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Single-Collision-Time Theory of Sound Proyagation in
Li(luid He' below 0.6'I*
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A unified derivation of expressions for the velocity and the attenuation of sound in liquid He4 at T(0.6'K
is presented. The derivation, which is valid for both the hydrodynamic and the collisionless regions, is
carried out within the framework of the simple conserving collision-time model. It is shown that using this
model one can reproduce the results obtained by Khalatnikov and Chernikova under the assumption of the
existence of an equilibrium of collinear phonons. Since applying the collision-time approximation does not
involve any assumption of this kind, it is argued that the assumption is in fact unnecessary. The theoretical
derivation is accompanied by a discussion of the experimental results obtained by Abraham et ul. for the
attenuation of collisionless sound. Special emphasis is placed on the eGects of scattering of phonons from
boundaries. It is shown on the basis of these results that the parameter y which determines the dispersion of
the phonon spectrum is likely to be smaller than 2)&1035g 2 cm 2 sec2.

I. INTRODUCTION

HE theory of sound propagation in superQuid He'
has been thoroughly investigated in a number of

stud, ies reported, over the last quarter of a century. ' "
Although these deal with many aspects of the theory,
none except that of Khalatnikov and Chernikova" gives
a unified derivation of expressions for the sound velocity
and the attenuation which is valid for both large and
small values of co,r. (a, is the angu1ar frequency of the
sound wave and r is some characteristic lifetime. ) A new
derivation of a similar kind is given in this paper.

The study we present here is based, on the use of
three coupled linearized equations: the equation of con-
tinuity, the equation of motion of the condensate, and
the kinetic equation for the phonons. All eBects which
are due to rotons are neglected. In the course of the
derivation we simplify the kinetic equation by assum-

ing a conserving collision-time model for the collision
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operator. The algebraic manipulations that follow this
simpliIj. cation are basically similar to the ones performed
by Khalatnikov and Andreev' who studied the sound
velocity using a collisionless kinetic equation.

Deriving the sound velocity and the sound attenua-
tion in this way divers in one important respect from
the derivation given by Khalantnikov and Chernikova.
These authors use a complicated collision integral whose
structure is determined from a microscopic theory of
the interactions between phonons, " The use of this
collision integral adds to the complexity of the set of
equations under consideration. In order to simplify
these equations Khalatnikov and Chernikova assume
that the small-angle phonon-phonon scattering estab-
lishes equilibrium of collinear phonons within one period
of the wave motion. On this assumption the distribution
function for phonons moving in a given direction has a
Bose-Einstein form, characterized by a temperature
which depends on the direction of the phono@. motion.
The simplified set of equations obtained as a result of
using this distribution function is solved for the sound
velocity and. the attenuation. As will be shown later,
these solutions are similar to the ones we obtain using
the collision-time approximation.

Because of the nature of the assumption involved,
the derivation given by Khalatnikov and Chernikova
applies only for values of cv,v which satisfy the con-
dition a&,.r«r/I (or ro, t«1) where t is a time character-
izing the establishment of equilibrium in a given direc-
tion. Since r/t&)1, is this condition is satisfied in the
entire hydrodynamic region (o~,r&&1) and in a part of
the collisionless region (I«ro, r«r/t). The derivation
we present in this paper is likely to hold in an even
larger range of co,r values. Since we make no assump-
tions about the structure of the phonon distribution,
it seems that this derivation may also be applied in the
part of the collisionless region where oi,r& r/t. This con-
clusion is of interest in view of the fact that experiments

'4 I. M. Khalatnikov, Introdlction to the Theory of Sgperggidity
(W. A. Benjamin, Inc. , New York, 1965), Chap. 7, p. 40."Explicit estimates of r and t are given in Sec. III.
162
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have already been performed under conditions such
that this inequality is satisfied. "

The derivations and, considerations reviewed. here are
based. on the assumption that the rotons may be
neglected. As this assumption is justified only at tem-
peratures lower than 0.6'K, rotons should, be taken into
account when higher temperatures are considered, . This
can be done by coupling a kinetic equation for rotons
to the three equations mentioned earlier. The resulting
set of equations is quite complicated and will not be
considered here. We would like to mention, however,
that expressions for the sound velocity and the sound,
attenuation at T&0.6'K were deduced by Khalantikov
and Chernikova from this set of equations. The method
they used here was similar to the one applied by them
for temperatures below 0.6'K.

