),
and (84) g as functions of s for F=1.2;
y, f =20, y, =4, && 36' P& 1000
Mc/sec. The atomic transition is
j=1~j=2. The corresponding d8/dt
is indicated (taking G=0.03 per pass
of length L=24 cm} in kc/sec per Oe.
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interaction). In the calculation of Pi" (Appendices 8
and C) this shows up in the appearance of denomina-
tors of the kind

Cv~+~(~" —~"+.)] ~v~ 'I 1~2' ~g&*/&v~], (83)

and similar denominators with a and b interchanged.
Dispersive effects originating from these denominators
have a much slighter frequency dependence than the
dispersive e6ects originating from hole —hole interaction.

In Figs. 3 and 4 the 3IIp and Mp ~ functions are added
to give the total M function. At first sight this seems
to make no sense, the (third-order) Ms i functions
being larger than the (6rst-order) Ms. However, the
convergence is better than one wouM think, looking at
Figs. 3 and 4. This is due to the fact that hole —hole
interaction, as well as the above indicated 6eld-induced
dispersive eBect, begins to appear in the third order.
Higher-order contributions to these effects are rela-
tively small compared to the third-order contributions
(the convergence is about as quick as in the case of the
mode intensity). Though higher-order contributions
could very well be of the order of Mp, the M function
drawn in Figs. 3 and 4 certainly has some relevance.

The M function is rather sensitive to changes in P
and the lifetimes p, ' and y~ ', as is seen from (81)
to (84).

A final remark should be made concerning the
possible eBect of gas pressure on the above arguments.
It is known that the effect of pressure is to decrease
lifetimes and furthermore to redistribute sublevel popu-
lations. " The latter effect might very well reduce the
relevance of the Mi iI 2] part of the M function. The
experimental work of Bolwijn" on He—Ne lasers with
different gas pressure and excitation level in an axial
magnetic field suggests that the effect of Mp iL2] is
present at low pressures (1.7 mm Hg), whereas it is
absent at higher pressures (6 and 9.2 mm Hg), though
in these experiments H is outside the region (73).

B. Linear Absorytion Anisotroyy; $0, a', P'= 0

Equation (79) reads

di't/dt= ,'a sin2(8 —8i)+-G(pi3gP, /Ayri)M. (86)

The 0, solving (86), fulfils

sin2(i7 —6,) = (2GtjiigK/aFiyr) M=A, (87)

if
I

A
I

&1, i.e., for small enough B, fields. There are
two solutions in this case, only one of them being
stable. For H, =0 the solutions (mod. m) are 8 =Bi and
6=6i+~~ir. The former is stable if a&0, the latter if
a) 0. Increasing

I
IJ,

I
gives solutions Lsee (87)], that

change continuously with H, . A critical H, value is
reached when sin2(ili —8i) =+1, giving stable solutions

'~p. T. Bolwijn, in Proceedings of the Phys7'cs of Quantum,
I'/ectronics Conference, San Juan, Puerto Rico, 1965, edited by
P. L. Kelley, B.Lax, and P. K. Tannenwald (McGraw-Hill Book
Company, Inc. , ¹wYork, 1965).

8 =A&~m (the sign depending on the sign of the field).
The critical-Geld splitting is given by

It &g(a.).„,/r I .= I »a/zGM I. (88)

Taking pic ——1000 Mc/sec; G=0.03, and M=1, it is
found that a critical-field splitting of 1 Mc/sec could
be caused by a linear absorption anisotropy of about
6.10 ' per pass. The critical field is of course dependent
on the frequency (through M), and can adopt much
higher values in those regions where M is close to zero.
For fields in excess of the critical value a nonuniform
rotation occurs for 8. The zero-field solutions (6 =ii'i or
8=Pi+-, m.) are completely independent of the fre-
quency. In particular, tuning the laser through the
center of the Doppler profile gives no change inthe
stable solution. Neither the polarization Rip nor the
observed hysteresis effect4 at II, =O can be explained,
therefore, assuming a cavity which is purely absorp-
tion anisotropic.

C. Linear Phase Anisotroyy; a, a', P'=0

Equa, tion (79) reads

di't/dt = ——',T40 sin2 (a—d2)

02 S 1) pagII ~+ '
sin4(8 —62) +G M, (89)8(F—1)GS RED

where the term proportional to cos2(8 —82) is omitted.
For not too high an s (and not too large a po) this is
permitted, as can easily be checked.

The magnetic-field term in {89) is equal to that in
(86). The cavity terms, however, are quite different.
Let II,=O. We then find

4o'(S+1)
S1112(8—82) —-', Tfg+ cos2 (6—8~) =0.

