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It is shown that a certain set of phenomenological statements about fluctuations near the ) line yields
a consistent picture of thermodynamic derivatives in the vicinity of this line. On the basis of this phenomeno-
logical description, we are able to predict properties near the X line and compare these with experiments.

I. IN'TRODUCTION

'HE singular behavior of the thermodynamic func-
tions in the vicinity of the X-transition line of

liquid helium-4 has been observed frequently. Analysis
of the experimental data usually employs the phenome-
nological relations of Pippard' ' and of Buckingham and
Fairbanks' (PBF relations), although the validity of
these relations has sometimes been questioned. 4

In this paper we present a certain set of phenomeno-
logical statements about Quctuations near the 'A line.
These statements are based on the results of a particular
microscopic calculation. However, we shall bypass the
microscopic theory, using its results as foundation for
a phenomenological theory. Our results are in fact con-
sistent with the PBF relations and we are able to
understand the origin of the diKculties referred to
above.

Section II deals with the basic approach and discus-
sion of thermodynamic properties in terms of Quctua-
tions. Section III is devoted to the assumptions. In
Section IV we show that these assumptions are consis-
tent with (and in fact require) the PBF relations. Section
V treats the experimental data on a qualitative basis and
demonstrates the experimental consistency of the PBF
relations. Section VI contains a quantitative comparison
of the theory with experiments. The comparison has
been sulnmarized in Tables I and II.

II. FORMULATIO5'

The grand partition function Z can, of course, be used
to calculate all the relevant thermodynamic derivatives.
Alternatively, we may express the most useful second
derivatives in terms of Quctuations in the grand canoni-
cal ensemble. In any dynamical approximation scheme,
it is preferable to investigate the Quctuations since
direct difterentiation of an approximate lnZ is both
diKcult and very sensitive to the approximation
method. This is particularly true when the thermo-
dynamic derivatives are singular. It is considerably

f Supported in part by the U. S. Atomic Energy Commission
under Contract No. RLO-13888.

A. B. Pippard, Phil. Mag. 1, 473 (1956).
'A. B. Pippard, The E/ements of C/assica/ Thermodynamics

(Cambridge University Press, New York, 1957), Chap. IX.
3 M. J. Buckingham and W. M. Fairbank, in Progressin I.om

Temperatlre Physics, edited by J. C. Gorter (North-Holland
Publishing Company, Amsterdam, 1961), Vol. 3, p. 80.

4 O. V. Lounasmaa, Phys. Rev. 130, 847 (1963).

easier to isolate the source of the singularities and to
construct a microscopic theory by investigating the
Quctuations directly.

Three independent Quctuations of interest are
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where (A) denotes the grand canonical average
Z ' Tre t'&~ &N&A, with chemical potential p and in-
verse temperature P=1/kT.

With the notation above, we have the isothermal
compressibility

1 BV kP'
Ez = —— = TVAN'2,

VBPp

the bulk expansion coefhcient at constant pressure

and. the speci6c heat at constant volume
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Cy= T
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where V is the total volume and W is the total enthalpy.
The necessary Quctuations can all be obtained by a

microscopic calculation of the thermodynamic Green's
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function

L(12; 1'2')=——
i (T{f(1)f(2)P(2')Pt(1')))
—(T8 (1)4'(1')))(T8(2)4'(2')))1 (g)

where the indices refer to space-time variables, T is the
Wick time-ordering symbol, and P is the usual Geld

operator in the Heisenberg representation. We will not
attempt to discuss the microscopic calculation here. The
comparison with experimental data and the conclusions
described below are based on several speciIic statements
about the Quctuations which result from the micro-
scopic calculation of I.. I'or the purpose of this paper,
we treat these statements as phenomenological assump-
tions, so that only thermodynamic manipulations are
used to describe the results.

nL T'HE ASSUMPTIONS

Ke will suppose that the X transition is characterized
by the following conditions on the partition function Z:

{a) The G.rst-order derivatives of lnZ are finite and
continuous in the p, p plane.