The study presented in this paper contains some
quantitative considerations concerning the attenuation
of collisionless sound. Special emphasis is placed on the
effects of scattering of phonons from boundaries. Taking
into account this boundary scattering we discuss the
experimental results obtained recently by Abraham,
Eckstein, Ketterson and Vignos. "It is argued on the
basis of these results that the parameter y which de-
termines the dispersion of the phonon spectrum is
likely to be smaller than 2&&10'5 g

' cm ' sec'.
The discussion that follows is d,ivided into several

sections. The formulation of the theory is brieQy re-
viewed. in Sec. II. In Sec. III we introduce the con-
serving-collision-time mod. el. Section IV consists of a
d,erivation of an algebraic expression, from which
explicit expressions for the sound velocity and the
sound attenuation are d.erived in Sec. V. In Sec. VI
we present some quantitative considerations concerning
the attenuation of the collisionless sound, .

II. THE GENERAL THEORY

In this section we brieQy describe Khalatnikov's
formulation of the theory of sound propagation in super-
Quid. helium. "Let us consider a situation where a sound
signal is sent into the liquid by some external source.
It is assumed that the signal is weak and hence that it
induces only small deviations from equilibrium in the
liquid. Kith this assumption it is sufhcient to consider
the linear response of the liquid to a monochromatic
signal. We denote the angular frequency of the sound
wave and, its wave number by co, and k, respectively. It
is customary to represent the attenuation of the wave by
taking k to be corn.plex:

k=—kr+iks.

"We shall say more about this in Sec. III.
"B.M. Abraham, Y. Eckstein, J. B. Ketterson, and J. H.

Vignos, Phys. Rev. Letters 23, 1039 (1966).
' I. M. Khalatnikov, Introdgction to the Theory of Super-

glidity (W. A. Benjamin, Inc. , Neer York, 1965), Chap. 22,
p. 135.

The sound velocity is defined by

S=ra /kr.

The ratio ks/kt gives a dimensionless measure of the
attenuation. It is meaningful to talk about "sound.
propagation" only when

ks/kr«1.

The nature of the restoring forces responsible for the
sound-wave motion depends on the quantity ~,r.
(r is a time characterizing the collisions between the
quasiparticles. ) In the collisionless region, where
~,r&)1, a given quasiparticle is acted upon by a restoring
force which is due to the averaged field of the other
quasiparticles. The resulting "collisionless sound"
mod, e is thus similar in its origin to the "zero-sound"
mod, e found in Fermi liquids. In the hydrodynamic
region (M,r«1), on the other hand, the restoring forces
are mainly d,ue to frequent collisions between the
thermally excited quasiparticles. There are two modes
of hydrodynamic sound, the well-known "first" and
"second" sound. These two modes correspond respec-
tively to "in-phase" and. "out-of-phase" motions of the
normal and superQuid components.

For each of the sound, modes mentioned above there
is a diferent sound velocity S. The various sound,
velocities and. the corresponding attenuations d.epend
exclusively on the equilibrium properties of the liquid.
It is the object of the theory we describe here to find
the explicit form of this dependence.

The equilibrium state of superQuid helium at rest
may be specified by means of a mass density (pp), a
temperature T, and, a quasiparticle distribution func-
tion (e„p). At low temperatures (T(0.6'K) where
rotons can be neglected n~' is the equilibrium phonon
distribution:

rr~P = f exp(e„/k~T) , 15—
The phonon energy is given by

e~=spp(1 —yp'),

where So is the isothermal sound velocity at T=0."S,
and, hence e~ d,epend on the liquid density. The dis-
persion of the phonon spectrum is determined by the
positive quantity p. An estimate made by Landau and,
Khalatnikov" gives: 7=2.8X10" g

' cm ' sec' As
noted. by Khalatnikov and Chernikova, this estimate
is very crude; the actual value of p may be much

"Equation (5) has been used extensively in the literature as a
standard description of the phonon spectrum at finite tempera-
tures as well as at T=0. 1t should however be noted that since it
involves the T=O isothermal sound velocity, this equation pro-
vides a correct description of the spectrum only at T=O. The
problem of giving a correct expression for e~ at finite temperatures
has not yet been settled. Thus, although Eq. (5} is in most cases
a reasonable approximation for T=O, there may be situations
where it is inapplicable.

