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A unified derivation of expressions for the velocity and the attenuation of sound in liquid Het at 7'<0.6°K
is presented. The derivation, which is valid for both the hydrodynamic and the collisionless regions, is
carried out within the framework of the simple conserving collision-time model. It is shown that using this
model one can reproduce the results obtained by Khalatnikov and Chernikova under the assumption of the
existence of an equilibrium of collinear phonons. Since applying the collision-time approximation does not
involve any assumption of this kind, it is argued that the assumption is in fact unnecessary. The theoretical
derivation is accompanied by a discussion of the experimental results obtained by Abraham ef al. for the
attenuation of collisionless sound. Special emphasis is placed on the effects of scattering of phonons from
boundaries. It is shown on the basis of these results that the parameter v which determines the dispersion of
the phonon spectrum is likely to be smaller than 2>10% g=2 cm2 sec2.

I. INTRODUCTION

HE theory of sound propagation in superfluid Het
has been thoroughly investigated in a number of
studies reported over the last quarter of a century.*
Although these deal with many aspects of the theory,
none except that of Khalatnikov and Chernikova® gives
a unified derivation of expressions for the sound velocity
and the attenuation which is valid for both large and
small values of w,r. (w, is the angular frequency of the
sound wave and 7 is some characteristic lifetime.) A new
derivation of a similar kind is given in this paper.

The study we present here is based on the use of
three coupled linearized equations: the equation of con-
tinuity, the equation of motion of the condensate, and
the kinetic equation for the phonons. All effects which
are due to rotons are neglected. In the course of the
derivation we simplify the kinetic equation by assum-
ing a conserving collision-time model for the collision
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operator. The algebraic manipulations that follow this
simplification are basically similar to the ones performed
by Khalatnikov and Andreev® who studied the sound
velocity using a collisionless kinetic equation.

Deriving the sound velocity and the sound attenua-
tion in this way differs in one important respect from
the derivation given by Khalantnikov and Chernikova.
These authors use a complicated collision integral whose
structure is determined from a microscopic theory of
the interactions between phonons.!* The use of this
collision integral adds to the complexity of the set of
equations under consideration. In order to simplify
these equations Khalatnikov and Chernikova assume
that the small-angle phonon-phonon scattering estab-
lishes equilibrium of collinear phonons within one period
of the wave motion. On this assumption the distribution
function for phonons moving in a given direction has a
Bose-Einstein form, characterized by a temperature
which depends on the direction of the phonon motion.
The simplified set of equations obtained as a result of
using this distribution function is solved for the sound
velocity and the attenuation. As will be shown later,
these solutions are similar to the ones we obtain using
the collision-time approximation.

Because of the nature of the assumption involved,
the derivation given by Khalatnikov and Chernikova
applies only for values of w,r which satisfy the con-
dition wr<<r/t (or w<K1) where ¢ is a time character-
izing the establishment of equilibrium in a given direc-
tion. Since 7/£>1,%5 this condition is satisfied in the
entire hydrodynamic region (w,r<<1) and in a part of
the collisionless region (1<<w,7<<7/f). The derivation
we present in this paper is likely to hold in an even
larger range of w,r values. Since we make no assump-
tions about the structure of the phonon distribution,
it seems that this derivation may also be applied in the
part of the collisionless region where w,72 7/t This con-
clusion is of interest in view of the fact that experiments

14T, M. Khalatnikov, Introduction to the Theory of Superfluidity
(W. A. Benjamin, Inc., New York, 1965), Chap. 7, p. 40.
18 Explicit estimates of = and ¢ are given in Sec. III.
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have already been performed under conditions such
that this inequality is satisfied.!®

The derivations and considerations reviewed here are
based on the assumption that the rotons may be
neglected. As this assumption is justified only at tem-
peratures lower than 0.6°K, rotons should be taken into
account when higher temperatures are considered. This
can be done by coupling a kinetic equation for rotons
to the three equations mentioned earlier. The resulting
set of equations is quite complicated and will not be
considered here. We would like to mention, however,
that expressions for the sound velocity and the sound
attenuation at 7>0.6°K were deduced by Khalantikov
and Chernikova from this set of equations. The method
they used here was similar to the one applied by them
for temperatures below 0.6°K.