(b) The second-order derivatives of lnZ have singu-
larities along a line in the P, p plane (the X line), the
position of which is determined by an equation of the
form

A(P,p) =0. (9)

A position on this line will be denoted by the subscript
X Pi.e., Pi, and pi, are values satisfying Eq. (9)j. These
singularities appear in the Quctuations and are assumed
to have the following nature:

6N' a(P) b(P)
+ logiT —T), i+0([T—T), i). (13)S „,y E lV

We also assume the additional asymptotic forms

AEE A%2
=r

asym

ANEg(P)
+ +0(i T—T), i) (14)

asym

i T —Tqi ' as T~ Tq. Their results also follow directly
from (a), (b), and (b').

However, we wish to establish (b') by making a some-
what more detailed speci6cation. Actually, in a micro-
scopic theory, the Quctuation singularities are deter-
mined by the correlation function L. Any form of
L(p,p) which leads to a singular behavior such as that
given by Eqs. (10) and (11)will also provide the speciGc
form of Eq. (9). The phenomenological approach we
plan to adopt here does not require a specific form for
Eq. (9), but we should note that this form, as well
as the particular singular behavior of the Quctua-
tions, must emerge as integral properties of the function
L(p,p) translated into thermodynamic language. With
this knowledge, one may then generate an equation such
as (12) for the slope of the ) line.

Ke may achieve a more complete phenomenological
specification of the ) transition by making, instead of
(b'), the following assumptions in addition to (a) and
(b):

(c) AN'/N has, in the limit N, V-+ ~ with N/V
6nite, an asymptotic isobaric expansion of the form

/AN' ANE AE')
lim lim i, , i= ~ (1o)

e,grise&„ri, N.v~ ~ 4 N
N /V ~ const

~2 AE2—f2

asym

~E,'(P)
+ +0(iT—Ti, i). (15)

I~y E

dp), BA 8A rg —pg=—1Un ——
dP). ' ' ~P, &u p P).

(12)

are satisfied. Here, rq represents some 6nite function of
Pq and pi. (a), (b), and (b') form a set of phenomeno-
logical assumptions which can be shown to be essentially
equivalent to those of Pippard' ' and of Buckingham
and Fairbank. ' Buckingham and Fairbank' derive a set
of relations between the thermodynamic derivatives
(the PBF relations Lsee Eqs. (19)—(21)j by assuming
{a) together with a finite slope for the X line in the P, T
pl.ane and the condition C~~ ~ less rapidly than

Before specifying the precise nature of these singu-
larities, we may consider several possible relations
among them in order to make contact with previous
%'ork.

(b') Suppose that the conditions

5E2 AXE AE2
= ri, = ri, ' — as P,p ~ Pi,pi (11)

E E E

These are consistent with and, in fact, enforce the
equality (11).It can also be seen that Eq. (12) follows
from Eqs. (13)—(15) if we characterize the X line by the
familiar expression A=[AN'(P, p)/V] '-+ 0 and de-
mand that the quantities r, a/N, b/N, ONE~/N and
AEs'/N be Gnite along the ), line. In the following
analysis, r appears only in the slope of the X line in the
E'-T plane and can be determined experimentally. AXEg
and DE~2 represent remainders of the total Quctuations
ESCA and AE2 after terms proportional to EE2 are sub-
tracted. Thus we have in effect the four constants a/Ã,
b/N, ANEs/N, and AEs'/N to be evaluated on the X

line.
(d) We might expect these four constants to be dif-

ferent on the two sides of the X line. However, it is a con-
sequence of the microscopic theory, which vre take here
as a special further assumption, that only the constant
a/N has different values on the two sides (we will call
the two values a'/N and a"/N) Aterm containin. g the
discontinuous parameter a(P) does appear in both (14)
and (15).However, it is present only in the term involv-
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ing AN'/N I „,„,. By writing (14) and (15) in the above
form, we have only one discontinuous constant. It
should be noted that Eq. (13) is of the logarithmic form
used by Buckingham and Fairbank. ' Thus, we expect
both the familiar PBF relations and the logarithmic
specific-heat singularity to remain unchanged. However,
the continuity conditions on the constants will have
additional important consequences.