2o I. M. Khalatnikov and L. D. Landau, Zh. Kksperim. i Teor.
Fiz. 19, 637 {1949)I English translation in Collected I'upers of I..D.
landau iPergsrnon Press, Ltd. , Oxford, England, 1965),p. 494).
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sma]. ler.~" It is usually assumed that the dispersion in

q„ is very small:
(6)7p'«1.

where p, n„and V, denote the space- and time-de-

pendent density, phonon distribution, and, condensate
velocity. The deviations of p, e~, and V, from their
equilibrium values are determined by the small quanti-
ties p', n~', and V,'. These quantities are not inde-

pendent. A complete description of their dependence
was given by Khalatnikov" who used for this purpose
the linearized forms of the kinetic equation, the equa-
tion of continuity and the equation of motion of the
condensate. Following Khalatnikov we may write

these equations as follows:

(a) The linearized kinetic equation:

Bsp
(&o,—k V„cos8)no'+ k V„cos8

l96p

B6p
X p'+&V, 'cos8)=i7[n 'j, (8)

Bp

V,'=
~
V,'~, V„=—

~
V, ~, where Vo is defined as follows:

Vo Be,/By
———So(1 ——3yP') (P—/P); (9)

Even with the high estimate for y, (6) is satisfied by
phonons whose wave number is smaller than 0.5 A '.
In particular it holds for the thermally excited p'honons

which play a dominant role in determining the sound

velocity and the attenuation.
The sound signal perturbs the equilibrium state of

the liquid by inducing space- and time-dependent

density fluctuations, which are accompanied by Quctua-

tions in the phonon distribution and by the appearance
of a Quctuating longitudinal condensate velocity. Since
we have assumed that the signal is weak, it is sufhcient

to consider the linear response of the liquid, to the
perturbation. Hence, we may write

( t)= +'""'""
n, (r, t) =n„'+n 'e""'—"'~ (&)

V (r t)=V 'e'o"—""&

B6p l9'Esp B 6p
cp' =—S;,'—pp dr= S—p'+ p p no'dr. (12)

Bp B6y Bp

S,, is the isothermal sound velocity. Since V, is longi-
tudinal we can replace (11) by

p Be„
kep' ~,V,'+k no'dr=0

po Bp
(13)

Equations (8), (10), and (13) form a closed set of lmear
relations between p', V,', and e~'. They are consistent
with one another only when a certain condition relating
the parameters which appear in them is satisfied. The
sound. velocity and the sound attenuation can be de-
termined from this consistency condition.

co,t«1, (14)

where t is a characteristic time for small-angle phonon-
phonon scattering. The time characterizing small-angle
scattering of a phonon of energy e„was estimated by
Land, au and Khalatnikov, "who obtained, the expression:

III. THE COLLISION'-TIME MODEL

It is not known how to derive the consistency con-
dition for the three linearized equations (8), (10), (13)
written in their most general form. However, a deriva-
tion is possible under some simplifying assumptions.
Such a derivation was given by Khalatnikov and
Andreev' who assumed that the phonon collisions could
be neglected, . These authors therefore omitted the
collision integral from the kinetic equation. Having done
this they obtained a set of equations for which the con-
sistency condition was easily d.erived. Recently
Khalatnikov and Chernikova" have taken into account
the e6ects of collisions. As we have mentioned in
Sec. I the basic assumption in their work is that phonons
moving in a given direction are in equilibrium with one
another.