The study presented in this paper contains some
quantitatlive considerations concerning the attenuation
of collisionless sound. Special emphasis is placed on the
effects of scattering of phonons from boundaries. Taking
into account this boundary scattering we discuss the
experimental results obtained recently by Abraham,
Eckstein, Ketterson and Vignos.)” It is argued on the
basis of these results that the parameter v which de-
termines the dispersion of the phonon spectrum is
likely to be smaller than 2X10% g=2 cm™2 sec?.

The discussion that follows is divided into several
sections. The formulation of the theory is briefly re-
viewed in Sec. II. In Sec. IIT we introduce the con-
serving-collision-time model. Section IV consists of a
derivation of an algebraic expression, from which
explicit expressions for the sound velocity and the
sound attenuation are derived in Sec. V. In Sec. VI
we present some quantitative considerations concerning
the attenuation of the collisionless sound.

II. THE GENERAL THEORY

In this section we briefly describe Khalatnikov’s
formulation of the theory of sound propagation in super-
fluid helium.*® Let us consider a situation where a sound
signal is sent into the liquid by some external source.
It is assumed that the signal is weak and hence that it
induces only small deviations from equilibrium in the
liquid. With this assumption it is sufficient to consider
the linear response of the liquid to a monochromatic
signal. We denote the angular frequency of the sound
wave and its wave number by w, and &, respectively. It
is customary to represent the attenuation of the wave by
taking % to be complex:

16 We shall say more about this in Sec. III.

1" B. M. Abraham, Y. Eckstein, J. B. Ketterson, and J. H.
Vignos, Phys. Rev. Letters 23, 1039 (1966).

18T, M. Khalatnikov, Introduction to the Theory of Super-
ﬂm’lcéiéy (W. A. Benjamin, Inc.,, New York, 1965), Chap. 22,
p. 135.
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The sound velocity is defined by
S Ew;/ k1 . (2)

The ratio ks/k; gives a dimensionless measure of the
attenuation. It is meaningful to talk about “sound
propagation’ only when

ko/Rr1. 3

The nature of the restoring forces responsible for the
sound-wave motion depends on the quantity w,r.
(7 is a time characterizing the collisions between the
quasiparticles.) In the collisionless region, where
w,7>>1, a given quasiparticle is acted upon by a restoring
force which is due to the averaged field of the other
quasiparticles. The resulting “collisionless sound”
mode is thus similar in its origin to the “zero-sound”
mode found in Fermi liquids. In the hydrodynamic
region (w,7<1), on the other hand, the restoring forces
are mainly due to frequent collisions between the
thermally excited quasiparticles. There are two modes
of hydrodynamic sound, the well-known “first” and
“second” sound. These two modes correspond respec-
tively to “in-phase” and ‘“‘out-of-phase” motions of the
normal and superfluid components,

For each of the sound modes mentioned above there
is a different sound velocity S. The various sound
velocities and the corresponding attenuations depend
exclusively on the equilibrium properties of the liquid.
It is the object of the theory we describe here to find
the explicit form of this dependence.

The equilibrium state of superfluid helium at rest
may be specified by means of a mass density (oo), a
temperature 7', and a quasiparticle distribution func-
tion (n,%). At low temperatures (7'<0.6°K) where
rotons can be neglected #,° is the equilibrium phonon
distribution:

ny=[exp(ep/ksT)—1]7.
The phonon energy is given by

ep=Sop(1—vp%), (5)

where Sy is the isothermal sound velocity at T=0.2 S,
and hence ¢, depend on the liquid density. The dis-
persion of the phonon spectrum is determined by the
positive quantity . An estimate made by Landau and
Khalatnikov® gives: y~2.8X10* g2 cm™? sec?. As
noted by Khalatnikov and Chernikova, this estimate
is very crude; the actual value of vy may be much

©)

1 Equation (5) has been used extensively in the literature as a
standard description of the phonon spectrum at finite tempera-
tures as well as at T=0. 1t should however be noted that since it
involves the T'=0 isothermal sound velocity, this equation pro-
vides a correct description of the spectrum only at 7=0. The
problem of giving a correct expression for ¢, at finite temperatures
has not yet been settled. Thus, although Eq. (5) is in most cases
a reasonable approximation for T'=0, there may be situations
where it is inapplicable.