IV. IBF A5D EHRENFEST-LIKE RELATIONS

from and on opposite sides of the X line with (T'—Tg/T"

=(T"—T")/T&, «1. We have immediately

AK„=K (T') Kr—(T")= (kP), '/N) (a' a"—)
Anp=np(T') np—(T")= (kPg'/N)n(a' a—")
ACp= Cp(T') Cp—(T")= (kPg'/N) TgVga'(a' a"—)

and therefore
aCg

o = lim = lim — . (22)
I &I rr—&) I o g+& [&r.rr—&7 I

The assumption (a), which implies the continuity of

(N) and (E) on the X line, excludes the possibility of
a first-order transition of the Ehrenfest type. This fur-
ther implies continuity of the entropy S, the Gibb s
free energy C=p(N), and the enthalpy W=C+TS.
Therefore, all coefficients of the fluctuations in the ex-
pressions (4)—(7) are finite and continuous across the
A. line.

The slope of the X line in the P, T plane, o(T~)
= dP~/dT~, can be calculated from the assumption (c).
Since

V. QUALITATIVE ANALYSIS OF
EXPERIME5TAL DATA

We may ask how small
I
T T&, I

/T—" must be in order
to compare the predictions of the PBF relations with
experiment. Since these PBF relations have been de-
rived from the asymptotic expansions (13)—(15), they
should be valid whenever the linear variations 0(T T")—
in (13)—(15) are negligible compared with the first two
terms. However, there has been some question as to the
validity of both the asymptotic expansions and the PBF
relations. In particular, we wish to understand the fol-
lowing three puzzling aspects of the experimental
observations.

(1) In Lounasrnaa's measurements' of

cr= lim
A~0 gT

(BA BA Bp BA Bp= —lim
I

+
kl9T o BplpBT p leap T~P T

Pv='P/'TI v=np/Kr

and Kr in the vicinity of a point on the X line (P~=13.04
atm, T~——2.023'K), no sign of a logarithmic behavior in
Ez close to T),was observed. Furthermol. e, a logarithmic
fit for Pv in the temperature range 10 ' K&

I
T T&,I—

&10—"K was obtained, with a value Pv ———18 atm
'K ' at IT T&, I=10 ' K. L—ounasmaa's empirical
formulas read

we have

(16)= -(1/T"V')P "—~"j,
where we have used the thermodynamic relations

5 BP
and

37 Bp z V Kr=0.0079—1.5I T T'I atm ' —T) T"
=0.0089+8.4I T—T, I

atm-', T&T, (23,)

3 5+3 4 log I
T—T'I «m'K ', » T' (23b)

= —6.0+2.3 logI T T" I
atm'K ' —T&T"no= —(kP"'/(N)~)ANEa(P)„"), ) (17)

It is also useful to express the functions ANEs(P&„p&, )
and &Eg'(P', p') in terms of the familiar quantities and
np=(1/V~)dV~/dT~ and Cp=T" dS"/dT~. Thus, we
have

alld

Co 2noWg npTyVgo——+kP'AE—s (Pg,pg). (18)

Substituting Eqs. (13)—(18) into the expressions (4)—(7),
ere obtain the PBF relations Pv(Td=', (24)

in this temperature range.
These results certainly seem to contradict the asymp-

totic expansion for K' given by Eqs. (4) and (13) as well
as the PBF relation (21). In fact, Eq. (21) implies

Cp='VP'"~p+Co,

Cv(T) )= ~V~T~n p+Cp, —

np='Kr+no

(19)

(2o)

and the value of 0., by an independent measurement, is
known to be about —76 atm'K ' at P=P), ——13.04 atm.

(2) Using the measured value" of Cp at the point
T—T),=0.006 K along the vapor-pressure curve6 one

Khrenfest-like relations can be derived from the above
PBF relations, together with our special assumption (d)
concerning the constants. Consider the quantities E~,
ep and Cp at t%'o temperatures T' and T" equidistant

' We neglect the diBerence between the thermodynamic deriva-
tives at constant pressure and the thermodynamic derivatives
along the saturated vapor-pressure line.

At this point there is a density minimum. Hence, a„=0,
Cp=Cv. See, for example, E. C. Kerr and R. D. Taylor, Ann.
Phys. (¹Y.) 26, 292 {1964).
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pQ2 p+z & Va~) ~I'
(25)

vrith mass density p and

pug =0 Vi,Ti/(Co onol D—'&,), (26)

Gnds Cz= Ci = 1], J/g 'K. However, using the measured

values of Co, 0;0, and 0 (see Sec. VI), we find from the
PBF relation (20) the quantity'

Cy(Ti.)=186 J/g 'K.

