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Dyson’s theory of the electron-spin-resonance line shape for conduction electrons in metals has been
extended for use with spherical particles in the region of normal skin effect. These more nearly correspond
to typical samples, particularly so for naturally occurring metallic colloids. An explicit eigenfunction ex-
pansion is made for the fields and the magnetization, using eigenfunctions obtained from a Green’s-function
solution to the diffusion equation in this geometry. The line shapes vary roughly as in the one-dimensional
case, and curves of this variation are shown to agree with experimental data for sodium.

I. INTRODUCTION

HE problem of the shape of electron-spin-resonance

lines for conduction electrons in metals was investi-
gated in 1955 by Dyson.! He treated the problem for
plane samples of various skin depths, thicknesses, and
relaxation times, and the measurements of Feher and
Kip? confirmed his theory in reasonable detail. How-
ever, metallic ESR samples often consist of particles
whose size is comparable to the skin depth in all dimen-
sions. Examples of such samples are alkali metals
dispersed in oil and naturally occurring colloids. This
paper modifies Dyson’s theory to treat spherical par-
ticles, supposed a fair approximation to actual samples.
We assume normal skin effect.

The line shape is found in terms of the power absorbed

at the surface of the particle:

P=(c/dm) [ExH*d5, (1)
which may conveniently be converted to a surface
impedance, Z=P/4ra*H?, where @ is the particle
radius and Hyy the alternating field magnitude far
from the particle. H; near the particle consists of a
term of order zero in the susceptibility, x, plus linear
and higher terms. We will derive the zeroth order H,
and E; from a vector potential Ay, and the linear terms
from A,. Only terms linear in x will be considered in P.
Thus we neglect the nonresonant part of P, and contri-
butions from terms quadratic and higher.

The calculation then proceeds in four stages: In
Sec. I1, we find A;(r) from the boundary value problem
with no magnetization. In Sec. III, we use Dyson’s
formulation to find M(r), the magnetization due to
spins. This introduces the resonance, and requires a
complete set of eigenfunctions, Yim., used to form a
Green’s function and to expand both A; and M. In
Sec. IV: The first order Maxwell equations are inhomo-
geneous, since they include M. A particular solution is
found to the inhomogeneous equation, of the form
As? =YX il imn(T) Pimn. To this we add a solution of

* Supported in part by Research Corporation and National
Science Foundation.

1F. J. Dyson, Phys. Rev. 98, 349 (1955).

2 G. Feher and A. F. Kip, Phys. Rev. 98, 337 (1955).
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the homogeneous equation, Ay*. Outside the sphere we
have merely Laplace’s equation, with solution Ast. We
generate the coefficients of Ay* by matching boundary
conditions.

A word may be in order here on the use of B and H:
In free space (outside the sphere) these fields are
identical. Inside, we decompose the vector potential
according to powers of x, so that V x A=B yields

\4 XA1+V XA2+‘ .. =H]_+(M+H2) +' cc.
Thus we may say

V% A1 =H1, v XA2=M+H2, etc.

Of course, outside the sphere M =0, so our Poynting
vector linear in x may be evaluated just outside the
surface, and is found in (V):

SO=Apx (VxA™) +A; % (VxAs£*).

II. ZEROTH ORDER VECTOR POTENTIAL
Inside the particle, Maxwell’s equations give
(V*4-6%) A, =0, )

where 6=(1+41%)/8 is the skin depth, and we have
neglected the displacement current (the conductivity,
o>>ew). Outside, ¢ =0, and

r<a,

V:A;=0, r>a. (3)
We assume for the internal vector potential
Av=2 ain 1(6r) V:(2) (4)
im
and for the external one
A= Bty Y im(Q), (5)

im

where 7:(8r) are the spherical Bessel functions (of
complex argument here) and ¥, are normalized
spherical harmonics. (A factor of e~%* is assumed for
all fields). Since M =0 in this order, both A; and
V x A, are continuous at the boundary, and we take