20 1. M. Khalatnikov and L. D. Landau, Zh. Eksperim. i Teor.
Fiz. 19, 637 (1949) [English translation in Collected Papers of L. D.
Landau (Pergamon Press, Ltd., Oxford, England, 1965), p. 4947



164 YEHIEL
smaller.” It is usually assumed that the dispersion in
€p is very small:

7K1, (6)

Even with the high estimate for v, (6) is satisfied by
phonons whose wave number is smaller than 0.5 A%,
In particular it holds for the thermally excited phonons
which play a dominant role in determining the sound
velocity and the attenuation.

The sound signal perturbs the equilibrium state of
the liquid by inducing space- and time-dependent
density fluctuations, which are accompanied by fluctua-
tions in the phonon distribution and by the appearance
of a fluctuating longitudinal condensate velocity. Since
we have assumed that the signal is weak, it is sufficient
to consider the linear response of the liquid to the
perturbation. Hence, we may write

p(rf)=potp'eie e,
np(1,0) =m0y ei et ()
V. () =V, eiteron

where p, #np, and V, denote the space- and time-de-
pendent density, phonon distribution, and condensate
velocity. The deviations of p, #,, and V, from their
equilibrium values are determined by the small quanti-
ties o/, ', and V,’. These quantities are not inde-
pendent. A complete description of their dependence
was given by Khalatnikov'® who used for this purpose
the linearized forms of the kinetic equation, the equa-
tion of continuity and the equation of motion of the
condensate. Following Khalatnikov we may write
these equations as follows:
(a) The linearized kinetic equation:
n,®
(ws— EV p cosO)ny'+kV , cosh

€p

Jdep
X(”{”'”’V" cose>=u[np'], ®)
o

V/=|V/|, Vo=|V,|, where V, is defined as follows:
Vo=0¢,/3,=S0(1—3v7*) (0/p); 9
6 is the angle between k and p. I[#,'] is the linearized
collision integral. By definition it is a linear functional
of ny'.
(b) The linearized equation of continuity:

wsp’—pokV,'——k/p cosfny'dr=0. (10)

This form of the linearized equation is due to the
longitudinal character of V,'. The integration in (10) is
taken over the whole of momentum space.

(c) The linearized equation of motion:

de

pl
ked——w,V/+k / an,'dmo, (11)
Po P

DISATNIK 158
where
ep\2 Iy %y
60255{32—1)0 <“_> dTESO2+P0 ____._npﬂdT. (12)
dp/ dep JIp?

Sis is the isothermal sound velocity. Since V,’ is longi-
tudinal we can replace (11) by

o

de
kCoz——wsV3,+k/—lﬂp'dr=0.
Po ap

(13)

Equations (8), (10), and (13) form a closed set of linear
relations between p’, V,’, and #,’. They are consistent
with one another only when a certain condition relating
the parameters which appear in them is satisfied. The
sound velocity and the sound attenuation can be de-
termined from this consistency condition.

III. THE COLLISION-TIME MODEL

It is not known how to derive the consistency con-
dition for the three linearized equations (8), (10), (13)
written in their most general form. However, a deriva-
tion is possible under some simplifying assumptions.
Such a derivation was given by Khalatnikov and
Andreev® who assumed that the phonon collisions could
be neglected. These authors therefore omitted the
collision integral from the kinetic equation. Having done
this they obtained a set of equations for which the con-
sistency condition was easily derived. Recently
Khalatnikov and Chernikova®® have taken into account
the effects of collisions. As we have mentioned in
Sec. I the basic assumption in their work is that phonons
moving in a given direction are in equilibrium with one
another.