Without an essential singularity, this sharp rise in Ci (T)
(which is always less than Ci ) is difficult to understand.

(3) On the other hand, the asymptotic behavior of

the adiabatic sound velocity I predicted by the PBP
relations is

the linear dependence becomes insigniacant, can be
understood by noting, from (27), that an accurate meas-

urement simply requires very high resolution. The in-

equality (27) is consistent with the fact that no anoma-

lous light scattering (critical opalescence) is observed in

the X transition. For example, a doubling of the density
Quctuation from its normal value requires a temperature
such that T—T), j.0 " Kt

On the other hand, the logarithmic behavior of CJ
and 0.~ becomes apparent experimentally because of the
inequalities (28) and (29). That is, the large constant
parts cancel each other, leaving essentially only the
logarithmic term. Ke @rill investigate the details of this
cancelation in Sec. VI.

Furthermore the inequality (27) implies that b,X' in
the denominator of C~ LEq. (7)) and

and the same values for Co, ao, and 0 used in (2) above,
when inserted. in (25) and (26), seem to be in good
agreement vrith the experimentally observed velocity. 3

Thus (1) seems contradictory, (2) seems numerically
difficult to understand, and (3) seems to be in agreement
vrith the PBF relations. %e vill see that the PBF rela-
tions are, in fact, not contradicted by the experimental
results (23). To understand. this we may note the fol-

lovring inequalities:

(f/or "(«1

has a "pseudo-asymptotic expansion" of the form

in the region

(30)

(31)

or

EASEg

r V~I"

~(air, II/iV) ~(gI,II/~)
no+

kT) kT),

or

E'hE g' —28'),N d EE~
+1 «1,

+~2@~2~2gI, II

0 (a'"/1V)-
Co+~T)Xi ~0+

kT),

Pi~2(gr, rr/iV)

7 The Fairbank and Buckingham estimate (Ref. 3) is =370 J/g
'K. The precise number is not important at this point. The pre-
dicted value C,{Tz) is clearly much larger than the 11 J/g 'I
quoted for T= T),+6-8)&10 ' 'K.

8 I. Rudnick and K. A. Shapiro, Phys, Rev. Letters 15, 386
(&96i).

'This fact was pointed out by C. K. Chase, E. Maxwell, and
W. E. Millet, Physica 2?, 1129 (1961).Their estimate of u /b is
-68

Although the exact values of these quantities are not.
necessary here (quantitative discussion is contained in
Sec. VI), we may observe that b/a' is roughly —1/60. '

The absence of the logarithmic dependence in (23a)
within the temperature range

~
T Tq

~
(10 ' K, whe—re

a))b 1 go) T Tq ( . — (32)

When this expansion is used. in Eqs. (7) and (30), both

Cr and Pi can be shown to have logarithmic dependence
for temperatures in the region given by (32). Of course,
both Ci(Tq) and Py(Ti) given by (20) and (24), re-

spectively, can be obtained if the true asymptotic be-
havior (6$') '~ 0 is used in (7) and (30). However,
the true asymptotic region is experimentally unattain-
able, for the reasons discussed above.

The asymptotic relation between the adiabatic sound

velocity and the specific heat at constant pressure given

by (25) and (26) does not depend on the inequalities

(27)—(29) for its validity. That is, we obtain (25) and

(26) from the PBF relations (19) and (21) directly by
the use of the thermodynamic formulas 1/pu'= Its= Fr
Ci /Cp and Cy= Cr TVa.p'/Er. —

The experimental estimate of Ni in (26) is obtained

by an extrapolation of the measured I curve plotted
against C~. Since Cp has an essential singularity, the
extrapolation of the experimental curve of I and the
asymptotic value of eq (when Ci -+ ~), should agree.

Thus, the observed behavior of Er, Pi, Ci, Ci, and

0.~ in the experimentally accessible tempera, ture region

can be understood from the inequahties (27)—(29), while

the sound-velocity formulas (25) and (26) are generally

correct in both the experimental region and in the true

asymptotic limit.
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VL QUANTITATIVE COMPARISON
WITH EXPERIMENT

If we use the isobaric asymptotic expansions (13)—
(15), we find from (4)—(6) the asymptotic forms

bank give
CI'= —0.65 J/g 'K,

CIII= 4.55 J/g 'K,
C2 ———3.00 J/g 'K.