The assumption made by Khalatnikov and, Cherni-
kova can be justified as long as

eo,p' —ppkU,
'—k P cos8no'dr=0. (10)

8 is the angle between k and p. I[n,'] is the linearized
collision integral. By definition it is a linear functional
of sp.

(b) The linearized equation of continuity:

1 (I+1)' 1 ke ) '
~

T'X~(6+X„)' sec '
to 3456pr Soypo So&&

6y
I„—=

AT

The parameters entering (15) are

(15)

po B~o
$0=238m sec, I—=— =2.7, p0=0. 145 g cm ',

So Bp

(16)y =2.8& 10'~ g ' cm ' sec'

Therefore,
(11)

1/t„=2&&10'T'Xo(6+X„)' sec '

This form of the linearized equation is due .to the
longitudinal character of V,'. The integration in (10) is
taken over the whole of momentum space.

(c) The linearized equation of motion:

p B6y
keo'—eo,V.'+k n, 'dr =0,

pp Bp
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For thermal phonons (X„),=3. Therefore,

1/t=4X10'T' sec '

Substituting (18) into (14) gives

(18)

This expression includes a single collision time r.
Models of this kind are sometimes referred to as
"collision-time" models. Conservation of linear mo-
mentum and energy are built into our model, since the
collision integral satishes the conditions":

to t= 2„5X.10 '(o,/T'&(1. (19)

This inequality is violated at very low temperatures and
at very high frequencies. The temperatures and fre-
quencies needed for this to happen can be reached by
using current experimental techniques. In fact the
sound attenuation has already been measured in a
temperature and frequency range (0.12 deg&T&0 45.
deg, 30 Mc/sec& oo./2s & 150 Mc/sec) where (19) does
not hold. " Noting this, one may ask whether the
results obtained by Khalatnikov and Chernikova are
valid when an equilibrium of collinear phonons cannot
be established. within a period of the wave motion.
In the following we shall try to answer this question by
calculating the sound velocity and the sound attenua-
tion without making any assumption concerning the
existence of this equilibrium.

We start by assuming a simple model for the collision
integral:

1- fn, 'e„dr
n o(1+n o)e„

fn, '(1+n„')e,'dr

fn p'p cos8dr—3 n„'(1+n ')P cos8 . (20)
fn p'(1+ nps) P'dr

Within the framework of the collision-time model,
transport properties depend on only a single collision
time, Thus, in order to get realistic results for these
properties one should. identify ~ with the lifetime for
collisions which contribute to transport phenomena.
The smaH-angle scattering mentioned earlier do not
contribute to these phenomena. However, contribu-
tions do come from large-angle scattering of phonons. ~
The most frequent of these is the large-angle phonon-
phonon scattering. Ke shall therefore identify 7 with
the lifetime for this process. An estimate of this life-
time was given by Andronikashivili'4:

9 13!(I+1)4 1 kp
=3 ~ 10rTosec '. (22)

r 2" (rrk)' poPSo So

Substituting (20) into (8) we get our modified lcjnetic
equation:

Bnp Be„
(to—kV„cos8)n„'+kV„cos8 p'+ pV, ' cos8 i

Bop Bp

s -fnp'e, dr
npe(1+n„') e„

r fn,o(1+npo) e,'dr

fn, 'p cos8dr
+3 npo(1+npo)P cos8, (23)fn„'(1+nps) P'dr

where

to:M„+z/r .

In the next section we shall derive the consistency con-
dition for the three linearized equations (10), (13),
and (23). The sound velocity and the attenuation will
be deduced from this condition. in Sec. V.

Ipn p' jeer =0 Ipe p'jp cos8dr =0. (21)

Ke may therefore expect to obtain correct results for
the hydrodynamic sound.

» In estimating the lifetime t we assumed that y=2.8X108
g ~ cm ' sec'. As mentioned in Sec. II the actual value of p may
be much smaller. We shall see in Sec. VI that this value is likely
to be smaller than 2)&HP'. Decreasing the value of y shortens the
lifetime t and hence increases the range of validity of the inequality
co,t&&1. However, even with p=1X103' g~ cm ' sec~ the in-
equality does not hold everywhere in the range of temperatures
and frequencies mentioned above.