The assumption made by Khalatnikov and Cherni-
kova can be justified as long as

w <1, (14)

where ¢ is a characteristic time for small-angle phonon-
phonon scattering. The time characterizing small-angle
scattering of a phonon of energy e, was estimated by
Landau and Khalatnikov, who obtained the expression :

1 ()t 1 /ks\
=~ (—) T7X p(6+X )% sec™?,

—_—

pr 3456w So’ypo Soh
€p
=— (15)
" T
The parameters entering (15) are
po 850
So~=238m sec™!, u=——=27, pe=0.145 g cm™3,
So dp
y=2.8X10% g~ cm™2 sec?. (16)
Therefore,
1/8,~2X10°T7X ,(6+X ,,)® sec™t. @an
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For thermal phonons (X,)av=3. Therefore,

1/t=4X 10877 sec™!. (18)
Substituting (18) into (14) gives
0t~ 2.5X10%,/ TIK1., (19)

This inequality is violated at very low temperatures and
at very high frequencies. The temperatures and fre-
quencies needed for this to happen can be reached by
using current experimental techniques. In fact the
sound attenuation has already been measured in a
temperature and frequency range (0.12 deg<7<0.45
deg, 30 Mc/sec<w,/2r<150 Mc/sec) where (19) does
not hold.# Noting this, one may ask whether the
results obtained by Khalatnikov and Chernikova are
valid when an equilibrium of collinear phonons cannot
be established within a period of the wave motion.
In the following we shall try to answer this question by
calculating the sound velocity and the sound attenua-
tion without making any assumption concerning the
existence of this equilibrium.

We start by assuming a simple model for the collision
integral:

I[ ,] 1[ , fnp’epd‘r 0(1+ 0)

ny |=——| n,/— n n)e

’ L7 fad(dnDetdr
Sny'p cosbdr

T a0 COS"]- (20)
» »

This expression includes a single collision time 7.
Models of this kind are sometimes referred to as
“collision-time” models. Conservation of linear mo-
mentum and energy are built into our model, since the
collision integral satisfies the conditions®:

/I[np']epdr=0 /I[np']p cosddr=0. (21)

We may therefore expect to obtain correct results for
the hydrodynamic sound.

21 In estimating the lifetime / we assumed that y=2.8X10%7
g2 cm™2 sec?, As mentioned in Sec. II the actual value of ¥ may
be much smaller. We shall see in Sec. VI that this value is likely
to be smaller than 21035, Decreasing the value of v shortens the
lifetime £ and hence increases the range of validity of the inequality
wi#<K1l. However, even with y~1X10%* g2 cm™ sec? the in-
equality does not hold everywhere in the range of temperatures
and frequencies mentioned above.

2 The origin of the conserving collision-time model is best
presented within the framework of a study of the eigenfunction
expansion of the collision operator [see for example: G. E.
Uhelenbeck and G. W. Ford, Lectures in Statistical Mechanics
(American Mathematical Society, Providence, Rhode Island,
1963) ; Chap. 3, pp. 82-37. The model is obtained when the eigen-
value (relaxation) spectrum is assumed to consist of only two
eigenvalues; a zero eigenvalue corresponding to eigenfunctions
which are conserved in the collisions (energy and momentum in
our case) and a nonzero eigenvalue (—1/7) associated with non-
conserved eigenfunctions. A similar model was used by A. A.
Abrikosov and I. M. Khalatnikov in their study of liquid He?
[Rept. Progr, Phys. 22, 329 (1959)].
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Within the framework of the collision-time model,
transport properties depend on only a single collision
time. Thus, in order to get realistic results for these
properties one should identify 7 with the lifetime for
collisions which contribute to transport phenomena.
The small-angle scattering mentioned earlier do not
contribute to these phenomena. However, contribu-
tions do come from large-angle scattering of phonons.?
The most frequent of these is the large-angle phonon-
phonon scattering. We shall therefore identify r with
the lifetime for this process. An estimate of this life-
time was given by Andronikashivili?:

1 91381t 1 ks

9
———7—>%3'107T"sec“. (22)
T2 (R) pdSo\ So

Substituting (20) into (8) we get our modified kinetic
equation:

In,d /de
(w— RV, cosb)n,’+ 2V, cosb ? <—£p’+ PV cos9>

€ \ Op
) Jny e dr
=—l: n,"(14n,% e,
L fn" (1400 e%dr
Sny'p cosbdr

3 10 (141" cos(i] 23
T e e A cos |, (23
where

w=w+1i/7. (24)
In the next section we shall derive the consistency con-
dition for the three linearized equations (10), (13),

and (23). The sound velocity and the attenuation will
be deduced from this condition in Sec. V.

