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Modifications to the classical analysis of equilibrium thermodynamic properties near the liquid-vapor
critical point are proposed in order to allow for infinite singularities in C„nonclassical behavior of the co-
existence curve, etc. A requirement that all thermodynamic functions for the homogeneous fluid be analytic
is retained and turns out to be necessary in order to justify Maxwell s prescription for modifying the Van der
Waals equation of state. A corresponding analysis is presented for ferromagnets near the Curie point.
Widom's proposed "homogeneous" equation of state is discussed with special attention to requirements of
thermodynamic stability. Several examples of such homogeneous functions are constructed, including cases
where the critical indices agree (very nearly, at least) with current estimates for two- and three-dimensional
Ising models.

I. INTRODUCTION

�

~OR many years the Van der Waals and Weiss
molecular-field equations of state have been proto-

types for a "classical" thermodynamic discussion of the
critical point of a liquid-vapor transition, and the Curie
point of a (slightly idealized) ferromagnet, respectively.
This classical analysis has come under attack from two
sides. ' On the one hand, experimental work of increasing
precision —including, but not limited to, heat-capacity
measurements' —suggests that "anomalies" near the
critical point not present in the classical treatment may
be the rule rather than the exception in pure materials.
On the other hand, recent theoretical work has shown
that the classical results arise in many statistical models
where the range of attractive forces is permitted to
become infinite, ' whereas for several models with
(presumably more realistic) finite-range forces, the scant
evidence'' presently available suggests "anomalies"
similar to those found in nature. ' The logarithmic heat-
capacity singularity in two-dimensional Ising ferro-
magnets is well known. ' Although exact results are not
available for more realistic three-dimensional Ising

* Supported in part by the National Science Foundation.
t Alfred P. Sloan Research Fellow.
' For a summary and reference to much of the pertinent experi-

mental and theoretical work, see M. E. Fisher, J. Math. Phys. 5,
944 (1964), and his article in Lecturesin Theoretical Physics, edited
by W. E.Brittin (University of Colorado Press, Boulder, Colorado,
1965), Vcl. VII C, p. 1; C. Domb and A. R. Miedema, Progressin
Low Temperature Physics, edited by C. J. Gorter (North-Holland
Publishing Company, Amsterdam, 1964), Vol. IV, p. 296.' Recent work includes measurements by A. V. Voronel', V. G.
Gorbunova, Yu. R. Chashkin, and V. V. Shchekochikhina, Zh.
Eksperim. i Teor. Fiz. 50, 897 (1966) t English transl. : Soviet
Phys. —JETP 23, 597 (1966)) on nitrogen; and A. R. Miedema,
R. F. Wielinga, and W. J. Huiskamp, Phys. Letters 17, 87 (1965)
on the ferromagnet CuK2C14 2H20.' G. A. Baker, Jr. , Phys. Rev. 122, 1477 (1961); E. Helfand,
J. Math. Phys. 5, 127 (1964); M. Kac, G. E. Uhlenbeck, and
P. C. Hemmer, ibid. 4, 216 (1963);J.L. Lebowitz and O. Penrose,
ibid. 7, 98 (1966); E. Lieb, ibid. 7, 1016 (1966).

4 Unfortunately, most of the standard approximation schemes
become unreliable near the critical point. See M. E. Fisher, Ref. 1.' An important exception is the spherical model discussed by
T. H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952). Reasons for
the exceptional behavior have been discussed by J. S. Langer,
ibid. 137, A1531 (1965).' L. Onsager, Phys. Rev. 65, 117 (1944).
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models, the powerful methods of series extrapolation7-
which may, with some justification, be called "numeri-
cal" experiments —have provided suggestive, if not con-
clusive, evidence for similar "anomalies" in these
systems, as also in the three-dimensional Heisenberg
ferromagnet. '

Thus, some extensions or changes in the classical
thermodynamic analysis seem necessary. But on what
assumptions should a new approach be based? Section
II provides our answer to this question in a set of rules
or hypotheses for the behavior of thermodynamic
variables near the critical point. While making no claim
to originality —most of the rules have been stated
explicitly or used implicitly by other workers —we feel
that a concise, detailed statement of principles will help
avoid confusion and show explicitly in what respect the
"new" and "classical" approaches diGer.

As an interesting sideline we examine, in Appendix B,
the Maxwell construction applied to the Van der Waals
equation of state in light of the criteria in Sec. II. This
construction is justified, from our point of view, not on
the basis of the usual "equal area" or "dogie tangent
construction" arguments, but only because of a very
strong assumption of analytic behavior for the thermo-
dynamic variables of the homogeneous Quid.

In Sec. III we consider a specific class of "homo-
geneous" functions proposed by Widom' and the condi-
tions they must satisfy to conform with the criteria of
Sec. II. They may in some sense be the simplest exten-
sions of the classical functions. At least it is interesting
that analogous or identical functional forms, or specific
examples of such functions, have been proposed inde-
pendently by Helfand" (two-dimensional Ising model);
Domb and Hunter" (magnets); Patashinskii and

' C. Domb, Advan. Phys. 9, 149 (1960); M. E. Fisher, J.Math.
Phys. 4, 278 (1963).

G. A. Baker, ]r., H. E. Gilbert, J. Eve, and G. S. Rushbrooke,
Phys. Letters 20, 146 (1966);22, 269 (1966).

9 B. Widom, J. Chem. Phys. 43, 3898 (1965)."E.Helfand, paper presented at a meeting of the American
Physical Society, March, 1965 (unpublished).

» C. Domb and D. L. Hunter, Proc. Phys. Soc. (London) 86,
1147 (1965).
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Pokrovskii" (magnets); Azbei', Voronel', and Giter-
man" (fluids); and possibly others of whose work the
author is unaware. The homogeneous functions are in a
sense "derived" in Refs. 11, 12, and in a paper by
KadanofP' (whose assumption of unequal values for
critical indices above and below T, appears to be ther-
modynamically inconsistent —see Appendix A). They
are implicit in a model used by Essam and Fisher. "The
essential similarity of all these proposals is discussed in
Appendix A. )Rote added in proof Rece. ntly J. S.
Kouvel and D. S. Rodbell [Phys. Rev. Letters 18, 215
(1967);J.Appl. Phys. 38, 979 (1967)]have used homo-
geneous functions to 6t experimental magnetization
data above the Ciurie points of CrO~ and Ni. M. S.
Green, M. Vicentni-Missoni, and J. M. H. Levelt-
Sengers /Phys. Rev. Letters (to be published)) have
analyzed data for the equation of state of several Quids

in terms of homogeneous functions. D. L. Elwell and
H. Meyer LBull. Am. Phys. Soc. 12, 95 (1967); and
(private communication)] have a similar analysis for
their data for Hes. g

Our own formulation (Sec. III) rests heavily on the
work of Kidom, but divers in the fact that we use nota-
tion appropriate to magnets rather than Quids. %e
prefer to use "magnetic language" because Kidom's
proposal assumes a symmetry only approximately ful-
6lled in real Quids but exact for magnets, and also be-
cause when comparing results with "experiment" we
use known or estimated values for Ising models.
Though these values may be stated either in "lattice-
gas" or "magnetic" language, the latter is most common
in the literature.

