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stants, ej"e& times

2C p Csp k (k —p )6""'(k)/4""'(k p)—d'k

+Cp..C.»p,p: a""'(k)A»'(k p)d—'k

+C C & p p ~ 6"s'(k)as"'(k p)d'—k

+4C.p.Cps.p, (k —p )6""'(k)iI4 "&'(k—p)d'k (A1)

where e(p) 'p= e p =0 and

g„,—k„k,/m'
a„,(k) =

k' m'+—i e

is the vector-meson propagator. We first note that
in general T» (p')=g» I(p')+p„p„J(p'), and hence
—T;;(p') =3I(p') —y'J(p'), which we then evaluate in

the rest frame y= 0. The absorptive part of this expres-

sion is obtained by putting the intermediate particles
on their mass-shells, i.e., by replacing the denominators
(k' m—'+is) ' in the propagator by e(kp)5(k' —m').
This yields finite integrals, which are easily calculable
and lead to the results listed in Eq. (2.3). For example,
for the coeKcient of Cp,C,trp in (A1) we obtain

T4, (pps) = d'k e(kp)8(pp kp)—h(k' m'—)8$(p k)'—m'—5

XLpo' —(poko)'/ '5(—3—&'i ')

~(pps/4 ms)1/s(pp ppp/4ms) (2+pps/4ms)
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We point out that the extension of the PCAC (partially conserved axial-vector current) relation 8„A„~
=C,4/

~ to S „4f„x=Cr4g» and the use of charge commutators typi6ed by A4r= LVx,A g are useful in the
study of broken SU(3}symmetry. The use of the B„A„~=C~@~condition usually confronts us with a con-
siderable off-mass-shell extrapolation mz ~ 0; However, by using the above charge commutators and the
approximation we propose, the off-mass-shell extrapolation mz —+ 0 may be replaced by a more comfortable
one, m —+ 0, effectively to first order in the symmetry-breaking interaction. This approach is applied to the
study of the SV(3) symmetry breaking. Encouraging results have been obtained in the case of V —+ P+P
(i.e., E*~E+7r and p ~ 2I+2r) decays and in the direct determination of the f—f mixing angle from their
decay widths. We also make some estimate of the off-shell extrapolation m~ —+ 0 compared with the case
m —+ 0. Another useful application of the above charge commutators is for the weak leptonic decays. We
can derive a set of sum rules for the axial-vector coupling constants of the leptonic decays of hyperons which
seem to give new insight into the Cabibbo theory of leptonic interactions.

HERE have been many interesting calculations
based on the idea of current algebra, .' In the

actual computations the use of the PCAC (partially
conserved axial-vector current) hypothesis is essential.
One may take a variety of attitudes toward the use
of PCAC.

(I) One point of view is to regard the equation

as approximately true. ' Taking the matrix element of

' M. Gell-Mann, Physics 1, 63 (1964).
~Vector and axial-vector currents are denoted by V„+(x),

V ~+(x) ~ - ' and A„~(x), A„~+(x) - ~ ~ respectively, normalized
so that in a quark model we would have, e.g., V„"+(x)=imp„
X (4+iX4)q /2, 2„x+(x) =imp„(X4+i4) q/2, etc. ; the space integral
of, say, A0~(x,0) =—=iA4 +(x,0) is denoted by A +. The PCAC
relations are used in the form B„A„+=C,@w+ and 8„A„~+
=CJi-,@~+,where, e.g., qb"+ creates ~+ mesons. .

(1) between the proton and the neutron, one obtains a
form of Goldberger-Treiman relation

- Inn
C.=v2gg m.',

G,„(m '=0),
(2)

' For instance, S. Adler, Phys. Rev. 157, B1022 (1965).

where g~ is the ratio of the axial-vector to the vector
couphng constant of P decay. The calculation' from this
standpoint involves the extrapolation of the pion o6
the mass shell (m —+ 0).