4(F—1)GS

(90)

Equation (90) has the two solutions: 8=6&, 8=&2+c7l,
and possibly the two solutions of

cos2(8 —82) =2(F 1)GST/&0(S+—1)=8, (91)—
if

I
8

I
&1. The last two solutions exist only in the

direct neighborhood of s=0 (line center) and are both
unstabl.

In the small s region around line center where

both the 8=82 and i7 =ili~+-,'ir solutions are stable, the
factor in the brackets of (90) being negative in the
first case and positive in the second case. At a higher s
the inequality (92) no longer applies, leading to one
stable solution only. As the factor —~TQO changes sign
if we replace s by —s, the stable 8 solution for positive
s diGers —,'m from that for negative s. The region of
bistability is easily found from (92). Talung

I $0
I

3.10-4 rad per pass; (F 1) =0.2; G=0.03 p—er pass;
S=—~0, r=0.02, the maximum

I
s

I
for which the
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inequality (92) holds is 0.0'E. Taking Vii =1000 Mc/sec
this gives a bistability region of about 14 Mc/sec.

Thus both the polarization Qip at the line center
and the small region of bistability' are found at B,=o.
The II,/0 case is easy to discuss for those frequencies
where the sin4(8 —82) term is small compared to the
sin2(8 —82) term. In that case we once more find

(see Sec. V. I3) that there is a stable polarization
plane for suAiciently small 6elds. A critical-Geld
splitting is found for which the position of the plane of
polarization differs by +-x from the position at zero
field. The critical-6eld splitting is in this case found
from

I u~g(&.)- i /& I . = I
v~&@o/2G3f I (93)

Taking the same example as in (Sec.V. 3),with T~0.2,
we find that critical-field splittings of 1 Mc/sec can be
caused by a linear phase anisotropy of about 3.10
per pass. It will be clear from the above discussion that
a cavity with a linear phase anisotropy should be
assumed, rather than a linear absorption anisotropy, in
order to explain the observed low-6eld polarization
phcrlorncna. Irl factq howcvcl ~ thc most likely

situat-

ionn will be a cavity with a relatively large linear phase
anisotropy, and a relatively smaQ linear absorption
arllsotropy.

D. Linear Phase am1 Absorption Anisotropy; a', @'=0

Equation (79) reads

d8/lA = i 8 sii12 (8'—'8i) —
g Tfo sln2 (8' 82)

+L&0'(5+1)/8(F —1)GS] sin4(8 —82)

+G(IiiigB,/fipn) M (94)

The simultaneous presence of both kind of anisotropies
gives rise to a more complicated behavior of the polar-
ization plane. For instance, there is no abrupt Qip, if
at all, on tuning through line center at H, =o. Further-
more the flip is certainly different from 2ir (if it is
present) . In general it occurs away from the line center.

In actual experiments a gradual change in polariza-
tion azimuth was indeed observed4 on tuning through
the line center. Furthermore the Qip at zero Geld is not
exactly 90 but 5 to 1.0 deg smaller 1rld1catirlg that
the main anisotropy present is a linear phase anisotropy,
with a relatively smaB absorption anisotropy.

In principle, Eq. (94) can be used to determine
precisely the cavity parameters u and &0 by analyzing
the experiments. However, where the u values are esti-
mated to be very small (about 10 to 100 times smaller
than the &0 values) minor disturbances already change
their actual value, making the polarization-Qip phe-
nomena nonl cpi oduciblc.
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Apart from isotropic amplitude and phase changes,
the transverse cavity field given by Eq. (2) is subject
to anisotropic elements in the cavity. The isotropic
losses and the anisotropies are very small (per inter-
ferometer pass). It is therefore possible to write the
general loss tensor as the sum of suitably chosen
infinitesimal tensors. %'e take for them tensors de-
scribing (1) an isotropic amplitude and phase loss, (2)
a linear anisotropy in the amplitude, (3) a linear anisot-

ropy in the phase, (4) a circular anisotropy in the
amphtude, and (5) a circular anisotropy in the phase.
The tensors are given in the representation adapted to
left- and right-handed vectors as a basis. Each I can
in a unique way be written as

(A1)

where the Ave components are as follows:

(A2)

describing isotr'opic amphtude arid pllase loss (I is
complex);

o
&u ——~0 I

(e exp( —2i8i)

a exp(2' ))
(A3)

o j
with e and 8i real, describing a linear anisotropy in the
amplitude loss of magnitude I a

I
—the main axes of this

anisotropy are situated at 8=Bi and 8=Bi+-',~;

0
&s=~o

I

(~0 exp( —2i82)

iso exp(2%2) )
(A4)

o

with &0 and 82 real, describing a linear anisotropy in
the phase loss of magnitude I qho I