Actual examples of funtions for several values of the
critical indices are found in Sec. IV. The reader who
wishes to use these as first approximations for Quid

systems is referred to Appendix A for the appropriate
thermodynamic isomorphism.

It should be clear that the purely thermodynamic
approach employed in this paper cannot in and of itself
tell us the behavior of various functions near the critical
point. Rather, it provides correlations among data ob-
tained from experiments, or from statistical calcula-
tions, and checks on their consistency. The value of
thermodynamics for checking consistency has already
been demonstrated. '6 '~

The functions discussed below may be of value for

"A. Z. Patashinskii and V. L. Pokrovskii, Zh, Eksperim. i Teor.
Fiz. 50, 439 (1966) t English transl. : Soviet Phys. —JETP 23, 292
(1966)].

'3 {a}M. Va. Azbel', A. V. Voronel', and M. Sh. Giterman, Zh.
Eksperim. i Teor. Fiz. 46, 673 (1964) [English transl. : Soviet
Phys. —JETP 19, 457 (1964)g. This paper is, unfortunately, too
brief, and some important quantities are left undefined. The
authors' intentions become clearer in the more extensive article,
(b) M. Sh. Giterman, Zh. Fiz. Khim. 39, 989 (1965) )English
transl. : Russian J. Phys. Chem. 59, 522 (1965)g."L.P. Kadano8, Physics 2, 263 (1966).

I J.%.Essam and M. E. Fisher, J. Chem. Phys. 38, 802 (1963}."G. S. Rushbrooke, J. Chem. Phys. 39, 842 (1963); R. S.
GriKths, Phys. Rev. Letters 14, 623 (1965)."R, 8, Gri%ths, J. Chem. Phys. 45, 1958 (1965).

interpolation between di6erent experimental or theo-
retical results. This purpose is best ful6lled if the func-
tions themselves are not taken too seriously. In particu-
lar, singularities in the complex plane are chosen for
convenience and not because of any fundamental signi6-
cance. %e have sought to 6nd concrete examples of
thermodynamically consistent and (in the sense of
Sec. II) analytic functions possessing nonclassical singu-
larities near the critical point; we cannot, and do not,
claim they are exact for any real or model systems. In
the 6nal analysis, the advance in our theoretical under-
standing of the critical point awaits further develop-
rnents in statistical mechanics.

FIG. 1. Phase bound-
ary in the p, T plane
near the critical point
of a Quid.
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"See, for example, H. B. Callen, Thermodynamics (John Wiley
R Sons, Inc., New York, 1960), Chap. 5.

11. REQUIREMENTS Om THERMODYNAMIC
FUNCTIONS NEAR THE CRITICAL POINT

A. Fluids

The equilibrium thermodynamic properties of a pure
single-component Quid are completely determined' by
a knowledge of the Helmholtz free energy per unit
volume a(p, T) as a function of density p and tempera-
ture T. In particular, the chemical potential y and
entropy per unit volume s are given by

p= (r)a/r)p)r, s= —(r)a/BT) p.

For an arbitrary function u these derivatives may not
exist, so our 6rst hypothesis is:

C1. The functions a, p, , and s exist and are continu-
ous functions of p and T everywhere in the vicinity of
the critical point.

Near the critical point the p, T plane may be divided
into two regions by a continuous curve, which we shall
call the "phase boundary, " shown schematically in
Fig. 1. Below this curve we have the inhomogeneous or
two-phase region where both liquid and vapor phases
are present in equilibrium, and p denotes the average
density of fluid in the container. Above this curve lies
the homogeneous or one-phase region.

In the two-phase (inhomogeneous) region, the free
energy will be the sum of the free energies of the liquid
and vapor phases present, plus corrections due to
surfaces separating the two phases and at the container
walls. Provided the container is not too small, the sur-
face free energies are negligible, so we have:

C2. For 6xed T, u is a linear function of p in the two-
phase r'eglon.
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Note that we are excluding from consideration
metastable states; c(p, T) is the single-valued function
for the equilibrium state, whether homogeneous or
inhomogeneous. As far as we know, Cl and C2 are
universally assumed in analyzing the liquid-vapor phase
transition; did they not hold, one would be dealing with
a diGerent type of transition. Their content is not trivial,
however. For example, the equality of pressure p =pp —a
in the liquid and vapor phases, and, also the equality of
p, , follows at once from Ci and C2.

The next two "convexity" conditions express the
stability of the fluid.

C3. For 6xed T, a(p, T) is a convex-downwards func-
tion of p,' that is, p is monotone nondecreasing in p at
constant T.

C4. For fixed p, a(p, T) is a convex-upwards function
of T; that is, s is monotone nondecreasing in T at con-
stant p.

Stated in more familiar terms, C3 means that the
isothermal compressibility is never negative, and C4 the
same for the constant-volume heat capacity. We prefer
to express stability in terms of convex functions" since
there is then no possible ambiguity in regions where
phase transitions take place. Not only do C3 and C4
follow from the usual thermodynamic arguments, but
rigorous proofs exist that the conditions are satisfied
for a large class of fairly realistic statistical models. '0

The final two hypotheses, unlike those already dis-
cussed, follow neither from therxnodynamic require-
ments nor (excluding special cases) from statistical
calculations and merely reflect the usual aesthetic
desire in theoretical science to use functions "as sloooth
as possible. "

CS. The pllase boundary (Flg. 1) T(p) ls a corlvex-
upwards analytic function of p in the vicinity of the
critical point except, perhaps, at p= p„the unique point
where T(p) achieves its maximum.

C6. The free energy a(p, T) is an analytic function of
both arguments together everywhere in the vicinity of
the critical point, except on the phase boundary.

It may be well to indicate explicitly what is meant by
C6. Given any (p„T,) not on the phase boundary, the
sel les

converges for (p —p, ~
and

~

T—T, )
smaller than some

positive constants e, and ~g, respectively, which will
depend on p, and T,.

The "analyticity" requirements C5 and C6 represent
very strong assumptions and one may well ask how they,
and especially C6, diGer from the "classical" analysis as

"An approach equivalent to that used by Gibbs in 1873: The
Colle&Ied S'orks Of J. 8'Nerd Gibbs (Yale University Press, New
Haven, 1948), pp. 33—54.