Ay(0) =—3Hy(r x1) (6)
225
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as the imposed field (Hy is then in the x direction). II. THE MAGNETIZATION
Then
M) = §(3m) Y2 1 (6r) We wish to make expansions of the form
*(r) = — ———— T
BplBe) ) M) = S imfn(5);  Timn= [V Mar,  (10)
hores XEVO—&(V+ Vi) +HEV0], (7) fmn
where " - A where we choose the eigenfunctions ¥y, to satisfy the
Ex==(xi) N2, b=k, equation:
gu'g-—v= (_1) ygu'gv*= (_1) "Oue (8> VY tma= — (len/a)z‘plmm (11)
We will need later with the boundary condition
1/2 'y
v xAli(r) = (‘7—r‘> H10 {2(61’) {§+(Y20""\/6Y2_2) Tie Vll/lmnzo, at r=a. (12)
10 Jo(Ba)
2 2 The Green’s function which is a solution to the diffu-
—1__ 1) 0__ 2
FV8&(1y = 13l) =L (T —v/67) ) sion equation for electrons of Fermi velocity » and
+ (2) 2 Hyo(E_—E,) V0. (9) mean free path A:
L(vA)V'G=08G/dt; #-VG=0, at r=a, (13)
can be written as
G(r; rl: t) = Z‘l/lmn* (rl)\l/lmn(r) eXP[—%(W\) (-Rlﬂm/a) Zt:l- (14)
lmn
We find
2 lenZ )1/2 jl[len (f/d) ]
mn = | n Yim(Q y )/ #0 15
i (as Rt —I0AD)  Gu(Ran) (15
and
Yoo=(3/a®) 2V, (15a)
where
Rimn jl~1 (errm) = (l+ l)Jl (len) )
len jl+1(len) =l]l (len>; (16)
and
\bl’m’n'*"l/lmnd'r=5ll‘6mm'5(Rln—Rln'), (17)
Sphere

as treated in detail in Appendix D. Only terms in /=0, and /=2 will be significant for our problem. For these
values, Eq. (16) becomes

ta.IlRo,, = R(}n,
t&Ilen=R2n(9‘—4R2n2)/(9—R2n2) . (18)
Dyson’s formulation then results in a nonlocal equation which may be written:
My = — 'iw(]X{"?lmn-l- (g——' hlmn) §+ —Nimn (§+ * hlmn) g—} ) ( 19)
where
1/ imnt=1/T14+% (vA) (Rima?/0?) —i(wF o). (20)

We will henceforth drop the n~ term, which represents the resonance from the counter-rotating circularly polarized
component of our linear Hy. We may also ignore the subscript # in Ry, and num., and we will write

1/nn= (Ru?—w?) /7, (21)
w=1(w—wo)7—7/T1, r=2(a*/8*) Tp. (22)

Tp, the time it takes a spin to diffuse across the skin depth, is
Tp=2368%/20A. (23)

3 M. E. Rose, Muliipole Fields (John Wiley & Sons, Inc., New York, 1955), p. 19.
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Coefficients hj,., are from

V % Ali= Zhlmn‘plmm (24)
lmn
that is
hz,,m= ¢zmn*(v X .Al") dr. (25)
Sphere
In Appendix B it is shown that
Mooy, = —dwoxon (4ma%) V2 H1oF ok / (42— Ros?) (26)
and
sy, = deioxnon (4ma®) V2HioFaky / (12— Ran?) (1—6/Res?), (27)
where #=pa, and
Fo=1—u cotu, (28)
Fo=(2//5)[3+F,(1—-9/u?)]. (29)
Also
Mg, = —+/ 00y, (30)

All other my,,’s vanish.

IV. FIRST-ORDER VECTOR POTENTIAL

At this point we have found M(r), but we must find the fields to which it gives rise in order to calculate the
Poynting vector. The vector potential in this case satisfies

V2A2+BZA2=—47r(V XM), 1’__<__d, (31)
and
VA,=0, r>a. (32)
As with Ay, we choose the gauge
V-A=0. (33)
A,=Ar+AP
inside, and As° outside. We use
A (r) =V x Z‘/’lﬂm(r) Pimn, (34)
Imn
AMT) =D am (B Yim, (3%5)
im
Ag(r) = chm(azﬂ/,m) v (36)
im
Now A,?(r) is a particular solution to Eq. (31), so
_ 4’7rmlmn 37
plmn— ﬁ2—Rln2/(1,2 . ( )
The boundary conditions* for A; and H, are then used to find the coefficients a;, and Cym:
V x[AP+At—Af]=—daTx[TxM], at r=a, (38)
Ayr+Ar=Ar, at r=a. (39)

The gauge statement V-A =0, for all A, simplifies the problem also.
Further, it turns out that four of the coefficients cu, are sufficient to express that part of the power (integral of
the Poynting vector) with which we are concerned.