—the main axes of this
anisotropy are situated at 8 =82 and 8 =82+-, ir;

(A6)

with qb' real, describing a circular anisotropy in the
phase loss. The identification of the contribuants (A3)
to (A6) with pure absorption and phase anisotropies
is no longer correct for large anisotropic elements. How-
ever, such cases are not considered.

with c' real, describing a circular anisotropy in the
amplitude loss;



270 VAN HAERlNGEN

APPENDIX 3
The iteration procedure, applied to the density matrix equations (30)—(32), is as follows:
Suppose that the a& level is excited at (sp, fp). The only nonvanishing zeroth-order density matrix element is

then clearly
P"""'(&)= expL —v. (~—~o) 7.

In the first order in the E Geld we find the two nonvanishing matrix elements (h= —1 or +1):

P..p„."'(~) =& «'~~ (ap bp+A) expL( —&(pp" —ppp" ) ~~)(~ ~') ——~-«' —~p) 7 (82)

with their conjugates. In second order we have six nonvanishing matrix elements (and their conjugates):

(2) (2) (2) (2) (2) (2)
Papaip j Pajpalp+2 j Palpate 2 j Pbg+jbIp+y y Pbp Ibp I j Pbip+Ibp

Substituting the appropriate indices m and m' they are given by

p.:."'(~) = —p «'ZÃ (a- &~)p.-, i"(~') —I' *(a- &-+)p...-"i(~')7
tp 5=+1

X expf( —p(~..—~..) —v.)(~—~') 7, (83)

P.p. "i(&) = —p «'Zf~~*(a~p &-)P..-p-'"(~') I'~(a-+—p &-)P---"'«')7
tp h +I

&«mf( —i(~.—~p. ) —vp)(~ —~') 7 (84)

In third order there are eight nonvanishing matrix elements (and their conjugates), only four of them being
relevant for the polarization vector (28):

(3) (3) . (3) (3)
PaIpbg+y j Parpbk I j Paip+2bp+1 j Palp

They are given by

&& exp f( j(pp,„—s&p„.)——r~) (t—t') 7, (85)

where the appropriate indices m and m' have to be substituted. Introducing the function

t
C~„b„'(ak, v» s, f) =Aa «pp~„b„'(ak, v» s—v&(f —$p), $p, f)p~,m'&, (86)

we can write the polarization vector (28) (confining ourselves for the moment to excitation in the a levels) as
follows:

P(s, t) =-', dv, W(v, )

Jb

f(C.„„,i i+C.„„„,( iyC., „, , ) (x—y)+(C.„„,'+C,„, , '+C„,„„„')(x+ y)7+c, (87)

where we wrote in abbreviated form C(ap, v„s, f) =C. It can clearly be seen in (8/) that there are contributions
from only two erst-order and four third-order matrix elements. The calculation of the C functions is straight-
forward: The time integrations in (82) and (85) and the integration over tp are simple, as the time dependence
of E+ and @+ in the perturbation matrix element V is ignored. The first-order C functions are easily found to be

C„p,~,&'&(ap, v„s, t) =(A,/25'. )pp, p~ipIE~ expf i(vt+p~)7 sin—KsIDfKv, f(k, k&1)P,7, —
where

Df17=fl (~ —
v) y—pe~7—i-

f(l ~')= (lg. 1'gp)& 'Pa— —

(89)

(810)
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Expansion of the D function gives the desired specialization to polarization terms in zeroth and 6rst order in the
6eld

D[Ev,—f(k, k+1)H,]=D[Ev,]+f(k, k+1)H,D'[Ev,]+" . (311)
The approximation (311) is justified for ) IisgH, /y, &5

~
&&1.

In the third-order C functions we leave out all terms that do not contribute either in the Doppler limit or in
the local slope of the velocity distribution. The C functions are then given by

C.„,i,„„&@(ai,v„s, l) = (—iA,/325'y. ) exp[ —i(&/+de, ,)]sinEsD[Ev, —f(k, k+k) H.]
[EiE NEpilxii(g+l+s) Pwg, ~pP~g, ~g+ iPkp+g+LPQ, ~Q

l,a +1

X I[,+f{0, +'l k) H—,] (D[-E., f(k,—k+k) H,]+D[ E.,——f(k, k+k) H,])
+($yi,+if(0, q+l k) H—,] '+$y, +if(q, 0) H,] ')