~The origin of the conserving collision-time model is best
presented within the framework of a study of the eigenfunction
expansion of the collision operator Lsee for example: G. E.
Uhelenbeck and G. %. Ford, Lectures in Statistical Mechanics
(American Mathematical Society, Providence, Rhode Island,
1963);Chap. 3, pp. 82—3g. The model is obtained when the eigen-
value (relaxation) spectrum is assumed to consist of only two
eigenvalues; a zero eigenvalue corresponding to eigenfunctions
which are conserved in the collisions (energy and momentum in
our case) and a nonzero eigenvalue (—1/v) associated with non-
conserved eigenfunctions. A similar model was used by A. A.
Abrikosov and I. M. Khalatnikov in their study of liquid He
/Rept. Progr. Phys. 22, 329 (1959l).

cdg p

kcp pp

V.' I

Cp Cppp

np P cos8dr
~ (25)

/
p e

pp kcp

V,'

Cp Cp pp

Sp tp&7 ~

The d.imensionless GrQneisen parameter u is a measure
of the dependence of the sound velocity on the density;
its value is given in (16).

Equations (25)—(26) are linear and homogeneous in
the variables p'/po, V,/c fnop'epdr, and fnp'p cos8dr.
We shall now derive from the kinetic equation two

M. Khalatnikov, Introduction to the Theory of Sgper-
Puidity (%.A. Benjamin, Inc. , New York 1965), Chap. 19,p. Q2;
Chap. 20, p. 127.

&F. L. Andronikashvili, Zh. Eksperim. i Teor. Fiz, Is 429
(&948).

IV'. THE CONSISTENCY CONDITION

Let us rewrite Eqs. (10) and (13) in a dimensionless
form:
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d, Y et the Grst an.d, integrate over momentum pentUIQ 8 RCC. TIN RDgulal'ad,dlt, 8)nial eq
' *

1 e uations of the same kin . o ge e
co —k V cos8)j integration gives

~ % ~of these we multiply (23) by ey cypy co.—

&0 Po

8m~0 Sg V,' i
p &(4)d&+—

86~ Co Co po

P'=~- (—E-.)&r, (27)
86y

8+1
oi(Py) = 1+—-—ln

4=- = 1+ — I(1+»fI')
kV„kSy y&,r)

CO fdg

1+
kSO kSg a,r

(2g)

Bfbp

p cIT ~

Bpo Bc~

th mass density of the DormaI Quid. ' At this
th."- -""---"'---- d-

Mg ec 0l t f terms proportional to yp' in the derivation o
0 2 2d~(27). These terms are of order f(8By'/8cy)pyp

The 6QRl results %'e obtMn fol the sound. veloc1ty aDQ
attenuation vuB therefore be correct only to zero order

For th18 reason ODIy 6rst-ord. er expRQ-
ln eral beslolls of these results 1u P /Py and P~ Po P Po w

CGDSl(tel e(i.
Equation (31) is our third equation relating P'/Py,

V,'/cy, fBy'hydr, and JBy'p cos8dr. The fourth equation
is similar to (31);

(27) we have neglected contributions coming1&d.e.i~g,'~~e
'. The ox'

place vrhere we re aweh t ined. this factor is the 1ogarithID in

(28), whose behavior depends strongly on yp w en
~,r)&1. To evaluate integrals of the type J'(BBy'/8ey

log()y —1)P'dP which occur in (27) we employ the
d b Khalatnikov and Andreev. s Accor~g

to this method the quantity $y appearing m the integra
ls replace y p pd, b $ where pr is the mean thermal
XQOD1eQtUIQ:

3$~(b)
+(1+- e,'P coeurr=—3(kI1T/Sy) =1.7*10 "g cm sec '.