(4o)

K,x,xx+K21 oglT T&I—+ 0(l T T&l) ~ (33)

ctx ——xxx' "+n2 log) T TI)—+0()T—TI )) ) (34)

C~=CI'"+C2»gl T—Tel+0(l T—TII) (35)

where the superscripts I and II refer to T&T), and
T& Tq, respectively, and

KI"'——(kpg2/IV2) T),Vt,ax "
K2= (kpI2/&2) T)V~b, (36)

~ I,II ~ +(kp 2/ZV2)T 'V oax, xx

n2 (kp——x, 2/N2)Z'IV)ob, (37)

C I II=C +trT Vzcx I 'I C =oT&V (38)

&p=2 &&7'K. ,
Pp= 0.050 atm,
pp ——0.1461 g/cm',

o.= —97.805 atm/ K,
np=1.227'K ' (39)

while the specific-heat data of Buckingham and Fair-

"O. V. Lounasmaa and L. Kannisto, in I'roceedings of the Inter-
national Conference on Lore Ternperotnre Physics, Toronto, 1P-60
(University of Toronto Press, Toronto, 1961),p. 535.

"O. V. Lounasmaa and Z. Kojo, Physica 36, 3 (1959).

The inequalities (28) an.d (29), in terms of the param-
eters defined by (37) and (38), are ~nxx "~&&~I22[

X (a' "/b( and [CI' "(«C2[a' "/b[, respectively. Our
analysis of the experimental data shows that these in-
equalities are indeed satisied and that their validity
leads to the observed logarithmic behavior of n~ and
Cp. In addition to the ordinary thermodynamic vari-
ables on the X line, we have the five parameters clp

Lrelated to A/t/Ext by Eq. (17)],C, [related to AEI22 by
Eq. (18)], a' ", and b Each .of these is a function of
pressure EI. Again, we emphasize that (33)—(35) are
supposed to be valid for any pressure P), and for any
temperature closer to the Xline than

~

T T&,
~

10 ' K-.
The equations can be used to obtain forms for C~= C&

TVotx2/Kr a—nd Pxr=nx/Kr which are also valid in
this region.

If we restrict our attention to the point where P'),

equals the vapor pressure (T&,= Tp), we may find experi-
mental values for our parameters. O.p has been measured
directly, "C~' "and C2 are known from very accurate
C~ measurements along the vapor-pressure curve. ' Cp

has not been measured directly, but can be estimated
from the slope of the family of entropy curves at differ-
ent pressures. From the data of Lounasmaa and Kojo,"
we obtain an estimate Cp=4.85 J/g K. We will use this
value, recognizing that slightly diferent choices are pos-
sible. Other necessary numerical values along the vapor
pressure curve at Tp are'

Equation (38), together with the choice for Cp described
above and the experimental values (40), yields

ax/IV=7. 95X10 '
axx/IV =8.21 X10

b/1V = —1.36X10 '.
(41)

C I,II C I,II T V (~ I,II)2/K I,II

II —C2D cx I,IIK /+ K I,IIj2
~

(45)

Therefore, we can calculate theoretical values for the

TABLE. I. Comparison of experimental and theoretical parameters
along the vapor-pressure curve.

+II
Q II

(,"~I

+~II

PII
PIII
p2I

p2II

J/g'I
J/g'K
J/g'K
J/g'I

atm/'K
atm/'K
atm/'K
atm/'K

Theoret.

—0.81
4.55

—3.18
—3.00

2.2
40X10 ~

1.7
1.6

Eq.
No.

(45)
(45)
(45)
(45)
(44)
(44)
(44)
(44)

The quantities O.I and 0.2 have been measured di-
rectly. ' In addition, measurement of the adiabatic
sound velocity' provides an experimental value for u), '
and for Cp/o if vre use the theoretical results in (25) and
(26). In Table I we compare the theoretical estimates of
these 6ve quantities with the experimentally determined
values. Ke have also included the theoretical values for
the compressibility, although no direct experimental
data for this quantity along the vapor-pressure curve
are available.