~ D. Ruelle, Helv. Phys. Acta 36, 183 (1963); 36, 789 (1963);
M. E. Fisher, Arch. Ratl. Mech. Anal. D, 377 (1964}.
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FIG. 2. Double tangent
construction. The solid
curve shows the prototype
free energy a(p) at Gxed
temperature. The equilib-
rium free energy u for p be-
tween p1 and p~ is given
by the dotted straight line
tangent to a(p) at these
two densities.

where S is the molar entropy. In hypotheses C1—C6, a
should be replaced by A, s by S, p by v, and p by —p.
There seems no reason to prefer the analysis using u to
that using A, except that the phase boundary for simple
fluids shows more (though by no means complete)
symmetry about p=p, in the p, T plane than about
e=e, in the e,T plane, where the subscript c denotes
the critical value. For lattice gases" it turns out that u
is closely related to the corresponding magnetic free
energy, which we discuss next.

B. Magnets

Let A(T,M) be the free energy" per mole with the
properties

~' J. S. Rowlinson, Iigeids and L,ibid Mixtgres (Butterworth
Scienti6c Publications, London, 1959), Chap. 3.

~ T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952).~ Unfortunately there seems to be no uniform terminology for
magnetic free energies; A is that free energy for which the relations
(4} are satisfied.

exemplified, for instance, in Rowlinson's treatment. "In
the latter one constructs a prototype function u(p, T)
analytic everywhere in the p, T plane near the critical
point, but not satisfying C3. The equilibrium a(p, T) is

obtained from a by a "double tangent" construction,
illustrated in Fig. 2, in which that portion of a which
lies in the two-phase region is replaced by a function
linear in p (at constant T). This is equivalent to the
well-known "Maxwell construction. "

Thus the classical analysis adds a condition of
analyticity of a (in the two-phase region) which does
not explicitly appear in the equilibrium function a. By
contrast, one very practical method of constructing
functions satisfying C5 and C6 is to find a prototype
function a(p, T) analytic except for branch points and
the like in the two-phase region, and then apply the
double tangent construction, thus "concealing" the
singularities. This additional flexibility in choice of func-
tions appears to be just what we need in order to obtain
logarithmic heat capacity singularities at the critical
point, etc.

From the thermodynamic viewpoint, the above
analysis works equally well using the Hebnholtz free
energy per mole A (w, T), where l is the molar volume, in
place of a(p, T). One has

(3)
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where we have chosen a particular direction for the
external magnetic 6eld H, and M is the component of
magnetization along that direction. Demagnetizing
eRects will henceforth be neglected. The reader may
suppose either that a long, thin sample is being con-
sidered, with M and H parallel to the sample axis, or
that the long-range part of the dipolar interaction has
been "turned oR,"as in the usual Heisenberg and Ising
model ferromagnets.

The curve of spontaneous magnetization M, in the
M, T plane near the critical point is shown schematically
in Fig. 3. Beneath this phase boundary curve is the
"two-phase" or inhomogeneous region in which the
sample consists of domains pointed in opposite direc-
tions, and above this curve lies the homogeneous or
"one-phase" region.

The hypotheses below correspond to C2—C6 in the
case of a fluid (part A) with the addition of an important
symmetry: Time reversal invariance of the Hamiltonian
in the absence of a magnetic held means that A is an
even function of 3f.

CM2. A, H, and 5 exist and are continuous functions
of M and T everywhere in the vicinity of the critical
(Curie) point (M=Oand T=T.). For fixed T, His odd
and A and 5 are even functions of M.

CM2. In the two-phase region, H vanishes and thus,
for 6xed T, A is constant, independent of M.

CM3. For fixed T, A(M, T) is convex-downwards in
M, that is, H is a monotone nondecreasing function
of M.

CM4. For fixed M, A(M, T) is convex-upwards in T,
that is, 5 is a monotone nondecreasing function of T.

CM5. The phase boundary or spontaneous magneti-
zation curve T(M) is symmetric about M=O, convex
upwards near the critical point, and an analytic function
of M except, perhaps, at M=O.

CM6. A(M, T) is an analytic function of both argu-
ments together [compare Eq. (2)j in the vicinity of the
critical point except on the phase boundary.

The convexity conditions CM3 and CM4 which
correspond, respectively, to the positivity of the con-
stant temperature susceptibility

X= (BM/BH) r (5)

and the heat capacity at constant magnetization, rest
on less secure grounds than the corresponding conditions
for Quids. Diamagnetism does, after all, occur in nature.
It can be proved that the conditions are satisded in the
usual Heisenberg and Ising™delferromagnets. ~

C. Equation of State

All the equilibrium thermodynamic variables are
determined if A(M, T) is given. However, a knowledge
of the equation of state H(M, T) together with thephase
boundary curve is almost as good near the critical point

'4 R. B. GrifBths, J. Math. Phys. 5, 1215 (1965); Phys. Rev.
152, 240 (1966), Appendix A.

FIG. 3. The spontane-
ous magnetization phase
boundary near the Curie
point of a ferromagnet.

!
T

Homogeneous

og

if we are only interested in investigating the singularities
of thermodynamic variables in this region. Thus, choose
some Mq&0 near the edge of the region we wish to
consider (Fig. 3) and write

A(M, T)=A(M„T)+ H(M, T)dM. (6)

For fixed Ml, A(MI, T) is an analytic function of tem-
perature by CM6 (provided T is not too much less than
T,), so that A is determined from H up to an additive
analytic function which cannot inhuence the form of
any singularities.

Hence, one procedure for constructing thermo-
dynamic functions with diRerent sorts of singularities
is to search for a suitable H(M, T). Certain difEcuities in
checking conditions CM2 —CM6 are, however, more
acute in this scheme than if one constructs A(M, T)
directly. Suppose, for example, that H(M, T) is an
analytic function in the one-phase region. If T is less
than T, and 3f&0 lies on the opposite side of the two-
phase region from Ml, can one be sure that A(M, T)
dcfillcd lll (6) will join sI11ootlllywltllA(M T) fol'T) T
and de6ne a single analytic functions

An afBrmative answer to this question for magnetic
systems follows from symmetry considerations, but the
analogous problem for fluids given an equation of state
p(p, T) or p(v, T), is nontrivial. A concrete example, the
Van der %aals equation of state, is discussed in Ap-
pendix B. It turns out that one can specify a location
for the horizontal portion of the isotherm which di6'ers

from Maxwell's proposal, and every condition C2 to C6
is satisfied except for C6. From this point of view, the
Maxwell construction is justified only by a requirement
of analyticity.