KVRHlktlDg eth integrals in this manner, we 6nd

(
1+ (5)1+- — By cy(&

$0' Copy

By P COS8CIr
3a&gr) Sy 1

&0 &Opo

P Sy Sy P'—3~(&)—B——+."
Py Cy Co Po Cy~

V.'-3- =~-u.)-+«~u, )—:)-' ~=0. 34
Po &0 po Cy

To get (34) we multiplied the kinetic equation (23) by
cos8/cypy(&o, —kV„cos8)j and then integrated over

momentum sPace. Eliminating the integras JBy'ryder
and jBy'P cos8dr from Eqs. (25), (26), (31), and (34)

(31) gives w8 two 1111eal' homogeneous equatrons 111 P /Py aI1
V.'/C0..

2 p

$0 Co kCo Po C0 -Py

lp' I

to' kCO (0' kCO Cy PQ Co
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So (oe (d(Pr) So ~e ) pee So p+ 3u—P
co kco fo' co kco / po co po

-
So oo(Pr) So (oe p. So

3 —P- g +3~—(t' (t.)-l)
c, po co kco po co —Co

=O. (36)

por these equations to be consistent with one another their determinant must vanish. Using the explicit expression
for the determinant we obtain the following algebraic representation of the consistency condition:

—i — =3—— I 2N — —3ZP (37)

where

1+uo,r$u((r) P' 3 o&,

ZM T kSp
(38)

Expressions for the sound velocity and the sound
attenuation will be derived from Eq. (37) in the next
section.

(k,/kg) &=—,', ( u+1)'p„/poo). r,
Sg 1 p~=—1——,'[(u+ 1)'+V']-
S;. ~3 po

(42)

(43)

V. THE CALCULATION OF THE SOUND VELOCITY
AND THE SOUND ATTENUATION

unknown in Fq (37) is ~ /kS Using (2) snd Sj and So denote the ftrst and second sound velocities.

(3) we can write this unknown as (kg/ko)z and (k&/ko)o denote the corresponding atten-
uations. V' is dered as follows:

(39)

Hence solving (37) for &u,./kSo will yield the sound
velocity S and the corresponding attenuation. In the
following we shall present the solutions for both the

hydrodynamic region (&o,r((1) and the collisionless
region (oo,r))1).

A. The Hydrodynamic Region

Assuming that co,~(&i we now replace the function
qh which appears in (3'7) by the leading terms in its
expansion in powers of co,,v. Keeping only terms of
Grst order in p„/po and &v,r, we obtain the following
equation:

—i — 3 —1 -', zo),v.

i po BSp
V'= ———

2 Sp Bpo

B. The Collisionless Region

Assuming that oo,r))1 one can expand P (38) in
terms of the quantity 1/co, r. The leading term in this
expression is the logarithm contributed by the func-
tion ~($r). Keeping only this term in (37) we get an
equation from which the collisionless sound velocity
and the corresponding attenuation can be determined:

1
Xln- 1+

~
(1+3yPr') —1 (46)

2 .kSo co,r/

When (12) and (39) are taken into account one obtains
the following solutions:CO

=3—u'+ (2u+1) . (40)
pp kS0 3 pn=1+-—(u+1)' 1 n2roo,

4 pa
(47)

k2 3Ã p~—=——(u+1)'
~1 8 po

(48)
Si (3u+1)' p=1+-

po when 1«~,r«(3yprp) ';

This is a quadratic equation in (co,/kSo) . Its two solu- S;,
tions correspond to the two modes of hydrodynamic

and
sound normally referred to as "6rst"and "second"
sound. Solving Eq. (40) and using (12) we get
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S 3p 3vpr'
=1———(u+1)' ln (49)

S'. 4 po 2

and

k2 3p j.—=——(I+1)' (50)
kt 4 pe 3rpr re~r

when 1«(3ypr') '«re, r. It should be noted that in
writing the expressions for the sound velocity we have
kept only a term proportional to a product of p~/po and
a logarithm. This is in accordance with the way in
which we approximated Zq. (37). Since ln2ce. r and
1n3ypr'/2 are large we are able to neglect terms of order

p„/pe which do not contain a logarithm.