V. POWER
The first-order terms from (1) are

PO = % / [H,- (7 x A%) +(V % Ay) - (7 x Ag*) Ja%dg. (40)

¢J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, Inc., New York, 1962), pp. 9 and 154.
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We evaluate the vector potentials and their curls at »=¢, so we may conveniently use Ay*(a) for A, here, and

therefore Hy=V x Ay, This results in

PO = K[ c*+ (3Fo/2u2) ¢ — (3Fs*/2u2) c],

where
K =V2wwoxTHy? (47a%),
and
c=F@Go— (%) FiG,.
Here
Go=2_ [ (#—Ro?)*(Ro2—w?) I,
and

Go= 2 [ (#—Rou®)*(Ros?—1*) (1—6/Ron®) T

VI. COMPARISON TO DYSON’S RESULT
Dyson’s general result [his Egs. (71)-(73)] is, in similar notation,
PO =2wwox Hi*rFp*Gp+ (Volume),
where Fp= —u tanu. These all have the same behavior in the limits of small and large #:
Large u: Fy~Fo~Fp~iy

Small u: Fe~3u?, Fo~(16/15+/5) 12, Fp~—u?.

(41)
(42)
(43)

(44)

(45)

(46)
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Dyson’s Gp is the same as our Gy, except that Ry, is
replaced by #w (which is the limiting value of R, for
large n).

Thus the general form of the result is the same, as
expected. This is confirmed by the results shown in the
next section.

VII. LINE SHAPE

The line shape given by Eq. (41) is very similar to
that found by Dyson. In the limits of large and small #,
the two calculations give identical results. The be-
havior of the line shape as a function of ¢/é and of
Tp/T; is given in Figs. 1 and 2. Figure 2 should be
compared to Fig. 7 in the paper of Feher and Kip.
The parameter A/B is a particularly useful one for
comparison with experimental results. The curve in
Fig. 2 labeled « is the one pertinent to Dyson’s
theory.

One is struck by the behavior of the curves for large
a/é in the region of small Tp/T:. This return toward
symmetry is a consequence of the fact that, although
the skin layer is a small fraction of the particle volume
the spin crosses the particle in a time short compared
to T; and therefore spends more time in the skin layer
than in the case of the semi-infinite metal. This situa-
tion is not considered by Feher and Kip. Dyson also
excludes it, since he assumes Tp/T; is never smaller
than 1072, The samples used in selective transmission

ROBERT H. WEBB
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experiments®® are of this size, although in that tech-
nique the transmission line shape is not handled by this
theory or that of Dyson.

Figure 3 is similar to Fig. 1, with experimental data
from a graded sequence of sodium particles. These are
known to have been nearly spherical, but their surface
is neither very smooth (cf. Feher and Kip?) nor,
perhaps, is it unaffected by the soaplike molecules
which are attached to it in the oil. The fit here is in
accord with Dyson’s conclusions that surface relaxation
should play a minimal role in the line shape for the
alkalis. If this is not true at low temperatures, as
suggested by Schultz and Latham,? then fits like that
of Fig. 3 can give the required information regarding
the relaxation. The data at 4.2 deg should be regarded
as preliminary, and their interpretation awaits a careful
inclusion of the effects of the anomalous skin effects on
this theory. A further complication at these tempera-
tures is that the mean-free path is comparable to the
particle size. It is probably this which is responsible
for the anomaly in the helium temperature data,
although the curves for large a/6 and very small T/ T}
are suggestive, since Tp/T1« (Temp)?.

It should be emphasized that the data presented
here are intended to show that the behavior of the
line shape as a function of size is accounted for by the
present calculation. The study of 7 and T; in these
particles, which motivates this calculation, is left for a
later article. At present, we find Fig. 1 most useful in
estimating particle sizes, a tedious job when done with
a microscope. Figures 4, 5, 6, and 7 may prove useful
to workers in this field.
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APPENDIX A: THE EIGENFUNCTIONS

The Green’s function satisfies

@A) VIG(x, 1, 1) =(8/00)G(r, 1, 1), (A1)
when subject to the boundary condition
7G(r, 1, ) =0, at r=a. (A2)
Further, we expect it to have the form’
G(r, 1, §) = ge—wm(r) Yina* (1), (A3)
We will write
Yimn () =bimn i Riu(r/0) IV (9, ),  (A4)

6 S, Schultz and C. Latham, Phys. Rev. Letters 15, 148 (1965).

6R. B. Lewis and T. R. Carver, Phys. Rev. Letters 12, 693
El964§. N. S. Vander Ven and R. T. Schumacher, ibid. 12, 695
1964).