IV. THE CONSISTENCY CONDITION

Let us rewrite Egs. (10) and (13) in a dimensionless
form:

Ws P’ 1784

— ————=—[ nyp cosbdr, (25)
kco po Co  Copo

o w, VS u

—_——— =—— ny e,dr. (26)
po ke co co?po

The dimensionless Griineisen parameter # is a measure
of the dependence of the sound velocity on the density;
its value is given in (16).

Equations (25)-(26) are linear and homogeneous in
the variables p'/po, Vo/co, [ny e,dr, and [n,’p cosbdsr.
We shall now derive from the kinetic equation two

#1. M. Khalatnikov, Introduction to the Theory of Super-
Sluidity (W. A. Benjamin, Inc., New York 1965), Chap. 19, p. 122;
Chap. 20, p. 127. ’
(1;44}5). L. Andronikashvili, Zh. Eksperim. i Teor. Fiz, 18, 429
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additional equations of the same kind. To get the first
of these we multiply (23) by ep/[ci?po{w,—kV , cos)]

ISATNIK 158

and integrate over momentum space. The angular
integration gives

1 So Zpl un anp" So\V, 1 a”po
— [neart(Z) 22 [ Zoputepirt(Z) = [ 22 paiepar
) co/ po po dep ¢/ o po dep
1 n,? St [ an,® 14w(gy)
= —-—(/np'epdv'// pt:pzd‘r\ ’ / ’ VA Zdr
p dep / co’po /  dep 3
3 n,d So angd
—-—( ny'p cosbdr / jﬂdr)——— / Po(E)dr, (27)
o 36;, 002P0 ae;o
where +1 where
w(Sp)E——l'f"E‘ ]n.s....._’ (28) (’J(ET)E(‘O(EP)!P=P7'7 (32)
2 b . Pa 1 [In,
: w W, <1+ 2 )(1+3 ?2) (200) ——E-—g—~ p pdr (33)
= R — - Y 2 a €
THV, BSo\ | wur oo e
e i pn is the mass density of the normal fluid.! At this
== (H————), (29b)  point one can estimate the errors introduced by the
kSo kSo\  w.r neglect of terms proportional to y$? in the derivation of
1 : (27). These terms are of order [(9n,/de,)pypidr.
_—— . (29c)  The final results we obtain for the sound velocity and
o kSor attenuation will therefore be correct only to zero order

In deriving (27) we have neglected contributions coming
from terms containing the small factor yp% The only
place where we retained this factor is the logarithm in
(28), whose behavior depends strongly on yp? when
wsw>>1. To evaluate integrals of the type [(9#,%/de,)
log(&,—1)p*dp which occur in (27) we employ the

in ypr*(pa/po). For this reason only first-order expan-
sions of these results in p./po and pa/po Inpn/pe Wwill be
considered.

Equation (31) is our third equation relating p’/po,
Vi'/co, Sny' epdr, and fny'p cosfdr. The fourth equation
is similar to (31);

method used by Khalatnikov and Andreev.® According o(£7) ¢ 1
to this method the quantity £, appearing in the integral —— [ nyedr
is replaced by &,, where pr is the mean thermal o Socepa
momentum : 3k(E\ 1 ,
pr=3(ksT/Se)~1.7-10® g cm sec!.  (30) 1+ e p cosfdr
000
Evaluating the integrals in this manner, we find s , 7
Pn 0 4 s
o\ 1 [ —{ e+ (poles -p—)=0. (4
1+ —— | ny exdT poN\ Co po o
éo Co°po
3(tr) So 1 To get (34) we multiplied the kinetic equation (23) by
+ — — | ny'p cosbdr [p cos8/copo(ws—kV » cos)] and then integrated over
o Co Copo momentum space. Eliminating the integrals [ #,’¢,dr
' ' and [ny'p cosbdr from Egs. (25), (26), (31), and (34)
p So So P V;
- 3_ﬁ‘w(£T)“<u_ o 5_._>=0’ (31) gives two linear homogeneous equations in p’/py and
po €0\ Co po  Co V'/co:
1\ (&) So_ w, pn/ So\? o’
[(1+~—>+ (1—3u——2——>+3—(u~—) w(ér)]——
fo éo co keo PO\ Co po
1 W W(ET) Ws SO Pn SO Vs,
—[(1+—>~+ < ~3u——£>—3—u—éw(£a~)]-—=0, (35)
Ed/kcy Eo \kco Co Po Co Co
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So Ws w(ET) SO Ws
I:u—— + <3u——£2——— E)—