GI. HOMOGENEOUS FUNCTIONS FOR
MAGNETIC SYSTEMS

A. Notation

In the vicinity of the critical point, T= T, and M= 0,
various thermodynamic functions are assumed to have
(as a first approximation) the form given in Table I,
with

t=(T—T,)/T,

a dimensionless parameter measuring the deviation of
temperature from its critical value, and M the magneti-
satlon dlvldcd by I'ts saturation vahlc (l.e., M bccolllcs
one as H approaches infinity). The critical indices u,
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Normalized temperature
Spontaneous magnetization
Heat capacity for 3f=0

Critical isotherm:
Isothermal susceptibilityb

t = (r r.—}/T,
M, 3(—t)t' for t&0
Cti—(h'/a') .t ( t) —'

1$—for t (0
—A' ln( —t) for a'=0, t(0

Cii (—h/a) Pt t—g for t &0
—Aint for +=0 t&0

D= lim fCir(t) —Ctr( —t)g

H=~M~ for t=O, M&0
~-rt-~ for»0

F'(—t) &' for t(0
a Equal to the heat capacity CH for H ~0.
b (8Mj8H}r in the limit II -+ 0+.

TmLE I. Notation for thermodynamic functions
for a ferromagnet near the critical point.

real variable

x=t) Mt "tt- (10)

By construction, H changes sign when M is replaced by—M, so aO the symmetry requirements of Sec. IIB are
satis6ed. The function (9) is Widom's proposaP in a
disguised form (see Appendix A), and he has shown that
it leads to the relations among critical indices shown in
Table II.

The fact that H vanishes on the phase boundary
(conditions CM1, 2), is analytic everywhere else (CM6),
and non-negative for M&0 (CM1, 3) leads to some
obvious requirements on h:

H1. De6ne

n', P, etc., are those used by Fisher'; for multiplicative
factors we use the corresponding Greek capitals. The
special form adopted for C~ 0 deserves comment. Since
for tt&0,

lim on 'Lt —1j= —Int

the case of a logarithmic heat capacity is included by
setting o, =0. Both in thermal and numerical experi-
ments it seems dificult to distinguish a logarithmic
singularity from a small positive value of 0. or 0,'. %e
hope the form used in Table I makes A and A' slightly
less sensitive to this uncertainty. The constants P and tt

are always assumed to be greater than zero in the follow-
ing analysis (P cannot exceed 1 without contradicting
CM5) and a is restricted by (19) in part C.

(with B and P from Table I). For —x,(x(~, It(x) is a
real, positive, analytic function of x, and k(—x,), the
limit of h(x) as x-+ (—x,), vanishes.

Condition H1 insures the analytic behavior of H
everywhere in the one-phase region apart from the line
M=O, T&T„which we shall now consider. For t&0
we have, by CM6, a series

(12)

which converges for
~
M

~

less than some M, (t) &0. Let
us equate (9) and (12) for M&0, replacing M by
(t/x)~ in accord with (10):

TABLE II. Exponents and coeKcients
for homogeneous functions. '

~=~'=p(a —t}
~=~'= 2 —p(&+ 1)

B=X0 t'

a=h(0)
1'= lim x&/h(x)

I"=Pxg '/h'( —xo)

B. Equation of State

In the one-phase region we assume H is given by

H(tif, T) =W~ u['-'h(t[a[-'»), (9)

where h(x) is some as yet undetermined function of the

where the series on the right converges, in general, only
if M is sufBciently small for a given t)0, that is,
provided x is suBiciently large. Since t &~H is a function
of x alone, it is evident that in (13) we must have

f (t) rt ttt{l+t-re} (14)

h(x) = Q rt.xs&'+' '"i, (15)

and the following condition applies to h(x):
H2. For some finite constant E, h(x) possesses a

series expansion

A'=epT. —' h"(r)IXI 'ds+xo 'h'( —*o)

~&0: A=~pT;1 h" (y)y-Vy
which converges for all x in the range E(x& 00.

Note that the series (15) must be convergent, not
merely asymptotic. Condition H2 implies that (12)
convel ges fol

&=0. A=A'=pT, 'h" (0)
iM) & (t/Jf)»,

xQ xo

a There are many alternative ways of expressing A. and A' for a &0 and D
for n =0; the ones shown here are those we have found most convenient in
practice.

b P denotes the Cauchy principal value of the integral.

thus insuring the analyticity of H(3II,T) at M=O,
T&T'

The function fi(t) in (12) is just the inverse of the
"high-temperature" (T&T,) zero-6eld susceptibility,
and by (14) supplies the values of y and F given in
Table II. The inverse susceptibility is given in
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integrate term by term, to obtain

x '= (BH/BM) g= M™[bh(x)—P 'xh'(x)), (17)

and upon letting x approach —x. one obtains y' and I"
as shown in Table II. The convexity condition CM3 is
equivalent to requiring that X, ' be non-negative; thus,

H3. For —x.(x(»0, h(x) satisies

a(x)=Cx' +-' Q e 'g„x' @'"
n=j

with the series convergent for 8&x& ~. Consequently,
we have

Pbh(x) &xh'(x). (ig), A (M T)—A (T)+CP—»+ 1 P ~—1 P » 2—P»M— 2n(2, 7)
1

The second convexity condition, CM4, poses a more
dificult problem which we shaH discuss in Sec. III D.

C. The Free Energy

We restrict our discussion to a (Tables I and II) in
the 1ange

(19)

where the upper limit serves to insure the continuity
of 8 (condition CM1). For convenience the cases a) 0
and 0,=0 are considered separately.

(a) For n&0 assume A has the form

A(M, T) =A.(T)+ [M['+'a(&[M] »~) (2-0)

in the one-phase region, with A, (T) an analytic function
of the temperature, and a(x) satisfying the differential
equation [compare Eqs. (4) and (9)j:

—xa'(x)+(2 —n)a(x) =Ph(x). (21)

The homogeneous equation (h= 0) has the general solu-
tion of a constant times

~
x~' ». Thus, the solution to

(21) which is analytic near x=0 is unique. It may be
written in the form

with the series converging for M satisfying (16). The
analyticity of A (M, T) in the one-phase region is thus
assured. The constant C must be chosen so that (25) and
(22) are identicaL It is the coeKcient of the dominant
term in a(x) for large x:

g (y)y-'dy

In the two-phase region, A is a function of T alone,
equal to its value on the phase boundary:

A (M, T) =A.(T)+a( x.) (—t/—x,)' . (29)

(b) For n=O, in which case P(8+1)=2, assume A
has the form

A (M T) =A (T)+ i
M ['+'a ( i [

" )
+h,Ph~M~ (30)

in the one-phase region, with e, satisfying a diGerential
equation analogous to (21):

—xa.'(x)+2a, (x) =P[h(x) —h2x j.
The general solution to (31),

a(*)=p
2—n 1—0.

gm )
(22)

a, (x) =p ', h.+h&x+Fx' —x' gs(y)y '—&y, (32)

where we have used the series expansion convergent
near x=O,

h(x)=g h;x~
jM

in which Ii is an undetermined constant, is evidently an
analytic function for —x,&x& ~. A series expansion