X(D[Ev,+2(a)—i)+f(k, k+g+l) H,]+8[—Ev, +2((a—v)+f(k, k+g+l) H,])I

+ Q E«E &xa(q) &xz{l+~+~—k) P~~,~aPi, ipiPi+i+. ,k+iPa+i+. ,a+a
m=+1

X[7+if(q—l—s 0)H]-'(D[Ev f(k k—+l)H]+D[ Ev —f(k k—+l)H])] (312)

where we introduced the notations E+i=E~ and Q~i=Q~. By expanding all denominators in (812) we easily
obtain the zeroth- and 6rst-order contribution in B,. Retaining only terms in 6rst order in 8, is justi6ed for

implying field splittings &1 Mc/sec.
) p,vgH, /fi ( «y. , yg (813)

In calculating the polarization vector (28), or alternatively (87), a number of velocity integrations have to be
performed. The P&'& vector contains the integral

de 8" e D Ee k, k&1 H,D' Ee

Im dv W(v) D[Ev]= (7r/E) W/((g —p) /E]+ "~,

in the Doppler limit, i.e., neglecting terms that are an order y~/yn smaller. This integral contributes to the phe-
nomenological constant n (i.e., to the 6rst-order absorptive part of P) .

For the constant o (first-order dispersive part of P) we need

R.. '"d. W(.)D[E.]=E- '"d.'"' [{"„"",
')/ ],

(~"+v~') (C3)

largely depending on the full shape of W(v). However, 0 does not enter in our equations of motion (13), (14),
and (15). We therefore do not calculate (C3) . It can be found in Ref. 13.

The constant n' (or the absorptive part of P, linear in E and H) is proportional to

Im dv W(v) D'[Ev]= —(v/E') (dW/dv), („„)Ix+ ~ ~

and is almost proportional to the local slope in the Doppler profile. The constant 0' (or the dispersive part of P,
linear in E and H) is proportional to

R. '-d. W(,)D[E,]=E- '-d, {""-'"')„«"-,";"')/ ], (C3)(~"+v~') '

largely depending on the full shape of the Doppler prof'ile. The related integral J(s, r) [see Eq. (49)] is plotted
in Fig. 1, where a Maxwellian distribution is taken for W{v) .
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The velocity integrations in the case of the P&@ vector are Bs follows. Talking 6rst H, =0, two types of integr3ls
survive in the Doppler limit. The hrst type is

de W(e) D[Ke]D[ Ks+—2 ((u v) ]—= —(7r/Ky, y) W[(o& v) /—E]+ (C6)

giving the main contributions to the constants Pi and P2, i.e., to the third-order absorptive part of P. The second
type of integral is

dr W(ii) D[Kv]D[ Kw]—= (m/K) [—y,a+i((e —v) ]Z (a) —v) W[((o v) /K—]+~ ~ ~ . (C7)

Re I2 contributes to the P coefficients; Im I2 to the p coefficients. They represent the well-known hole —hole inter-
action contribution. Contributions proportional to the local slope of W(v) arise mainly from

dv W(n) D'[Kii] = —(mi/K') (dW/de) „& „&i'+ ~ ~ ~

and are of a dispersive nature. A comparison of J3 with Im I2 shows that the former is relevant to frequencies
not too close to line center. For

~

a&
—v

~
=5&~ the contribution from I3 is already 20% of that of Im I,. In the

case of a travelling wave maser, where the hole —hole interaction is absent, the main nonlinear dispersive eÃect
comes from Is. The integral Ii has no contribution proportional to the slope of W(v); the integral I~ has. How-
ever, this contribution cannot be calculated separately. It has to be combined with the contribution of

I4 —— de W(v) D[Kv]D[Kn+2 (~ v) ]. — (cv)

I2+I4 (m/K) [———y~+i(&o —v)]2(&o—v) (Wj (co—v)/K]+(p, q/K) (dW/dvi) „=&„„i~rrj+ ~ ~ . (C10)

We ignore the slope term in (C10) . Its real part is small compared to Re Ii. Its imaginary part is small compared
to Im I3, except for operation near line center where Im I3 is small compared to Im I2.

Taking II,AO, we meet the new types of integrals (all are calculated in the Doppler limit)

de W(v) D'[Kn]D[ —Kw] = dv W(ii) D[IA]D'[ Kv]—
(7IIK) W[(M V)/K3~ (M v) [p~b(G3 —v) —12[(G) v) —

rgb ]j+' ' 'p

dn W (e) D'[Kvi]D[ Kii+2 (cu v)]— —

(C11)

ds W(e) D[Kii]D'[—Km+2(a) —v) ]=i(7r/2FIy i2) W[(cu v)/K]+ ~ —~ . (C12)

Substituting the C functions (88) and (812) in (87) and substituting the integrals calculated above, the final
expression for P is obtained in a straightforward way. The result of this substitution is found in Eqs. (36)—(47),
where the coefficients from Eqs. (7) and (8) are given, which, according to Eq. (3) is equivalent to giving P.