Co kCo Ea Co kCo

pnf So\? o’
T
po\ Co Po

=3

S
upn
Co
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(w%~;9+&%4w@w—ﬂﬁ=.<w

Co Co pPo Co Co

éo

For these equations to be consistent with one another their determinant must vanish. Using the explicit expression
for the determinant we obtain the following algebraic representation of the consistency condition:

(G550

1+iw,rlw(Er) I

where

i

¢

twer—1

Expressions for the sound velocity and the sound
attenuation will be derived from Eq. (37) in the next
section.

V. THE CALCULATION OF THE SOUND VELOCITY
AND THE SOUND ATTENUATION

The unknown in Eq. (37) is w,/kSo. Using (2) and
(3) we can write this unknown as

Ws S kz

——z—O~F>.

kSo So ks
Hence solving (37) for w,/kS, will yield the sound
velocity S and the corresponding attenuation. In the
following we shall present the solutions for both the

hydrodynamic region (w,7<<1) and the collisionless
region (w,m>>1).

(39)

A. The Hydrodynamic Region

Assuming that w,7<<1 we now replace the function
¢ which appears in (37) by the leading terms in its
expansion in powers of w,r. Keeping only terms of
first order in p./pe and w,r, we obtain the following
equation:

So\?/ ws \? Pn Wy 2
G G) ]G o]
co/ \kSo Po kSo

= 3;[%24- <k5 ) (Qu+ 1)] (40)

This is a quadratic equation in (w,/kSo)% Its two solu-
tions correspond to the two modes of hydrodynamic
sound normally referred to as “first”’and ‘“‘second”
sound. Solving Eq. (40) and using (12) we get

S (u+1)2 pn
“m 1t -, (1)
Sia 4 Po

D100 <37>
! ij,r<:_sag>2' (38)
(ko/ k1)1~ 1% (u+1)%00/powsT (42)

Sy 1 P
S—is“—ll“%[(%-i-l)?-l-wj;;} ,  (43)
(ko/k1)o~Fw,r. (44)

S1 and S, denote the first and second sound velocities.
(k1/ks)1 and (k1/k2)2 denote the corresponding atten-
uations. V2 is defined as follows:

et (45)

B. The Collisionless Region

Assuming that w,7>>1 one can expand ¢ (38) in
terms of the quantity 1/w,7. The leading term in this
expression is the logarithm contributed by the func-
tion w(£ér). Keeping only this term in (37) we get an
equation from which the collisionless sound velocity
and the corresponding attenuation can be determined:

(GG -T2 ) o]

X1 1[ e <1+ i>(1+3 2) 1] (46)
n—| — —_— ) — .
2L.4So K

WsT.

When (12) and (39) are taken into account one obtains
the following solutions:

S
—= 1+— —(u-l— 1)? In2w,7,

(47)
Su PO
and
ko 37"Pn
2T g1y, (48)
k1 8 po

when 1<Kw,m<K(3yprd);
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S 3 pn 3vpr?
—=1———(u+1)2In br , (49)
Sis 4 po 2
and
ke 3 pn
et 1y (50)
ki 4 Po 3')’]57'2(0:7'

when 1< (3vpr?)~*Kw,sr. It should be noted that in
writing the expressions for the sound velocity we have
kept only a term proportional to a product of p,/pe and
a logarithm. This is in accordance with the way in
which we approximated Eq. (37). Since In2w,r and
In3vyp1?/2 are large we are able to neglect terms of order
pa/po which do not contain a logarithm.