In obtaining theoretical expressions for PI and C2-,

we must use the "pseudo-asymptotic" expansion, recog-
nizing that the experimentally available temperature
region will always be such that (b/a) log

~
T—T&

~
&&1. In

this region the expansion (31), together with Eqs.
(33)—(35) and the thermodynamic identities, leads to the
following expressions:

p pxx, xx+p, x,xx logl T
+Ok((b/a)log l

T—T I)'3 (42)

C =C ' "+C ' 'I log i
T Ti-
+Ok((b/a)ioglT —T, l) ], (43)

for (a/b)iogl T—TII«»nd I
T—T&1&10 ' 'K ~he

constants are given by
a r, rr ~ r,rr/g r, rr

P I,II ~ /K I,II K ~ I,II/(K I,II)2
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parameters appearing in (42) and (43) in the case where
I'q is the vapor pressure. Although no experimental
veri6cation is possible, we have entered t,he calculated
parameters in Table II. In order to test these results,
we need direct experimental data for Er, Cv, and pI
along the vapor-pressure curve.

In order to analyze Lounasmaa's data, we should note
that the constant-volume expansions of the fluctuations
have the same form as the isobaric expansions (13)—(15).
This follows from the fact that the form of A LKq. (9)]
provided by the microscopic theory yields a constant-
volume expansion identical in form to (13). Alterna-
tively, our entire analysis, with its emphasis on specihc
assumptions about the fluctuations, could have been
translated to the V, T plane. Of course, the constants
a and b will be di6erent. Speci6cally the 6ve constants
ao, Co, u', and b are functions of Vy.

If the linear dependence of E'I is neglected (~ T—TI
~

&10-' 'K), Kqs. (36), (37), and (44) imply

Using Lounasmaa's values4 at I'I =13.05 atm Lace Kqs.
(23a) and (23b)], we find

a = —81 atm/'K,

0.0=0.67 K '.
(4/)

vrr. cover, vsrom

We have shown that a certain set of phenomenologi-
cal statements about fluctuations near the ) line yields

These should be compared with the directly measured
values"

0= —/2. 88 atm/ K, (48)

no ——0.533 'K—'.
Since no other logarithmically dependent quantities

are measured around this point, me cannot make a simi-
lar analysis of PqI ". We should emphasize that the
theoretical estimates in Tables I and II„as mell as the
results in Kq. (47), are not very precise. The numbers
given have been calculated using (39), and there is a
large cancelation in expressions like (37).

TMI.E II. Calculated values of the parameters appearing in
Cz and pz for the pseudo-asymptotic temperature range along the
vapor"pressure cul ve.

Eq
Theoret. No. Ref.

aP
~III
A2
C0/0-

EII
g II
E2

'K '
'K '
'K '

J/g atm
m'/sec'
atm '
atm I
atm '

36X10-3
0.5X10 '
20X 10-3

—4.96X10-2
5.39X104
1.2X10 '
1.3X10-'

-2.1X10-4

(37) 49X10 ', 38X10 3 a
(37) 1X10-8, 2.47X10-' a
(37) 21X10 ', 16X10 ' a
(25) —4.88X10-2 b
(26) 4.76X 10» b
(36)
(36)
(36)

a References 6 and 9.
b Reference 8.

a consistent picture of thermodynamic derivatives in
the vicinity of this line. These statements appear to
follow from a particular microscopic theory. However,
the complete theory is not necessary for an understand-
ing of the implications, and the microscopic analysis
leading to the Quctuation statements vill be discussed.
in a separate paper. We should emphasize that this
analysis does not enable us to calculate the 6ve param-
eters ul" b AXE~, and DER' explicitly. However, the
form of the fluctuations, with the appearance of the
above parameters, can be obtained by a particular ap-
proxlmatlon scheme fol thc thermodynamic GI'cell s
functions. Slncc the primary purpose of this papcl ls to
examine the implications of this scheme's fluctuation
statements, we have chosen to treat such statements as
phenomenological assumptions. Having made these as-
sumptions, wc carry out a purely thermodynamic analy-
sis which leads to the familiar PBF relations and to a set
of Ehrenfest-like relations.

The 6ve unknown parameters are determined by us-

ing appropriate experimental results. There then remain
several additional quantities, determined&by the same
parameters, which we have calculated and compared
with experiment (Table I). Direct experimental deter-
mination of quantities like Kz and Cz along the vapor-
pressure curve would make additional comparison (with
Table II) possible.