(23) convergent for x&E,

and fol k an lntegel, gq ls de6ned by
a, (x) =Phmx' lnx+PGx'+-', g e 'g„x' 's", (33)

n=l

may be obtained from a second solution to (31):
24gg(x) = Q h;x'.

j=k 00

2 2 2 —3a.(x) p h,* inx+Gx+* h(y)y Zy, (34)
In fact, (22) deines a function analytic for all x in the
interval —x,&x& ~ [analyticity near x=O is easily
checked by inserting the power-series expansion (24) valid for x&0, with G another undetermined constant.
for g2 and integrating term by term). Another solution From (30) and (33) we obtain the series [convergent
to (21), valid for x&0, is for M satisfying (16)j:

a(x) =Cx'- +Pxm-» h(y)y~'dy. (25) A (M, T) =A, (T)+phmP lnt+pGP

For x)R we may substitute (15) in the integrand and
+-' P e-'~ P 's"M'" (35)-
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It is clear from (35) that G is not uniquely deter-
mined, since P is analytic and A, (T) has not been
speci6ed. However, Ii and 6 are related by

D. Positivity of the Heat Capacity C~

After discussing the free energy in part C we are now
in a position to examine the second convexity condition
CM4. Direct computation shows that 5 as a function
of T is continuous across the phase boundary and that

C~——T(BS/8 T)~

decreases discontinuously by an amount

(T/T, ')Ph'( x.) ( t) —.x.-'—-

(38)

as the temperature increases. [One can compute (39)
using (20), (29), (21), and the fact that h( —x.) =0, or
the analogous equations for n=0. A more rapid pro-
cedure is to employ the analog of Eq. (56) of Ref. 17 for
magnetic systems. g As h'( —x,) is non-negative by (18),
(39) is positive; that is, the heat capacity is always less
on the one-phase (upper) side of the phase boundary
than on the two-phase side. Thus to check CM4 it is
sufficient (and necessary) to show that C~ is non-
negative in the one-phase region near the critical point.

Given H(M, T), C~ is only determined within an
additive, analytic function of the temperature

C,(T)= T(8'A, (T)/BT'—)w, (40)

which we can always adjust to make C~ positive unless
the second temperature derivative of A. (T) A(M,T)—
diverges to minus inhnity. It is this "catastrophe"
which we must avoid. Again the cases 0.&0 and 0.=0
should be considered separately.

(a) For a&0, the expression (for the one-phase
region)

C (M, T)=C,(T)—(T/T, ')iMi u"(riMi "&) (41)

clearly indicates a catastrophe as M approaches zero
unless for all x in the range —x,&x& 00

u" (x)(0. (42)

The necessary and sufficient condition (42) is hard to
translate into any simple condition on h(x). A condition
we have found useful in constructing functions is the
following:

if (32) and (34) represent the same function. [Equation
(36) comes from replacing h(y) by hi+hmy+g2(y) in (34)
and comparing the result with (32) in the limit x-+ 0.]

In the two-phase region A is given by

A(M, T) =A.(T)+ph2P ln( —t/x, )
+~.(—*.) (~/x. )' (3&)

h" (0)&0 (45)

and that h'(x) be bounded from above as x —+ —xo.
The proof that H4b corresponds to the condition

CM4 will be found in Appendix C. Clearly it is much
weaker than the condition H4a.

IV. EXAMPLES OF HOMOGENEOUS FUNCTIONS

Some examples of functions h(x) satisfying conditions
H1, 2, 3 of Sec. III B and H4a or H4b of Sec. IIID
are presented below. In general, conditions Hi, 3, and 4
must be checked for any particular choice of adjustable
parameters. Of course, if h(x) satisfies these conditions,
the same is true of ph(vx) with p and v positive constants
(x~ depends on i). The equation of state corresponding
to any h(x) may be found from Eq. (9) or, for fluids,
(Ai) or (A2) of Appendix A.

Table III contains values of B, F, I", T,A, T,A', and
T, for a two-dimensional square and a body-centered
cubic Ising lattice with nearest-neighbor interactions.
It is commonly assumed that the critical indices n, P,
etc. , depend only on dimensionality, whereas the coeK-
cients A, B, etc. , depend as well on the speci6c type of
lattice. Values for the coefhcients were obtained from
Fisher's tabulation" (bis notation and ours do not
coincide) with energies expressed in units of the ex-
change constant J (the interaction energy between
nearest neighbors is WJ G,epending on whether the spins
are parallel or antiparallel), temperatures in units of
J/k, heat capacity per spin in units of k, magnetization
as a fraction of its saturation value M., and magnetic
field H in units of J/M, . This amounts to replacing
J, k, and EnF with 1 in Fisher's tabulation. Values for
the bcc lattice were derived from series expansions
assuming n =a'= 0 (logarithmic heat capacity), P = 5/16,

~' M. K. Fisher, J. Math. Phys. 4, 278 (1963).

H4a. For a& 0, a condition sufficient (but not
necessary) to insure that CM4 will not be violated is

h" (x) &0 (43)
for —x,&x& ~.

That this condition sufFices is clear from the relation

(BC~/BM) r = T(8—'H/8T') ~, (44a)

which, combined with (9) and (43), implies that C~
decreases as

~
M~ increases at constant T. Any diver-

gence, therefore, will be to +~, not —~.
(b) For +=0 we have (in the one-phase region)

C~(M, T)=C.(T)
—(T/T')[' "("~M~ '")+2"'n~M~ j (44»

It is clear immediately that )'i2 ——20"(0) must be non-
negative to avoid a logarithmic divergence to —~ as

~
M~~ 0. However, this is almost all we need require:
H4b. For n =0 the necessary and sufhcient conditions

to insure CM4 are that
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Ymr, z III. Critical-point coeScients for Ising models.

Lattice: 8 I' I" T,A T,A' T,
Square 1.222 0.424 0.0115 1.122 1.122 2.27
Body-centered cubic 1.49 0.156 0.030 1.35 4.0 6.35

square lattice, provided that

b=0.699, v=3.52, d= 6.54,

f= —1.75, g = 16.2. (53)

and y=y'=5/4. There is some evidence"' that n and
n' may have small positive values and p' may be closer
to 21/16 than 5/4.