C. Discussion

The results we obtained here for the sound velocity
and the sound attenuation are identical with those of
Khalatnikov and Chernikova®® to lowest order in
pa/po and wr. As we already mentioned in Secs. I and
IIT these authors calculated the sound velocity and
attenuation assuming the existence of an equilibrium
of collinear phonons. Hence their results appeared to be
valid only in the hydrodynamic region and in a part of
the collisionless region where w,r<<7/t. However, we
see now that similar results can be derived from a
simple collision-time model whose application is not
necessarily equivalent to making this assumption.
Therefore, it seems that the assumption is unnecessary
and that the results of the calculation are also valid
outside the temperature and frequency range in which
w, K7 /t. It is of interest to compare the expressions
obtained here for the attenuation of collisionless sound
with the results of calculations done previously by
several authors.*72 The main step in these calcula-
tions is the estimation of a characteristic lifetime for
the collisions of low-energy (acoustic) phonons with
thermal phonons. Knowing this lifetime it is possible
to estimate the attenuation using the following relation:

kz/k1= 1/&)30. (51)

6 denotes the characteristic lifetime while w, stands for

the angular frequency of the acoustic phonon. In order

to estimate 8 one has to assume a certain mechanism for

the collisions between thermal and acoustic phonons.

In this context, three- and four-phonon processes were

studied. It was shown that the attenuation associated

with the three-phonon processes is given by?5:

ko Pn

;=;—(u—|—-1)2[arctan 2w,r—arctan (3ypriw,r)], (52)
1 Po

whereas the attenuation due to the four-phonon

processes is*:
ko 5 (ut 1)4<k31>6
— kl 8rd p025027 hSo ’

% C. J. Pethick (private communication). The original formula
tglerxvedib Pethick and ter Haar (see Ref. 12) includes an extra
actor of .

(53)
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To first order in 1/w,7, Eq. (52) is in a full agreement
with the results we obtained earlier for the attenuation
of the collisionless sound. This means that our results
describe an attenuation which may be interpreted as
being due to three-phonon processes. As can be seen
from Egs. (48) and (50) this “three-phonon’ attenua-
tion depends on the temperature through p./pe In
cases where w, 7K (3ypr?)™t and through (p./po)
X (3ypriw,)"in cases where w,m>> (3ypr?) L. Sincep./po
is proportional to 7% pz* to T2, and 7 to T-*, we find a
variation of the attenuation as 7* when w7 (3ypr?)™
and as T When w,7~> (3ypr?)—L.

It was noted by Kawasaki! that energy can be con-
served in a three-phonon collision involving an acoustic
phonon, only when w,r<(3ypr?)~L. One can therefore
argue that for w,m> (3ypr?)~ processes other than three-
phonon collisions may be important. This raises doubts
as to the validity of the “three-phonon” result (e.g.,
the variation of the attenuation as 7") we obtained for
w,m>>ByprA) ™t In view of Kawasaki’s remark it
seems reasonable to assume that in this case the atten-
uation should be due to four-phonon collisions and
hence proportional to 7' (53). It is hard to determine
which one of the two predictions is correct. However,
it is obviously clear that both of them differ from the
one obtained for w, 7K (3ypr®)~! (a variation as T%).
In other words, even without making specific predic-
tions concerning the temperature dependence of the
attenuation in the temperature and frequency range
where w>(3ypr®)~! it is clear that it should be con-
siderably different than the 7% dependence expected
for the range where w,7<K (3ypr?) 126

VI. ATTENUATION OF COLLISIONLESS SOUND;
QUANTITATIVE CONSIDERATIONS

In this section we present some quantitative con-
siderations concerning the attenuation of the collision-
less sound. The discussion is centered around the ex-
perimental results obtained recently by Abraham,
Eckstein, Ketterson, and Vignos.'” These authors
showed that the attenuation varies approximately as
T*in a range of temperatures and frequencies given by
0.12deg<T<0.45deg, 30Mc/sec<w,/2r<150Mc/sec.
In view of this result and in accordance with the
considerations presented in the last section one
may conclude that the inequality w,7<<(3ypr?)~! must
hold throughout the range explored in the experiment.
A simple calculation in which the estimates (22) and
(30) for 7 and pr are used shows that this can be the
case only when y<&1X10* g=2 cm™2 sec® It should be
emphasized that this argument depends strongly on the
assumption that the transport phenomena in the super-
fluid are governed by large-angle phonon-phonon
scattering. In the following we shall see that in the

