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Generalized Unitarity for Pions*

MARCEL WELLNER

Syracuse University, Syracuse, Nm York
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Generalized (or oB-shell) unitarity is applied to the two-pion system below its inelastic threshold. The
exact relativistic result reproduces the known result of potential-scattering theory for the partial-wave
amplitude ff:e" (f~,b real) in any given isospin —angular-momentum channel: If one incoming pion is oB the
mass shell, then b, as a function of the center-of-mass energy, is correctly given by its mass-shell value.

acting pion field in the Heisenberg picture; T denotes
time-ordering.

It is convenient to define products 0 p(Xl, ,X +p,
Yl, ,Y„;Z„.,Z„)as follows:

1. STATEMENT OF GENERALIZED UNITARITY

HE concept of generalized (or off-shell) unitarity
has occasionally been mentioned in relativistic

particle theory for at least nine years, ' ' and in non-
relativistic potential theory for at least three. ~s (Little
contact has existed so far between these two formula-
tions. ) The purpose of this note is mainly to show how
a simple graphical method is conveniently applied to
obtain physical results from generalized unitarity. The
example selected (for its simplicity) is the two-pion

system, but more general applications will be evident.
As a by-product, it is shown that a result, already
known in potential scattering, is also valid relativis-

tically for pions. A relativistic, Geld-theoretic point of
view will be taken throughout.

Muraskin and Nishijima's statement of generalized

unitarity involves the ~ functions, deGned by

asap rea (Xl) ' ' ')Xa)&p(Xa+1) ' ' ')Xa+p) )

Q„p=(0 i„(Xl, ,X,Yl, ,Y„)
Xolp+ (X +l, ,X +p,Z„,Z„) (22&1). (1.2)

(The asterisk denotes complex conjugation. ) These are
used to construct the functions
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where a summation over the rls and $0 is understood.
(These indices are associated with ys and ss, respectively;
in the term with m=0, the quantity in square brackets
is to be interpreted as the unit factor. )

Generalized unitarity may now be written as follows:
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where X~, ,X~. is an arrangement of X1, ,X„in
two sets: n variables XA, ,XA and p variables
XB, ,XB.. The notation p ~ p indicates a summation
over all such arrangements for given n and P. As an
example (r=2), Eq. (1.4) reads

9 02() Xl)X2)+Kll(Xl ) X2)+gll(X2) Xl)
+9"20(X„X2,)=0, (1.5)

FIG. 1. Diagram representing the
function) (P„~,P, ,P„~,P,P„,~,P„)=Fourier transform of co„. The
momenta p„.~,p, .are on the lower mass
shell, p, ~,p, are on the upper mass
shell, and p„, ~ ~,p~ are unrestricted. If
the symbol is present, the diagram
stands for X& =Fourier transform of co&*.
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where, extending the formalism to include isospin, we

represent by X a set of variables x (space-time) and $

(isospin index); we have =cl„Bs,222=physical pion

mass, ~0) =physical vacuum, g= renormalized" inter-



GENERALIZED UNITARITY FOR PIONS

the semicolons being added to emphasize the partition.
For practical applications, we switch to momentum

space and to the graphical notation of Fig. 1. Let us
define Fourier transforms ) by

tp. (X1, ,X„)

—(2~)—4p,
! rf4P &

4p—y mr. . . d4p &
—4p„~p~

!

where P, stands for P, (four-momentum) and $, (isospin
index). We then represent X by the box diagram of
Fig. 1, where the upper (lower) vertical lines correspond
to momenta restricted to the upper (lower) mass
shell [p = 3332, pp) 0 (Pp(0) j, while the horizontal
lines mean unrestricted momenta. In practice, the 'A

are physical transition amplitudes if all the momenta
are on the mass shell. A corresponding diagram stands

(n.)

Fro. 2. Diagram for the Fourier transform of a typical term in
Eq. (3). This diagram stands for the integral

(2m) —, , Z +„-(PI, ,P,gl, g1, ,q,q )
2(23

XX~e9 a+I2' ' 2~a+P2 $1&91& 2 &~ l )2

~here q1, ~, q are on the upper mass shell; summation over
'gl ' ' ' gn, is understood. We note that labels may be omitted in a
diagram when no ambiguity results.

FIG. 3. Example showing the Fourier transform of V'13(X&',
Xg,X3,X4) with pg and Pg on the upper and lower mass shell,
respectively. The first term, which involves no internal lines, is
the ordinary product of the two subdiagrams.

~0 3 ~12~34 YO p

A1 2 (~13~24 ~14~23) y1 |
112 2 (~13~24+~14~23 3 '42~34)y2 ~

(2.2)

(The Kronecker deltas 812, etc. , stand for 83,3„etc.)
Assuming that p1 and ps correspond to outgoing physical
pions, while P3 belongs to an incoming physical pion
(i.e., with —ps as energy-momentum vector) and p4 to
a virtual one, we can write, in the center-of-mass system,

that special case of Eq. (1.4) which is represented by
Fig. 4. Diagrams which, for reasons of kinematics or
G-parity conservation, do not contribute are not shown.
(In this connection we note that the two-line diagram
is zero if one of the lines is a mass-shell momentum. )
If we restrict the center-of-mass energy of the system
to less than four pion masses, only the first three
diagrams of Fig. 4 contribute. From conservation of
energy, momentum, and isospin we have

l14(P1, ~,P4) = i (A—p+At+A2) (22r)4

X8(p,+ +p4), (2.1)
where

for X —,the Fourier transform of co„*.We have, suppres-
sing isospin,

pz =yr(3I, k, cos8) (T=0,1,2), (2.3)

The Fourier transform of a typical term in Eq. (1.3) is
shown in Fig. 2, with accompanying instructions on
how to evaluate it. As an example, the diagrammatic
Fourier transform of 9"13(X1,' X2,X3,X4) with, say, ps
on the upper mass shell and P, on the lower mass shell
is shown in Fig. 3. We note that X0=1.

