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Electron-Spin-Resonance Line Shape in Spherical Metal Particles*
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Dyson's theory of the electron-spin-resonance line shape for conduction electrons in metals has been
extended for use with spherical particles in the region of normal skin effect. These more nearly correspond
to typical samples, particularly so for naturally occurring metallic colloids. An explicit eigenfunction ex-
pansion is made for the 6eMs and the magnetization, using eigenfunctions obtained from a Green s-function
solution to the diffusion equation in this geometry. The line shapes vary roughly as in the one-dimensional
case, and curves of this variation are shown to agree with experimental data for sodium.

I. INTRODUCTION

6 %HE problem of the shape of electron-spin-resonance..lines fol conduction clcctlons ln metals wRs lnvcstl-
gated in 1955 by Dyson. ' He treated the problem for
plane samples of various skin depths, thicknesses, and
relaxation times, and the measurements of Feher and
Rip' con6rmcd his theory in reasonable detail. How-

ever, metallic ESR samples often consist of particles
whose size is comparable to the skin depth in all dimen-
sions. Examples of such samples are alkali metals
dispersed in oil and naturally occurring colloids. This
paper modifies Dyson's theory to treat spherical par-
ticles, supposed a fair approximation to actual samples.
Ke assume normal skin effect.

The line shape is found in terms of the power absorbed
Rt thc sUl"fRcc of thc pRI'tlclc:

P = (c/4ir) E x H'. dS,

which may conveniently be converted to a surface
impedance, Z =I'/47ra'Hio', where a is the particle
I Rdlus Rnd H»p the alternating held magnitude far
from the particle. H» near the particle consists of a
term of order zero in the susceptibility, g, plus linear
and higher terms. YVC will derive the zeroth order H»
and E» from R vector potential A», and the linear terms
from A2. Only terms linear in g will be considered in E'.
Thus we neglect the nonresonant part of I', and contri-
bUtlons from tcI'IIls quadratic Rnd high. cl.

The calculation then proceeds in four stages: In
Sec. II, we find Ai(r) from the boundary value problem
with no magnetization. In Sec. III, we use Dyson's
formulation to find M(r), the magnetization due to
spins. This introduces the resonance, and requires a
complete set of eigenfunctions, Pi„„, used to form a
Grccn s function alld to cxpaIld both. A» Rnd M. Ill
Scc. IV: The 6rst order Maxwell equations are inhomo-

geneous, since they include M. A particular solution is
found to the inhomogeneous equation, of the form
A~" ——V'xgi„„Pi „(r)pi,„„.To this we add a solution of

~ Supported in part by Research Corporation and National
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' F. J. Dyson, Phys. Rev. 98, 349 (1955).
2 G. Feher and A. F, Kip, Phys. Rev. 98, 337 (1955).

the homogeneous equation, A~". Outside the sphere we
have merely I.aplacc's equation, with solution A2'. We
generate the coe@cicnts of A2' by matching boundary
conditions.

A word may be in order here on the use of 8 and H:
In free space (outside the sphere) these fields are
identical. Inside, we decompose the vector potential
according to powers of x, so that V ~A=3 yields

V xAi+7' xA, + ~ ~ =H, +(M+H, )+ ~ .

Thus wc IIlay SRy

V x A2=M+H2, etc.

Of course, outside the sphere M=o, so our Poynting
vector linear in x may be evaluated just outside the
surface, and is found in (V):

soi=A; x (V'xA, *)+A,x (V xA;*).

II. ZEROTH ORDER VECTOR POTENTIAL

Inside the particle, Maxwell's equations give

(v'+p2) A, =O,

where 8=(1+i)/P is the skin depth, and we have
neglected the displacement current (the conductivity,
o&&so) . Outside, o. =0, and

V2A, =O,

We assume for the internal vector potential

Ai'= g ni j i(pr) I'i~(Q)

and for the external one

Ai'=ZIIIi-r'+xi-r ' '}I'i"(~l)*

where ji(Pr) are the spherical Bessel functions (of
complex argument here) and Fi are normalized
spherical harmonics. (A factor of o '"' is assumed for
all fields). Since M=O in this order, both Ai and
V x A» are continuous Rt the boundary, and we take

Ai'(oo) = ——,'H, o(r x f)
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as the imposed field (H1p is then in the x direction).
Then

2(3~) '12H10 j1(Pr)

Pio(P )

Xfe+Yl tp( Y11+Y1 1) +g Y10$ (7)
M(r) =gm1 „p& „(r); m,„„= y1„.*Mdr, (10)