7H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids
(Oxford University Press, London, 1950), p. 314.
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using the analogy of a general expansion for G(r), with the term in /; suppressed, since it is not finite at »=0.
The 7; are spherical Bessel functions and the ¥ are normalized spherical harmonics.
Clearly,

VA 1mn (1) = — (Rut/ @) 1 (1), (AS)
so this G(r, 1/, £) does indeed satisfy (A1), and in (A3)

A=21(vA) (R.2/a?). (A6)
We now apply (A2)
)7\" VG = ZC_M‘len* (f’) blmn Ylm('&; (P) (a,/ar)jl (Rln/ar) ]M = 0'
Imn
Therefore
(8/9r)j1(Rin/ ar) Jr=a=0, (A7)
which is the defining equation for R;,. We now require that our eigenfunctions be orthonormal
Yurmn™ (€)W imn (1) 2 dQ=08118pmed (Rin— Riw) (A8)
Sphere

The spherical harmonics assure us of orthogonality as regards /, I’ and m, m'. Therefore
a Ry, Ry
/ blmnblmn’*jl (‘_l f) jl (_l‘ r) 7’2d7=5(.R1n'—.Rlnl) . (A9)
0 a a
For nsn/, using the Lommel integral and Eq. (A7), we verify that
/jl(ar)jl (Br)r?dr=0.
0

The more useful case is n=n":

* o (Rim . 1(0+1)
. l blmn 12 j;]lz (_a_ 7’) r’dr= ] blmn 12]l2(Rln) [1"' ‘_‘R;nz_ %‘12)
ence

2/03 )I/Zjl[Rln (7’/0)] Ylm(ﬂ’ ®) , (A10)

Ebmn Ir)= ( .
() 1—10+1) /Rt ji(Rum)
where we have set an arbitrary phase factor equal to unity.
We find Yo, from (A8), to be 1/(Volume) /2= (3/a?)12Y". This contributes a constant term to G and may be
thought of as the term in the probability distribution corresponding to nondiffusing spins.
These eigenfunctions may also be obtained by the method of Laplace transforms, and were so found originally.
APPENDIX B: THE MAGNETIZATION

The magnetization is found by a straightforward application of the method suggested by Dyson: The expansion
coefficients of the magnetic field H; are

hlmn=/\l/lmn*(v XAli)dT, (Bl)
where we use

V x Ari= (21/5) P Hyy(§-—E) Y
+(w/10)2Hyo j5(8r) /jo(Ba) {E (VP —/6V572) +V3Ey (V51— V) —E_ (V2 —+/6Y ) }. (B2)

Therefore
2 1/2 2 1/2 . . a
B = ({) Hi (;) (8-~E,) [ Go(8r)jo( Rt/ ) o R
0
= (4ma¥) V2 Hyo(E_—E,) (1—u cotu) /(42— Rps2), (B3)
hoon= Foon (§_—§+) . (B4)
Similarly, m _Ru? \Huo(E—8) * ..
Bapn = (E&E Rmz—é\) o) s (Ron) /.,’ 2(Br)je Ronr/a) Jrdr

_ (4’1r(13R2n2)1/ 2 Hy(E.—E ) F» (BS)

Ry,2—6 wW—Ro?
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where
Fo=2[34+Fy(1—9/u*)]/\/5,  Fo=1—u cotu.
Again,
haon=ha0n (E_—§+) .
Then
h22n = —\/6h20n§—,
and

h2—2n =- \/ 6h20n§+'
We may then find the expansion coefficients, using Eq. (19)
My E— = w0 imat (E=* Nimn)
=t { Non oon =+ (1—/6) 2™ oon} -

158

(B6)
(B7)
(B8)

(B9)

(B10)

Now here we shall explicitly assume that the resonance is narrow enough so that when #* is large, the term in 5~

is negligible. Thus

M ypn = mlmng—i— = (mlmn * g—-) §+'
Then the only nonvanishing ., are
. I twox (4ma®) 2HyorFo
oo = — U00XN0no0n = — (2 —Ro?) (Rot—w?) ’
'iwox (4#03) 1/2H10TF2

Maon = — 160X NenHaon = +

d
an Mo—on = —/OM20n.

APPENDIX C: THE COEFFICIENTS OF Ay
Section IV gives the boundary conditions on A,
V x [AP+Ar— Ay |=—4aF x[FxM], r=a
A+ A —Ane=0, r=a,

V‘A2=O.
And we will use:
) dra’ My,
Ap(r) =—vx 3 =

imn W:—Ray?