+ 2I .

2. APPLICATION TO PION-PION SCATTERING

We now illustrate how Eq. (1.4) applies to the two-
pion system. We assume that all the pions are real,
except for one of the incoming ones, which may be
virtual. The interest of this case arises from its relevance
to the peripheral model of pion production. "We select

"See, for example, P. Singer in Lectures at the Liperi Summer
School, Liperi, Finland, 1966 (unpublished); C. Goebel, Phys.
Rev. Letters 1, 337 (1958);G. F. Chew and F. F. Low, Phys. Rev.
113, 1640 (1959).

+g +pi
I

~ I—
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FIG. 4. The Fourier transform of Eq. (1.4), in the peripheral
production case. The three dots stand for the diagrams with five
or more intermediate lines. Many diagrams are altogether absent
for reasons described in the text. The diagram with three internal
lines is worth noting as a curiosity, because it does not contribute
to lthe on-shell (i.e., usual) unita~rity condition, A suhdiagra1n
without lines stands for X0=X0 = i.
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where

(p)'=M', Ip I

= Ip I
=k,

0= angle between —ps and +pq.

Inserting Eq. (2.8) into Eq. (2.7), choosing p& as the

(2 4) polar axis in q space, and using the addition theorem
for the I'~'.

The form (2.3) stems from three-dimensional rotation
invariance.

We note that, if M= m, then each yr (T=0,1,2) is
invariant under the transformation pq ~ —pq,
p4~ —p4. This is because the switch to energies of the
wrong sign can be made good by the further exchange
P&+-+ P8, P~ ~P4 (which includes isospin) in each br of
Eq. (2.2). On the other hand, if m/M, the argument
breaks down because the above-mentioned exchange
would have to map a real pion into a virtual one. In this
more general case, we have to invoke time-reversal
invariance (which is presumably valid here), or some
weaker invariance involving time reversal, say under
CI'T. This means, for a given isospin component,

Pi(c»4 (q, —p3))

=(4~/(2l+1)) Q I'( *(0,0)F) (O„q,), (2.9)

we find, on comparing coefficients of P~(cose) (suppress-
ing the index T),

—ke(*(M,k) o;, (m, k)
Imo, ((M,k) = . (2.10)

32~ (k'+ m') '"(2l+ 1)

For 3f=m we obtain the usual unitarity condition

8~(m k) = —32'.(2l+1)(k'+m')'I'
Xk 'e'"+~ sin6~(k) (2.11)

(5& real); for M /m, and using Eq. (2.11), we have

&.(p~ "p.)=7-(—p~ p.)—(2 5) ImS~(M, k) = 8~*(M,k)e'"'~& sin5~(k) =0, (2.12)

which again implies the invariance of y~. Owing to this,
the second diagram of Fig. 4 is the complex conjugate
of the 6rst.

Below the inelastic threshold, and with the help of
Kq. (2.1), the equation of Fig. 4 gives us, for each
separate T and in the center-of-mass system,

2 Imyr (M, k, cose)

1 d gy d(t2
Yr*(M,

I ql, cos4 (e, —p3))
2(2~)' 2qP 2q '

Xyr(m, k,cosg (q&, p&)) (2~)'8(p&+ p2 —
q&

—
g2) (2.6)

dQ,,»*(M,k,cos+ (q, —p3))
{)4~2(k2+ m2) 1 /2

Xyr(ns, k,cosg (q, —p,)), (2.7)

where J'dQ, stands for an integration over all orienta-
tions of q.

We can now expand in Legendre polynomials:

which implies
e((M,k) =~((M,k)e'""& (2.13)

(~& real). This is the content of generalized unitarity
plus time reversal invariance, below the inelastic
threshold: The phase of the partial-wave amplitude does
not change as one pion goes o8 the mass shell. This
reproduces a known result of potential scattering
theory. '

In addition, we may note that this statement also
applies to some cases where both incoming pions are
virtual, for example when they both have positive
energy. In such cases, no other diagrams occur than
those of the type shown in Fig. 4. In conclusion, it
should be stressed that generalized unitarity deserves
to be better known as a practical method which can be
applied to any scattering process, as well as to decay
and production processes. In the particular case
investigated here, the real function ~& in Eq. (2.13)
appears as a natural one to calculate in various approxi-
imation schemes, in particular if 8& is already known
from on-shell considerations.

Vs(M, k,z)=Pi er((M, k)Pi(z). (2.8) ACKNOWLEDGMENTS

Even when 3f/nz, we may conclude from the Bose- The author is grateful to Professor F. Rohrlich and
Einstein symmetry of the two outgoing pions that g& Dr. J.Wray for bringing to his attention several existing
ranges only over even (odd) l when T is even (odd). papers on this subject.