Example l. g=» 8=3, y=1, n=O

The critical indices are identical with those for the
Weiss molecular-field (or Van der Waais) model. Our
main interest is in the case where C~ has a logarithmic
divergence; i.e.. b"(0)&0. For large x, the expansion
(15) has terms of the form x 1 x ' x ' . , whicb

suggests
h(x) = 6„,(x)/g„(x), (46)

where 6' +~ and Q are polynomials of degree v+1 and
n, respectively. The proposal of Azbel', Vomnel', and
Giterman" is of this form with n= 2 (see Appendix A).
Perhaps the simplest interesting example is

h(x) = (x+b) (x+c)(x+d) ', (4'/)

which fulfills Hi —H4 with xo ——b provided

(4g)

and has a logarithmic heat-capacity singularity for c&d.
Another possible functional form" is

h(x) =x+b+c Re[i+dx'j", (49)

Example 3. )=1/3, 6=5, y=4/3, n=O

This case is of some interest since many simple fluids
and also certain ferro- (and antiferro-) magnets appear
to have values of P near —', .' "Experimental values of 3
appear" to be less than 5; on the other hand, y 13 is
observed for certain farromagnets. ' ""

Unlike the two cases previously considered, 1/P is
not an even integer and thus the phase boundary T(M)
is not analytic at M =0. The series (15) has terms of the
form x'", x'/', 1, x '", . Since the expansion of
(x+b) ~' for large x contains a term behaving as x'", it is
clear that analogs of the functions (50) and (52) will

not sufFice. An easy way out of the difhculty is to use
the real part of certain complex functions. Thus, for
example, if

V(s) =6'~~(s)/0-(s) (54)

However, values of (82~ 'M/BH2™1)r evaluated at
B=O, T&T, are in rather poor agreement with series
estimates"" for m)2 if the constants in (53) are
employed, so it is doubtful if (52) represents a reason-
able interpolation formula despite its relative simplicity.
The unpleasant divergence of second- and higher-order
derivatives of (52) at x= —x,= b' c—an be remedied

by replacing the first term by (x+b')(x+b')'", b) b,

and similarly modifying the second and third terms.
Ke have not investigated this modification numerically.

where Re stands for "real part. "Conditions Hi —H4 are
satisfied, for example, with b=O, c=0.91, d= l. is a rational function, then

h(x) =ReqL(x+ib)'"j (55)

or perhaps
b(x) = L(P„+g{x)/Q„(x)]'" (5o)

Examp1e 2. )=1/8, 8=15, y=V/4, n=O

These indices are appropriate for a two-dimensional
Ising model. ' Equation (15) yields for large x an expan-
sion with terms x'", x'", x5", x, x'", which suggests,
in analogy with (46), an expression of the form

or a sum of similar functions, has the required form for
large x. A particular example is

h(x) =Re/(x+ib)'"+c(x+id)" +fj. (56)

For the values b=c=d=1 and f=1.59 this function
satisfies Hi.—H4 with xo ——1 and yields a logarithmic
divergence in the heat capacity.

(the form proposed by Helfand") among many possi-
bilities. The quantity D (Table II) is easily evaluated
for the function

h(x) =cb(x+b')'"+db'{x+b')'"
+fb'(x+b4) "4+gb4(x+b4), (52)

which satisfies conditions Hi —4 and yields the values
for A, A', E, I', P (also D=O) given in Table III for the

"D.S. Gaunt, M. K. Fisher, M. F. Sykes, and J. %. Kssam,
Phys. Rev. Letters 13, 713 (1964).

2' G. A. Baker, Jr., and D. S.Gaunt, Phys. Rev. 1SS, 545 (1967).
p R. B. GriSths, Phys. Rev. Letters 16, 787 (1966).

Example 4. y=S/16, S=S, q=S/4, n= 1/8

The values for P and y are based on series expansions
for three-dimensional Ising models, ' and the value of 8
is very close to the series estimate. "The expansion (15)
has terms proport'onal to x'", x~'8, 1, x 5'8, etc., so a
simple expression such as (x+b)'" cannot be used.

~ C. Domb (private communication).
3 P. Belier and G. Benedek, Phys. Rev. Letters 14, 71 (1965);

8, 428 (1962).
~~ J.S.Kouvel and M. E. Fisher, Phys. Rev. 136, A1626 ('1964);

C. D. Graham, Jr., J. Appl. Phys. 36, 1135 (1965).
~ S. Arajs, J. Appl. Phys. 36, 1136 (1965);J. E. Noakes, N. E.

Tornberg, and A. Arrott, ibid. 37, 1264 (1966); L. Passell, K.
Blinowski, T. Brun, and P. Nielsen, Phys. Rev. 139,A1866 (1965).
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Consider the expression

Z (x+c.)',

General Values of $

The above examples indicate a method which can in
(57) principle be used to generate k(x) with the required

analytic properties whenever

c„=exp2xip/5 (58) 2p=m/q (63)

the ffve fffth roots of one. If r is 5/4 or 5/8 or —5/8, etc.,
(57) has an expansion for large x of the form (15) with,
however, only every eighth p„different from zero. Kith
q(s) given in (54),

is a rational fraction, m and j integers.
If m is odd, define

~2xi p/m
Sl'

The expansion for large x of

(64)

h(x) = P qL(c x+e,) 6/6] (59)

(65)
satisfies condition H2.

We have not actually evaluated k(x) for q a rational
function, but have considered a polynomial

q (s) =0.942z'+0.385z+0.430

+0.019z-i+0.009s-'+0.009s-'. (60)

The coefficients (setting the last two or three equal to
zero would make no essential difference) together with
the choice c=1.25 in (59) are chosen to yield the values
of 8, F, and F' for the bcc lattice given in Table III, and
so that k(x) satisfies conditions H1, H3, and H4a. The
values 0.40 and 1.14 for T,A. and T,A', respectively,
were obtained by numerical integration and are sub-
stantially less than those given in Table III. Diferent
functional forms or perhaps different constants in (60)
could no doubt reduce this discrepancy. It may be
doubted whether the results would be significant, since
values in Table III were computed assuming e=n'=0
(logarithmic heat capacity), not -', .

Example 5. Ii=5/16, 5=26/5l y=21/16, a=1/16

The indices are close to the series estimates for three-
dimensional Ising models and di6er but little from those
in Example 4. Ke shall show that no additional dBB-
culties arise when b is not an odd integer as classical
theory requires. The expansion (15) contains terms
proportional to x""' x""' x'"6 x "" etc with e po-
nents larger by ~~ than those in Example 4. Kith

q(s) = s'"'t 6'.+6(z)/Z-(s) j, (61)

Eq. (59) yields h(x) satisfying H2. We have for sim-
plicity examined

q(s) 0 386s21/16+0 386sll/16+0 370sl/16

+0.008s '"'+0.004s '""+0.004z ""' (62)

(setting the last t.wo or three coefficients equal to zero
would make little difference) which with c= 2.50 yields
8, F, and F' for the bcc lattice as given in Table III.
Values of T,A. and T,A.', 0.88 and 1.19, respectively, still
do not coincide with those in Table III, though there is
a small (probably accidental) improvement over
Example 4.

contains terms of the form x&, x™,x~'~, etc. ; and
provided that

i}=P(b+1—2k) (66)

for some integer k& 1, the expansion is of the form (15).
The function k(x) may be expressed as a sum of terms
of the form (65) for different values of l} given by (66),
and of course c may depend on g.