C. Discussion

The results we obtained here for the sound velocity
and the sound attenuation are identical with those of
Khalatnikov and Chernikova" to lowest order in
p„/pe and ~.r. As we already mentioned in Secs. I and
III these authors calculated the sound velocity and
attenuation assuming the existence of an equilibrium
of collinear phonons. Hence their results appeared to be
valid only in the hydrodynamic region and in a part of
the collisionless region where re,r«r/t H. owev.er, we
see now that similar results can be derived from a
simple collision-time model whose application is not
necessarily equivalent to making this assumption.
Therefore, it seems that the assumption is unnecessary
and that the results of the calculation are also valid
outside the temperature and, frequency range in which
&o,r«r/t. It is of interest to compare the expressions
obtained here for the attenuation of collisionless sound
with the results of calculations done previously by
several authors. 4 ~" The main step in these calcula-
tions is the estimation of a characteristic lifetime for
the collisions of low-energy (acoustic) phonons with
thermal phonons. Knowing this lifetime it is possible
to estimate the attenuation using the following relation:

ks/kt= 1/a&,8. (51)
8 denotes the characteristic lifetime while co, stands for
the angular frequency of the acoustic phonon. In order
to estimate 8 one has to assume a certain mechanism for
the collisions between thermal and acoustic phonons.
In this context, three- and four-phonon processes were
studied. It was shown that the attenuation associated
with the three-phonon processes is given by".'
kg 3p—=——(I+1)sLarctan 2&v,r—arctan (3yPrrre, r)j, (52)

4po

whereas the attenuation due to the four-phonon
processes is":

ks 5 (I+1)'/kg+ s

(53)
kr Srrs pe'So'y ~, SSe)"C. J. Pethick (private communication). The original formula

derived bp Petbick and ter Haar (see Ref. 12) includes an extra
factor of —,~.

To first order in 1/u, r, Eq. (52) is in a full agreement
with the results we obtained earlier for the attenuation
of the collisionless sound. This means that our results
describe an attenuation which may be interpreted as
being due to three-phonon processes. As can be seen
from Eqs. (48) and (50) this "three-phonon" attenua-
tion depends on the temperature through p /pe in
cases where ~„r&&(3ypr') ' and through (p /pp)
X(3ypr'co„r) 'incaseswhere&o, r))(3ypr') '. Sincep„/ps
is proportional to T', pr' to T', and r to T ', we find a
variation of the attenuation as T' when ~,r&&(3ypr') '
and as T" When a),r)) (3pprs) '

It was noted by Kawasaki4 that energy can be con-
served in a three-phonon collision involving an acoustic
phonon, only when ~,r& (3yp. r') '. One can therefore
argue that for co.r & (3ypr') ' processes other than three-
phonon collisions may be important. This raises doubts
as to the validity of the "three-phonon" result (e.g. ,
the variation of the attenuation as T") we obtained for
re.r))(3ypr ) '. In view of Kawasaki's remark it
seems reasonable to assume that in this case the atten-
uation should be due to four-phonon collisions and
hence proportional to T' (53). It is hard to determine
which one of the two predictions is correct. However,
it is obviously clear that both of them diAer from the
one obtained for &v.r«(3ypr') ' (a variation as T4).
In other words, even without making speci6c predic-
tions concerning the temperature dependence of the
attenuation in the temperature and frequency range
where ~,))(3ypr') ' it is clear that it should be con-
siderably different than the T4 dependence expected
for the range where rd.r«(3ypr ) '

VI. ATTENUATION OF COLLISIONLESS SOUND;
QUANTITATIVE CONSIDERATIONS

In this section we present some quantitative con-
siderations concerning the attenuation of the collision-
less sound. The discussion is centered around the ex-
perimental results obtained recently by Abraham,
Eckstein, Ketterson, and Vignos. " These authors
showed that the attenuation varies approximately as
T4 in a range of temperatures and frequencies given by
0.12deg&T&0.45deg, 30Mc/sec&~, /2rr&150Mc/sec.
In view of this result and in accordance with the
considerations presented in the last section one
may conclude that the inequality re, r«(3&pr') '. must
hold throughout the range explored in the experiment.
A simple calculation in which the estimates (22) and
(30) for r and pr are used shows that this can be the
case only when y&(1&(10"g