III. THE MAGNETIZATION

Ke wish to make expansions of the form

where'

j,=*(zap')/V2, j,=to,

=-( 1)—"f~ f..*=( —1)"&~'

where we choose the eigenfunctions Pi„„ to satisfy the
equation:

~V1 = —(R1 /a)V1 .
We will need later

pr 1i2
g2 (pr)

V 2C A1'(r) = — H10 . Ify(Y2' +6—Y2 ')
10 jp(Pa)

+v350(Y2 1 Y21) 5—(Y20 +6Y22) }

+ (-'02r) '"EIgp(g —(+) Yp'.

with the boundary condition

n V/1~„=0, at r=a. (12)

The Green s function which is a solution to the diBu-
sion equation for electrons of Fermi velocity v and

(9) mean free path A:

can be written as

-', (vA) PG=BG/Bt; n VG=O, at r=u, (13)

G(r, r', t) = +&1„„*(r')&1„„(r)exp) —-,'(vh. ) (R1„„/a)2t].
le (14)

and

where

and

2 R&„„' 'i'j, [Z& „(r/a) ]
a' R1m~2 —&(t+1) j1(R1m~)

—(3/ap) 1/2 Y' 0

R1„„j11(R1„„)= (3+1)j1(R1„„),

R1 .jig1(R1 .) =tj1(R1 ),

lme/0

(15a)

(16)

„*$1„„dv=811b„b(R1„R1„), —
Sphere

(17)

as treated in detail in Appendix D. Only terms in /=0, and l=2 will be signiicant for our problem. For these
values, Eq. (16) becomes

tanRp„= Rp„,

tanR2„= R2„(9—4R2„') /(9 —R2„') .

Dyson's formulation then results in a nonlocal equation which may be written:

mime = 2&ox I'gunn (5-' h1m0) 5+

'Olney

(5+' him+) t }&-
where

1/V1„„+=1/T, +-', (vh. ) (R1 „'/a') —2(opao10) .

(19)

(20)

We will henceforth drop the p term, which represents the resonance from the counter-rotating circularly polarized
component of our linear II&0. We may also ignore the subscript nz in R& „and p& „, and we will write

1/2t 1„——(R1„'—rv') /r, (21)

2v =2(M —010)t T/T1, —v=2(a2/P) T11. (22)

T~, the time it takes a spin to disuse across the skin depth, is

Tr2 3P/2vA. ——
3 M. E. Rose, MNltipole Fields (John W'iley 8z Sons, Inc., New York, 1955), p. 19.

(23)
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Coefficients h~ „are from

that is

V XA1'=ghtmngtmn,
lmn

(24)

In Appendix 8 it is shown that

hymn= y,„„*(VxA, ') dr.
Sphere

(25)

and

where u=Ptt, and

Also

All other m~ „'s vanish.

mpp„—— i rppxr—tt„(42la') "'Hi0F0&~/(u' Rp„')—

m20 =20ppxrl2 (42rti ) H10F2$+/(u' —R2„') ( 1—6/Rs„'),

Fo ——1—u cote,

F2 (2/+5——) [3+Fp(1—9/u') ].
m2 2„———+6m20„.

(26)

(2&)

(2g)

(29)

IV. FIRST-ORDER VECTOR POTENTIAL

At this point we have found M(r), but we must find the fields to which it gives rise in order to calculate the
Poynting vector. The vector potential in this case satisfies

and

As with A~, we choose the gauge

inside, and A&' outside. We use

V2A2+psA2 = —42r (V x M),

v'A2 ——0,

v A=o.

A2 ——A20+A20

A;(r) = V x gent „(r)pi„„,
lmn

A, (r) = gatmj l(Pr) Ft",

(31)

(32)

(33)

(34)

(35)

A e(r) —gcl (tsl+1/r 1+1)p' m (36)

Now A2P(r) is a particular solution to Eq. (31), so

Arm)„„
P2 —R 2/122

(37)

The boundary conditions4 for A& and H2 are then used to find the coef5cients a& and c&
..

V x [Asp+A22 —A,']= 42rr x [r xM], at r—=tl,

Asp+A 2=A, ', at r =12. (39)

The gauge statement V A=o, for all A, simplifies the problem also.
Further, it turns out that four of the coefficients cl are sufficient to express that part of the power (integral of

the Poynting vector) with which we are concerned.