When m is even, c /6 is —1 and (65) in general has a
singularity at x=1/c. To get around this difficulty,
replace (64) by

e„=expf2xi (p —-', )/m j (67)

and use the modiffed definition in (65). This procedure
was followed in Example 3.

Apart from its inability to handle irrational P, the
method here outlined proves cumbersome when m is
large. Even for p=i'6 (m=5) the functions are incon-
venient without an electronic computer. In actual appli-
cations it may prove sensible to replace analyticity by
a weaker condition —perhaps continuity of a sufficient
number of derivatives of the thermodynamic functions.
Of course, there may very well be better ways of
generating analytic functions than that suggested above.
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APPENDIX A. RELATION BETWEEN DIFFERENT
PROPOSALS FOR THE EQUATION OF STATE

1. Isomorphisms between "Magnetic" and "Fluid"
Equations of State

There are two simple, but nonequivalent, ways of
going from (9) to an equation of state for a fiuid. The
first is to replace M by hp= p—p„the deviation of
density from its critical value, and H by }6—}6,(T), where
}6,(T) is the value of the chemical potential for p= p,.
One thus obtains

} (/ T)-} (&)=A~IA/16 'k(1IA~I '") (A1)
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with t defined in (7). In addition, Cv for the magnetic
system is replaced by pC„where C, is the specific heat
at constant volume (heat capacity per mole if p is
measured in moles per unit volume). Equation (A1)
predicts, among other things, a coexistence curve sym-
metric about p= p„which is only approximately true
for real Auids. This isomorphism is the one commonly
used in statistical calculations involving "lattice gases. "

The second isomorphism is to replace M by Av= v —v„
the deviation of specific volume from its critical value,
and H by p, (T) p, wh—ere p, (T) is the pressure along
the critical isochore (the vapor pressure for T& T,).The
equation of state becomes

for x&0. Their discussion of the transition from T& T,
to T& T, for positive M is incomplete, and their con-
clusion that on the critical isotherm the dependence of
H on M cannot be described by a power law is, we

believe, erroneous (see Sec. IV, Example 5).

4. The Scheme of Patashinskii and Pokrovskii

If one difI'erentiates Patashinskii and Pokrovskii's"
equation (3.1) with respect to H [see also their Eq.
(3.4)], the result, brought into conformity with our
notation through replacing r by t, ea by P(8+ 1), aP by
2P, and M by MV, is

p. (T)—p=ae~ae~'-'h(&~ac~-"&) (A2)
M= 2kT,H—i-e&' '&f'(H'-t »')- (A11)

and C~ in the magnetic system is replaced by C,. The
symmetry of the coexistence curve about v. predicted
by (A2) is in somewhat worse agreement with experi-
ment than the aforementioned symmetry about p, .

The analyticity requirement C6 of Sec. II requires
u, (T) to be an analytic function of T including T= T,
if (A1) is adopted, and the same for p, (T) if (A2) is
adopted.

2. The Scheme of Widom

Widom's' fundamental equation (6) has the form

Introducing the variables

u= Mt-&, v =Ht —I"

permits us to rewrite (A11) as

(A12)

e= uG(T»u') (A14)

But this is just the functional form of Domb and
Hunter, (A9) above.

u = 2k T,ef—'(e'), (A13)

which may, at least in principle, be solved for v in the
form

(c,T)—.(T) =~u(x+y)C'(x, y), (A3)

where p, is the same as Widom's M, and

x= T—T.= T.$,

y=cl
(A4)

(A5)

where
u(p T) u. (T) ~ul na—l' 'g(x/y), (A7)

g(x/y)=g[(T. /C)t~hp~ "&]=(1+x/y)C(x/y, i) (AS)

differs from h in (Ai) only by a scaling factor and
constant of proportionality.

3. The Scheme of Domb and Hunter

For small values of field and temperatures near T„the
quantity 7- used by these authors" is proportional to H.
To conform with our notation, x in their Eq. (12)
should be replaced by M, (1—t) by t/T, (assuming
T T,), and 6 by 2Pb, with the result

H~MÃt' '~G(T»M't »)-
=M

~

M
~

~'h(~~ M ~-"~), (A9)
provided

h(x) =x«'—~&G(T '&x») (A10)

The constant C need not concern us. Since by Widom's
Eq. (7),

4 (x,y) = y '4 (x/y, 1), (A6)

using our notation for critical indices we may write
[note that y is P(b —1)]:

wit. h Ae=e —e, and the a, (our notation) adjustable
constants. [The result (A15) is obtained by adding
Eq. (6) of Ref. 13b (with C=E=O) to —BF/Be from
Eq. (4) of Ref. 13a, discarding the undefined F...and
X(t,e) in the latter. ] It is easily verified that (A15) has
the form

p.(T)—p= Ae'h(the ')

corresponding to (A2).

(A16)

6. The Scheme of Kadano8

Upon replacing e by t, h by H, and (s—|P)v by Pb, one
obtains Kadanoff's'4 Eq. (18) in the form

f(t,H) =P .F(6"/H), -r) 0
= ~~~'-. 'F'()~) «»'/H), «0,

S. The Scheme of Azbel', Voronel', and Giterman

These authors" are concerned with the case P=2,
b=3, n=0 with a logarithmic singularity in C„(compare
Sec. IV, Example 1). Giterman"~ has also considered
the lowest-order corrections due to the lack of symmetry
of the coexistence curve in the v, T plane. If these cor-
rections are omitted [C=X=0 in Eq. (6) of Ref. 13b]
one obtains

p p.(T) = a.th—e a~A—e'—
u~t'Ae[t+ (a4+a~) he']

(A15)
(t+ a4Ae')'+ aghe4
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where f is the singular part of the free energy per atom
(that is, the part yielding the dominant singularities in
the thermodynamic functions near the critical point),
and F and F' are two different functions (the prime does
not denote a derivative). An expression similar to (A11)
is obtained after some manipulation if one takes the
partial derivative of (A17) with respect to H.

Equation (A17) apparently permits different values
for the critical indices for T&T, and T&T„but this
liberty is, in fact, ruled out on grounds of thermo-
dynamic consistency. For T& T, define C by (ea —ec)pc= p(e, T)de

sponding to the physical equilibrium state be dehned by

p=p for e&eg, e&eg
=pg=pg fol eg(e(eg

(for T)T„pcoincides with p), where the subscripts
refer to the corresponding points in Fig. 4. The points
C and IIon the p isotherm correspond to the same pres
sure and are also chosen so that

F(x)=x (' ~&'S'C (x"»') (A18)

and for T& T, an analogous C' using P, o.', etc. Then
(A17) becomes

is satished, the "equal area rule. "
An equivalent procedure is to 6nd a function J

satisfying

f(~,a) =a(' .»»e (t-a '&»), -&,)0
—If(2—'&/(t&(&&'I(I (( $( ~ &&((&&&') —$(0 (A19)

Continuity of the free energy along the critical isotherm
1=0 implies that

p = —(BA/Be) r.