26 This conclusion was in fact drawn by a number of authors who
mentioned that the anticipated 7 dependence of the attenuation
will change in the range where w,m>> (3vpr?)™ (see, for example,
Refs. 9-12).
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range studied by Abraham et al. phonon-phonon scat-
tering is likely to be less important than scattering of
phonons by the boundaries of the container. Because
of this fact, we shall have to modify our estimate of the
bound for v.

The studies presented in this paper did not take into
account collisions of phonons with either He® impurities
or boundaries. Lifetime estimates based on the calcu-
lations of Khalatnikov and Zharkov?” show that for
temperatures higher than 0.1 deg and concentrations
lower than 10~¢ the phonon-impurity scattering is
much smaller than the large-angle phonon-phonon
scattering. The impurity concentrations were much
lower than 10~ in the experiments of Abraham ef al.?8
Thus, the phonon impurity scattering can indeed be
neglected in the analysis of their results. The situa-
tion is different in the case of collisions with the
boundaries. The lifetime for this scattering process is
given by

7B Q:L/ S 0, (54)

where L is some relevant linear dimension character-
izing the sizes of the container. The length of the
container used in the experiment of Abraham ef al. is
of the order of 1 cm. Hence, in this case: 75~4.2X 1075
sec. According to (22), r=3X10~8 T—° sec. Conse-
quently, for 7<0.4 deg the collisions with the walls
become more frequent than the large-angle phonon-
phonon scattering. Thus, we see that boundary scatter-
ing cannot be neglected.?®

It is very hard to give a satisfactory account of the
way in which the attenuation is affected by boundary
scattering. However, as is done very often in similar
cases, one can obtain a crude estimate of this effect
by using instead of = a new characteristic lifetime 7
defined as follows:

11 1
—=—4—=3X1077T°42.3X10* sec!.

T T 7B

271, M. Khalatnikov and V. N. Zharkov, Zh. Eksperim. i
Teor. Fiz. 32, 1108 (1957) [English transl.: Soviet Phys.—JETP
5, 905 (1957)].

28'Y, Eckstein (private communication).

® The possible importance of boundary scattering was first
mentioned by K. Dransfeld [Z. Physik 179, 525 (1964)7]. It was
also discussed by Pethick and ter Haar (see Ref. 12).
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Assuming that 7 is the relevant lifetime, the attenua-
tion should vary as T* when w,7<(3ypr?)~'. This
inequality must therefore apply in the range studied
by Abraham et al. Using the estimates (30) and (55)
for pr and 7 we find that this can happen only for
Y<K2X10% g% cn? sec?. This bound for + is higher by
four orders of magnitude than the one we obtained
when the boundary scattering was neglected. It is,
however, lower by two orders of magnitude than the
crude estimate, y=~2.8X10° g2 cm~? sec? given by
Landau and Khalatnikov.? As we mentioned earlier,
Khalatnikov and Chernikova®® remarked that the
actual value of vy may be much smaller than 2.8X10%".
In view of the considerations presented here it seems
that the results obtained by Abraham ef al. provide
further support for this.

At this point we note that because of the weak
dependence of the attenuation on v in the region where
w, 7K B3yprH)Y, it is very hard to use the experimental
values obtained in this region for a direct calculation
of . In order to perform a calculation of this kind one
would have to know the experimental values of the
attenuation in the region where w, 72 3vpr®~% No
measurement of the attenuation in this region has yet
been reported. Using the equality w,7= (3ypr?)~ and
assuming that y~5X10* g=2 cm™ sec?, one may esti-
mate the frequencies needed for such an experiment to
be of the order of 700 Mc/sec at least. For lower value
of v even higher frequencies may be needed. Such fre-
quencies are higher than any used in previous studies
of sound attenuation in superfluid helium below 0.6
deg.
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