The first-order terms from (1) are

V. POWER

107F&»= —[H2 (r xA1*)+(V xA1) ~ (r x Asm)]ttsdg
Sm.

e J. D. Jackson, Classical Etectrodyrtamecs (John Wiley tk Sons, Inc. , New York, 1962), pp. 9 and 154.
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We evaluate the vector potentials and their curls at r =a, so we may conveniently use A2'(u) for A2 here, and
therefore H2= V x A2'. This results in

where

and

Here

P &'& =K[C*+(3F /2u2) Cs —(3F0*/2u'*) C7,

K =&2IdIdpxrH10 (02I"11 ) )

c=Fp'Gp (,') F—2—2G2

GII ——Q[(us —Rp ') 2(E0„2—ws) ]-'

(42)

(43)

G —Q[(N2 g 2) 2(g 2 ttI2) (1 6/g 2) ]—1 (45)

VI. COMPARISON TO DYSON'S RESULT

Dyson s general result [his Eqs. (71)—(73)j is, in similar nota, tion,

F sIdpppxB10 TFD GD ' (Uolume), (46)

where F~ = —u tang. These all have the same behavior in the limits of small and large u:

Large u: Fo F~~F~~iu

Small u: Fo —',u') F2 (16/15+5) ns FD —u'
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FIG. 1.A/8 versus o/S for the derivative of the absorption signal,
for a sequence of values of Tn/T~.

FIG. 2. A/8 versus T~/T1 for the derivative of the absorption
signal, for various values of o/8. The curve for a/S= ~ corre-
sponds to that obtained by Feher and Kip using Dyson's theory



ELECTRON SPIN RESONANCE 229

IOO

50-

0 00

I+

IOO

IO-

20-

IO-
I.O-

a
8

~7

7)

O.I- T,= DIFFUSION TlllfIE

T.RELAXATION TI~E

IO- IO

0.5—

0.2—

Q = PARTICLE RADIUS

8= SKIN DEPTH

IO

O
O

Il
IIIso

O.I
0

A
8

IO
4

A
5

8

FIG. 3. Some experimental data compared to one of the curves
of Fig. 1. Crosses-300'K, cirdes-77'K, triangles-4. 2'K. 8 is not
reliable at 4.2'K.

Fto. S. A/B versus Tn/T& for the derivative of the dksperston
signal, for various values of o/k
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Fro. '1. Linewidths versus Tn/T~. Here d refers to shsorption
6' to dispersion.

Dyson's G~ is the same as our Go, except that Ro„ is
replaced by m. (which is the limiting value of Ei„ for
large fs) .

Thus the general form of the result is the same, as
expected. This is con6rxned by the results shown in the
next section.

VII. LINE SHAPE

The line shape given by Eq. (41) is very similar to
that found by Dyson. In the limits of large and small u,
the two calculations give identical results. The be-
havior of the line shape as a function of a/8 and of
T~/Ti is given in Figs. 1 and 2. Figure 2 should be

compared to Fig. 7 in the paper of Feher and Kip.
The parameter 2/8 is a particularly useful one for
comparison with experimental results. The curve in
Fig. 2 labeled ~ is the one pertinent to Dyson's
theory.

One is struck by the behavior of the curves for large
a/b in the region of small To/Tt. This return toward
symmetry is a consequence of the fact that, although
the skin layer is a small fraction of the particle volume
the spin crosses the particle in a time short compared
to T~ and therefore spends more time in the skin layer
than in the case of the semi-in6nite metal. This situa-
tion is not considered by Feher and Kip. Dyson also
excludes it, since he assumes To/Tt is never smaller
than 10 ', The samples used in selective transmission

when subject to the boundary condition

r G(r, r', f) =0, at r=a.
Further, we expect it to have the form~

G(r, r', &) =Ze "V -(r)4 -*(r').
lmn

%e will vmite

(A2)

4i-(r) =&i-i iC&i. (&/&) jFi (+, e), (A4)
~ S. Schuits and C. Latharo, Phys. Rev. Letters 15, 148 (1965).
6 R. B. Levris and T. R. Carver, Phys. Rev. I,etters 12, 693

(1964). N. S. Vander Ven and R. T. Schumacher, ibjd. 12, NS
{1964).

~ H. S. Carslavr and J. C. Jaeger, Condedf'oe of Iree' in Solids
(Oxford University Press, London, 1950), p. 314.

experiments" are of this size, although in that tech-
nique the transmission line shape is not handled by this
theory or that of Dyson.

Figure 3 is similar to Fig. j., with experimental data
from a graded sequence of sodium particles. These are
known to have been nearly spherical, but their surface
is neither very smooth (cf. Feher and Kip') nor,
perhaps, is it una, Gected by the soaplike molecules
which are attached to it in the oil. The 6t here is in
accord with Byson s conclusions that surface ielaxation
should play a minimal role in the line shape for the
alkalis. If this is not true at low temperatures, as
suggested by Schultz and Latham, ' then fits like that
of Fig. 3 can give the required information regarding
the rela, xation. The data at 4.2 deg should be regarded
as preliminary, and their interpretation awaits a careful
inclusion of the eGects of the anomalous skin eGects on
this theory. A further complication at these tempera-
tures is that the mean-free path is comparable to the
particle size. It is probably this which is responsible
for the anomaly in the hehum temperature data,
although the curves for large a/8 and very small To/Tt
are suggestive, since To/Tr ~ (Temp)'.