Integration of (81) yields

A (e,T) =A, (T)+g/e RT ln(e ——b),

(84)

eb=(eb)' (A21)

as well. The argument for equality assumes, of course,
that both 4'(x) and its 6rst derivative do not vanish at
@=0.

APPENDIX 3. MAXWELL CONSYRUCTION AND
THE VAN DER WAALS EQUATION OF STATE

The well-known Van der Waals equation of state

(p+g/e') (e b) =RT— (81)

possesses regions where (Bp/Be)r is positive provided T
is less than T,=8g/(27Rb), as illustrated schematically
in Fig. 4. MaxweH" proposed that the pressure p corre-

F
B
C

Pro. 4. Schematic drawing of a Van der Waals isotherm below
the critical temperature together with different possibilities for
the equilibrium isotherm.

~ The Scierltigc Papers of Juries Clerk &angell (Dover Publi-
cations, Inc. , New York, 1890), Vol. II, p. 425.

(A20)

If in addition one supposes the entropy, proportional
to Bf/Bt,—is continuous at 1=0 (otherwise one would
have a 6rst-order phase transition), then (A19) yields

with A, (T) an undetermined function of temperature.
The double tangent construction (compare Fig. 2)
applied to A as a function of v at Axed T yields the
convex-downwards function A(e, T) from which p in

(82) may be obtained via Eq. (3).Of course, A and 2
coincide for T& T,.

Both procedures make use of a portion of the original

p isotherm —the segment CDEFH in Fig. 4—which is
later discarded, at least when discussing equilibrium
properties. The first employs it explicitly in (83), the
second implicitly in order to obtain (85) from (84).

In contrast, our "nonclassical" hypotheses in Sec.
II A involve only the equilibrium thermodynamic
variables, and it is interesting to ask whether they also
provide a basis for Maxwell's rule. The answer is "yes"
provided one invokes the full force of the analyticity
requirement C6.

Thus, consider the alternate construction shown by
the dotted line in Fig. 4 and corresponding to a pressure

p*=p for e(es, e&eg

=ps=pg fol es(e(eg

(for T&T„p*coincides with p), where we have chosen
points 8 and 6 with the same pressure, necessarily lying
between pn and p&, but not satisfying (83). We now
construct the corresponding 2* in a manner analogous
to Eq. (6), that is, by direct integration of p*(e,T) at
constant temperature. The result may be written as

A*(e,T) =A (e,T)for e&eg(T)
=J(e,T)+Q(T) for e&e»(T) (87)

if for e~&v&vG, A~ is obtained by linear interpolation
between its values at the end points of this interval.
The quantity Q is just the area of the region in Fig. 4
bounded by the horizontal lines BG and CH, and the
curved lines BC and GH; positive for ps)pg and
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negative for pal&pc. For T)T„weshall assume A*
and 2 are identical.

By choosing ~& and ~z as smooth functions of the
temperature it is easy to satisfy conditions Ci—C4 of
Sec. II. The analyticity conditions C5 and C6 are more
stringent, and the latter is uniquely satisfied by the
Maxwell construction (B3). This may be seen as
follows. In order that A*(v, T) be an analytic function
of temperature in the one-phase region, it is clearly
necessary that A, (T) in (B5) be analytic. Now consider
some v~ greater than b and less than vq. For T)T„
A~(vi, T) and A(vi, T) coincide. By hypothesis C6 we

may continue A*(n&, T) analytically to values of T&T„
provided we remain in the one phase region. But the
unique analytic continuation of A* is just A, and hence
Q(T) in (B7) must vanish. That is, 8 coincides with C
and G with H.

Expressed in different terms, any attempt to place
the horizontal part of the isotherm at a position where
(B3) is not satisfied leads inevitably to some sort of
phase transition in the one-phase region. This transition
may be made very "weak" by the correct choice of
p&(T). In fact one may have a function A" infinitely
differentiable (though not analytic) in the one-phase
region, and still have isotherms which do not satisfy
Maxwell's prescription in the two-phase region. Note,
however, that apart from requirements of analyticity
and provided one only considers functions for equilib-
rium states, there is no thermodynamic inconsistency in
using a rule other than Maxwell's for modifying the
Van der Waals equation of state. Note added As proof
The nonuniqueness of Maxwell's procedure has also
been pointed out by G. D. Kahl LPhys. Rev. 155,
78 (1967)].Similar remarks apply to the generalization
of Maxwell's procedure by Landau and Lifschitz, ~
which has been used in some recent discussions of the
critical point. "

APPENDIX C. THE SECOND CONVEXITY
CONDITION CM4 AND h(x) FOR a=0

Equation (44) [note that C, (T) is an analytic but
otherwise arbitrary function] shows that a necessary

'4 L. D. Landau and E. M. Lifschitz, Statistical Physics
(Pergamon Press, Ltd. , London, 1958), pp. 264 6."L.Tisza and C. E. Chase, Phys. Rev. Letters 15, 4 (1965);
L. Mistura and D. Sette, ibid. 16, 268 (1965); R. E. Barieau,
J. Chem. Phys. 45, 3175 (1966).

where E is some positive constant independent of M
and t.

First consider the interval

—x.+.&x= ~~ a~-»«2R, (C2)

where e is a positive constant, and (33) is assumed con-
vergent for R& x& ~. From the analyticity of a, (x) for
—x,&x& ~, it follows that u,"(x) is bounded on the
interval (C2), and h~) 0 suflicies to guarantee (Ci) for
the corresponding region in the M, T plane.

For the interval

2R&x& ~, (C3)

the left side of (C1) may, with the help of (33), be
expressed as

pL2h~ int+3h2+2G]

with

+P n '(1—Pn)(1 —2Pn)g y", (C4)
n=1

y= M'r's& (2R)-».

Since the series in (35), of the form

(Cs)

2t2 Q n—'q.y"— (C6)

converges for y&R '& Lequivalent to (16)], it is easily
shown that the series in (C4) is bounded for y satisfying
(C5). Details are left to the reader. Once again h,)0
sufficies to guarantee (Ci).

The problem of what happens as x approaches —xo
still remains. By hypothesis H1 of Sec. III B, h(x) goes
continuously to zero. Equation (32) shows that a, (x)
approaches a finite constant. These facts together with
(31) imply that a,'(x) also approaches a finite constant.
Upon differentiating (31) once with respect to x we
conclude that: a."(x) is bounded from above as x~ —x,
if and only if the same is true for h'(x). And this is
precisely the second condition in H4b.

and sufhcient condition for a positive C~ in the one-
phase region is

(Ci)