A (x) =2 am ji(Br) Y1,
im

Ay (r) =2 cim(a/r) T m,
lm

‘l/lmn (r ) )

( 1- 6/R2n2) 12 (2 — Ren?) (R’ —u?) ’

(B11)

(B12)

(B13)

(B14)

(Ch)
(C2)
(C3)

(C4)
(C5)

(Co)

Since the solutions are for =g, we need only multiply by ¥z** and integrate over the surface of the sphere to
find relations among the coefficients. Further, Appendix D will show that only ¢t, ™, cu’, and 6 1° will be

needed. cimt=E£;* Cim.

We will need expressions for the divergence and curl of our vector potentials. They follow the general form:

I+1

. 1/2 l 1/2 .
Vii(gr) Y im= (—) gjra(gr) Topa™+ <—“‘) gjia(gr) Tra™,

2041
where the vector spherical harmonics® may be written as

Tl,l:klm=zc(l:b 1; 1, l; m+u, —l‘) Yl:hlm+”§—m
m

204+1

in terms of the Clebsch—~Gordon coefficients.
Applying Eq. (C2) we find:
ot (u) =cyt,
a1 (u) = +2(3)Y2Q,
a1%:1(u) =en®— (§)17Q,
a11%1 (%) =cr+6(2)2Q,
8 M. E. Rose, Multipole Fields (John Wiley & Sons, Inc., New York, 1955) p. 22.

(C7)

(C8)
(C9)
(C10)
(C11)
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where
0 =4mi(2/a) V2> mapu[ (1—6/Ros2) 12 (12— Ro2) T (C12)

We next use the gauge condition to show that
C10+ = 0110, Cl0 = 61_10. (C 13)

Finally, our last two equations come from the £, and £_ components of Eq. (C1), with L=M=0:

: ; 4 (2/0%)*(9—Ro?) m2—n 2 2/a> \V?
1(1/V3) ujo(u) [argt+a11"]— (%) 1/2; (—Ro) (16 Ra?) =—4r (%) 1/2; (m}> Maon, (C14)

2 1/2 9'_R2n2 n
...1(1/\/3)’1/1«]0(%) E0110+(110-]"‘%7r (g]};) Z (M2—<Rz 2) (1_),’:/2;{2 2) 1/2

2\ V2 mOOnR(mzen 2 \1/2 Moo 2\ V2
+'§'4’7l' (3) ; —_u2—Ro,,2 = "‘%W (g;lg) zn: ——“—‘—(1 —6/R2—n2) 12 '_%‘471' (;5) ;mooném (ClS)
e=(3/N2) if n=0,

=1 otherwise.
These eight equations then yield

610++610_ = 41(0{.00le01 (%71’) 1/2 (F()?Go—%ngGg) . (C16)
The factor in parentheses is then the ¢ of Eq. (41), and the rest is included in K.
APPENDIX D: POWER

The power absorbed by the resonance is calculated by an integration of the terms in the Poynting vector which
are linear in x:

PO= é—:/[(v x A;)+ (Fx A%) 4 (V x Ay) - (F x Ag¥) Ja2dg. (D1)

We already know A; and V x Ay, which give, at r=a:
7% Ay=— (3m) V2(HyaFo/u?) [£ (V6 V52— V¥ —2/5V ) —E_(v/ 6V 2— V0 —24/5V ") +V35(V =V )] (D2)
and
V x A= (37) 2Hy(E_—E) YV
+ (fom) 2 Hyo[ (3Fo—12) /w?I[Er (Y —/6Y52) +V3E (Vi — V) —E (Y —/6V2)]. (D3)

For A, we will use Aye:

R 141\ V2 1 \12
Tx A= —%CZM X [(ﬁ-{) Tz,l+1m— <m> Tl,l_.lm:‘ , (D4)
and
V x A= —a1 ) [(I41) (20141) 1*2¢sm % Ti 1™ (D5)
m

In the first term of (D1) we have integrals of V', times ¥5* or V¥, so only the coefficients found in Appendix C
will occur. This term then simplifies to

(37) Y2waHyy Fo*
4 u*
The second term is more tedious, since it contains a variety of cz,*’s. However, these terms all neatly cancel, as

is shown most easily by grouping terms in the calculation. The rest of the expression behaves like the first term,
and we find

PO (1st term) = — (cwtcw). (Do)

PO (2nd term) =[ (37)2wa?Hio/4n |[ (Fo/u?) +2](cret+c107) *. (D7)

Thus,
PO =K {c*+%(Fo/u?)c*—% (Fo*/u?*) c}, (D8)

where
K =\/wa0XTH1o2 (%’ll'(ls) . (D9)