' cm ' sec'. It should be
emphasized that this argument depends strongly on the
assumption that the transport phenomena in the super-
Quid are governed by large-angle phonon-phonon
scattering. In the following we shall see that in the"This conclusion was in fact drawn by a number of authors who
mentioned that the anticipated T4 dependence of the attenuation
will change in the range where ao,T»(3ypp) 4 (see, for example,
Refs. 9-12).
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range studied by Abraham et al. phonon-phonon scat-
tering is likely to be less important than scattering of
phonons by the boundaries of the container. Because
of this fact, we shall have to modify our estimate of the
bound for y.

The studies presented in this paper did not take into
account collisions of phonons with either He' impurities
or boundaries. Lifetime estimates based on the calcu-
lations of Khalatnikov and Zharkov'7 show that for
temperatures higher than 0.1 deg and concentrations
lower than 10 ' the phonon. -impurity scattering is
much smaller than the large-angle phonon-phonon
scattering. The impurity concentrations were much
lower than 10 ' in the experiments of Abraham et al."
Thus, the phonon impurity scattering can indeed be
neglected in the analysis of their results. The situa-
tion is different in the case of collisions with the
boundaries. The lifetime for this scattering process is
given by

TB I/50)

where I is some relevant linear dimension character-
izing the sizes of the container, The length of the
container used in the experiment of Abraham et al. is
of the order of 1 cm. Hence, in this case: v.~=4.2X10 '
sec. According to (22), r=3X10 ' 2 ' sec. Conse-

quently, for T(0.4 deg the collisions with the walls
become more frequent than the large-angle phonon-
phonon scattering. Thus, we see that boundary scatter-
ing cannot be neglected. "

It is very hard to give a satisfactory account of the
way in which the attenuation is a6'ected by boundary
scattering. However, as is done very often in similar
cases, one can obtain a crude estimate of this eRect
by using instead of ~ a new characteristic lifetime 7

defined as follows:

1 1 1
—=—+—=3X10'Ps+2.3X10' sec '. (55)

"I.M. Khalatnikov and V. N. Zharkov, Zh. Kksperim. i
Teor. Fiz. 52, 1108 (1957) )English transl. : Soviet Phys. —JETP
5, 905 (1957)g."V. Eckstein (private communication).

'9The possible importance of boundary scattering was first
mentioned by K. Dransfeld PZ. Physik 179, 525 (1964)g. It was
also discussed by Pethick and ter Haar (see Ref. 12).

Assuming that v is the relevant lifetime, the attenua-
tion should vary as T' when &u, r«(3&p&') '. This
inequality must therefore apply in the range studied
by Abraham et al. Using the estimates (30) and (55)
for pr and r we find that this can happen only for
p((2X1035 g

' cm ' sec'. This bound for p is higher by
four ord, ers of magnitude than the one we obtained,
when the boundary scattering was neglected, . It is,
however, lower by two orders of magnitude than the
crude estimate, y=2.8X10" g

' cm ' sec' given by
Landau and. Khalatnikov. 20 As we mentioned earlier,
Khalatnikov and Chernikova" remarked that the
actual value of p may be much smaller than 2.8X10".
In view of the considerations presented here it seems
that the results obtained by Abraham et a/. provide
further support for this.

At this point we note that because of the weak
dependence of the attenuation on y in the region where
ts, r«(3ypr') ', it is very hard. to use the experimental
values obtained in this region for a direct calculation
of y. In order to perform a calculation of this kind one
would have to know the experimental values of the
attenuation in the region where co.v.& (3ypr') '. No
measurement of the attenuation in this region has yet
been reported. Using the equality ~e„r= (3ypr') ' and
assuming that &=5X10"g

' cm ' sec', one may esti-
mate the frequencies needed, for such an experiment to
be of the order of 700 Mcjsec at least. For lower value
of p even higher frequencies may be needed, . Such fre-
quencies are higher than any used in previous studies
of sound attenuation in superQuid helium below 0.6
deg.
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