It should be emphasized that the data presented
here are intended to show that the behavior of the
line shape as a function of size is accounted for by the
present calculation. The study of T~ and T~ in these
particles, which motivates this calculation, is left for a
later article. At present, we find Fig. 1 most useful in
estimating particle sizes, a tedious job when done with
a microscope. Figures 4, 5, 6, and 7 may prove useful
to workers in this field.
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APPENDIX A: THE EIGENFUNCTIONS

The Green's function satishes

—;(eA)V'G(r, r', f) = (8/Bf) G(r, r', f), (A1)



using the analogy of a general expansion for G(r), with the term in hi suppressed, since it is not 6nite at r =0.
The j~ are spherical Bessel functions and the 7p are normalized spherical harmonics.

Clearly,
VVi -(r) =—(R.i/o)Vi .(r)

so this G(r, r', l) does indeed satisfy (Al), and in (A3)

X=-,'(wA) (R„P/u').

(A5)

(A6)
We now apply (A2)

Therefore

r vG=+e-"y,„„*(r')bi„„Fi(8, q) (a/Br)ji(Ri„/i') j =0.
Zmn

(~/~&Ui(Ri. /«) j
@which is the de6ning equation for E~„.%c novr require that our eigenfunctions be orthonormal

~ *(r)P& (r) r'dr dQ=bipb„„b(Ri„Ri„.)—.
Sphere

The spherical harmonics assure us of orthogonabty as regards 1, /' and m, ys'. Therefore

Ri„. Ri„' &

bine%&ne' ji & gi &
~

& dr =8(Ria Ria') ~

0 8 u j
For N/n', using the Lommel integral and Eq. (A'I), we verify that

(AS)

j i(ar)j i(pr) r'dr =0.

l(l+1)
) bi „P jp r r'dr=

) bi„„pjp(Ri„) 1— —',a',

2/&' "'jil:Ri-(~/) j ~ „q~'""~'~ =
(i—r(~+~) yz,„q,jz,

vrhere vie have set an arbitrary phase factor equal to unity.
We find $000, from (AS), to be 1/(Volume) 'I'= (3/a') 'I'F00. This contributes a constant term to G and may be

thought of as the term in the probability distribution corresponding to nondi6using spins.
These eigenfunctions may also be obtained by the method of Laplace transforms, and vivre so found originally.

APPENDIX 3 THE MAGNETIZATION

The magnetization is found by a straightforvmrd application of the method suggested by Dyson: The expansion
coeKcients of the magnetic 6eld H» are

h,„„= y,„.'(vxA )dr,

Therefore

(Bi)
%herc %'c usc

v»i' ——(2s/5) "Ko(j (+) Fo'-—
+(s/&0)" &Mjm(Pr)/jo(P~) Ik+(y2' —v'6y2 ')+v3io(y'2 '—y'9') —(-(ys' —v'6~2') j (&2)

Similarly

1/2 It' 2 1/2

(~ f+) ~-(~-)~o(R /)"d I~o(R )(e3

= (4ra') '~2&M($ —$+) (1—I cotu)/(N~ RgP)—
~w.—=&oo (5 -kp).

R,„m ~»'e„(j,—j ) i 2(&~)imL~2-(~/&) jr'«
&5a'R2„' —6 go I g2 R2„

4ir&'R2 ' "'Ko((p —te—)~2

R2„'—6 I'—R2„'



ROBERT H. WEBB 158

where
Fs =2f3+F'o(1—9/Ns) j/43, Fo= i—I cotl.

Again,

Then

and

hso. -=hso (5--&+).

h,s„———+6hso„),

hp s„———+6hso, )+.

(87)

(BS)

~e may then find the expansion coeKcients, using Eq. (19)
rh

mime'5 — proox lime (5- hi~a)

(811)
A

ml~n mime(+ (minn'5-)5+
Then the only nonvanishing ns& „are

=proof I pio +hoo„+ (1—Q6) pip„+hso„}. (810)

Now here we shall explicitly assume that the resonance is narrow enough so that when g+ is large, the term in q
is negligible. Thus

sroox (4r&s) '"%or&o

(Ns —R ') (Ep„s—pc')
'

sopoX (4pru') 'l'HiorPs

( 6/g 2) 1/2 (Ns g 2) (g 2 pcs)

(812)

(813)

ms s„———dmso„.

APPENDIX C: THE COEFFICIENTS OF A2'

Section IV gives the boundary conditions on A&

V x LAso+Ass —A,'j = —4prr x Lr x M j,
Asn+As" —As' ——0, r =a,

v A, =o.
And we will use:

Aso(x) = —Vxg, "",pl „(r),

Ass(r) =gal„jl(Pr) Fi",

As'(r) =Qel„(u/r) '+'Fl".

(C1)

(C2)

(C3)

(C4)

(Cs)

(C6)

(CS)

(C9)

(C10)

(C11)

llano ji(N) =cM
p

idio ji(N) =cio +2(so)'"Q,.,ioj,(.) =cii -(s) l Q,

g, i'j, (N) =ci i'+6(s)'l'Q,
s M. E. Rose, MNllipole Fields (John Wiley 5r Sons, Inc. , New York, 1955) p. 22.

Since the solutions are for r =c, we need only multiply by VL~* and integrate over the surface of the sphere to
6nd relations among the coefficients. Further, Appendix D will show that only c~o+, v~0, c~g', and c~ ~' will be
needed. cl +=—p+. clm.

We will need expressions for the divergence and curl of our vector potentials. They follow the general form:

f )1/2 1jr'9

&ji(qr) I'l"=
I qji+i(qr) Tl.i+i +

~
qjl-i(qr) Tl,l-i,

2l 1j 2l 1j
(C7)

where the vector spherical harmonics' xnay be written as

Tl, i~i"——gc(i+1, 1, l; m+jl, —ll) &i~i"+s&~,

in terms of the Clebsch-Gordon coefBcients.
Applying Eq. (C2) we 6nd:
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g ~4' (2/a) "grn20„[(1—6/R2~2) "'(u' —E2„')] '.

We next use the gauge condition to show that

Clp =Cll ) Clp Cl—1 ~
0 (C13)

Finally, our last two equations come from the (+ and f components of Eq. (C1), with I.=It/I=O:

i(1/v3)ujp(u) [a10++a1 10 J
—(I'—,)'/2+ —. . . , „, = —42r( —,20)'/2+, n22 2„, (C14)

( 2 1/2 (9—E2„2)n220—i(1/v3) ujo(u) [a110+a10 ]—1'r

0„=(VS/K2) if n =0,

otherwise.
These eight equations then yield

C10++C10 ——42rao/OXHgpr(~) "'(Fo'Gp ——,'F2'G2) .
The factor in parentheses is then the c of Eq. (41), and the rest is included in K.

APPENDIX D' POWER

(C16)

The power absorbed by the resonance is calculated by an integration of the terms in the Poynting vector which
are linear in x:

P &'& = —[(V x A,) ~ (r x A,*)+ (7 x A, ) ~ (r x A2*) ]aodQ.
8m

(D1)

We already know A& and V xA&, which give, at r=a, :
r xA1 ———(-'or)'/'(HgpaFO/u')[$ (+6Y2 ' —Y2' —2+5YO') —$ (+6Y2' —Y2' —2+5Yop)+v3$0(Y2' —Y2 ')] (D2)

and

V x A1 ——(-',or) '"HM(p —f~) Yo'

+ (
1 2r)1/2HM[(3FO u2)/u2][p ( Y20 46Y2 ) +V3$0( Y2 1 Y21) $—(Y2 V 6Y22) ] (D3)

For A2 we will use A2'..

and

l+ 1 1/2 l 1/2

r x A 26 = —Q cpo, x
2l+1 ' 2l+1

Tl, l+1 Tl, l-i (D4)

~ x A;= —a-'g[(i+1) (2l+1)]"c/„x 7& &+,". (D5)
Lm

In the first term of (D1) we have integrals of 71+1 times Y'2* or Yp*, so only the coefficients found in Appendix C
will occur. This term then simplifies to

(3n.) "'ooa'HM F0*
Po&(1st term) =- (Clo +Clo ) ~

4m I'* (D6)

The second term is more tedious, since it contains a variety of c3 & s. However, these terms all neatly cancel, as
is shown most easily by grouping terms in the calculation. The rest of the expression behaves like the first term,
and we find

Thus,

where

P &'& (2nd term) = [(32r) '/'o/a'Hio/4n ][(Fo/u') +-',](c1o++c1o )*

P"' =K I c*+p (Fp/u') c* ', (F0*/u'*) cI, —-

K =v20/0/oxrH102(~ap) .

(D7)

(DS)

(D9)