(II) In a second point of view, r)„A„~ is regarded as
a highly convergent. operator whose matrix element
satisfies an unsubtracted dispersion. relation in squared
momentum transfer q'. For small q', the dominance of
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the pion pole term is assumed. In this approximation,
one need only deal with on-mass-shell quantities. 4 '

(III) A third point of view' is to regard Eq. (1) as
an exact condition which provides a definition of a local
pion field. ~ Then C can be evaluated directly from the
pion decay rate.

For the problem dealing with the charge operators
A and V, the above three approaches do not lead to
very different results. This is partly because the value
of C, evaluated by using (2) is not very different from
the one obtained by using the pion decay rate and
partly because the off-shell effect due to m —+0 is
probably not important. In fact, from standpoint (II)
Weisberger4 obtained a value

I g~ I

= 1.15. However, he
also observed that the value

(3)

can be obtained by using the value of C determined
from the pion decay rate and still using the physical
pion-nucleon scattering cross section. Since (3) is also
quite close to the experimental number, Igzl =1.18
~0.025, one may make the following speculation: The
off-mass-shell effect due to m —+ 0 is negligibly small
and standpoint (III) is also compatible with the P-
decay experiments.

However, if we turn to problems dealing with the
axial-vector charge operator, A~, the situation becomes
more involved. In addition to (1), we assume

8„A„z=Czyz.

The generalized Goldberger-Treiman relation is given,
for instance, by

where (gz)s is the corresponding quantity to gz in the
A. —& p+e+f decay. However, the value of the G»z
coupling constant is not very precisely known. s Further-
more from standpoint (II), the X-meson pole dominance
for the matrix element of the operator 8„A„~is now not
so convincing. These considerations make it rather
dificult to draw an unambiguous result for this case
in standpoint (II), although one need deal only with
on-mass-shell quantities. '

4 W. I. Weisberger, Phys. Rev. 143, 1302 (1966).' B. Renner, Phys. Letters 20, 72 (1966).
'This point of view was taken by S. Matsuda, S. Oneda, and

J. Sucher, Phys. Rev. 159, 1247 (1967).
This point of view was stressed by K. Nishijima and S. Okubo.

See Proceedings of the Argonne International Conference on
Weak Interactions, Argonne National Laboratory Report No.
ANL-7130, 1965, p. 418 (unpublished).

s The most recent estimate gives (Gs„zs/4s)~5 Lsee M.
Lusignoli, M. Restignoli, G. A. Snow, and G. Violini, Phys.
Letters 21, 229 (1966)].This value is rather small compared with
the values which have been often used in the past literature of the
computations using the current algebra. If we use the best value
of (gz) s obtained by N. Brene et al. (Phys. Rev. 149, 1228 (1966)j
we obtain from (5) that Gs„z'(mzs=0)/4r 8.' Also in standpoint (I), the question "How good is the PCAC
condition (4) with (5)?"will become more important.

We now come back to standpoint (III). Here we can
bypass the above-mentioned difhculty, since Cz can be
determined directly from the rate of IC —& p+v decay,
if we assume the same Cabbibo angle for vector and
axial-vector weak leptonic interaction. ' However, in
this approach we have to face up to the off-mass-shell
correction, m~~0, which looks like a considerable
extrapolation. Therefore, in standpoint (III) an esti-
mate of this effect is desired. Apart from this, from the
theoretical point of view, it is certainly interesting to
study, if feasible, the off-mass-shell effect.

In this note we point out that there is a relatively
simple way to replace the off-mass-shell extrapolation
mz —+ 0 by the one m —+ 0, based on an approximation
which seems reasonably good to us. This implies that
one may study standpoint (III) with an extrapolation
m —+ 0 which is much smaller than m~ —+ 0.

As one of the direct consequences, we compute the
ratio of the coupling constants of the interaction E*—+

E+7r and p~7r+~ where one of the pions is off the
mass shell. " This turns out to be very close to the
corresponding one on the mass-shell obtained from the
observed decay widths. Therefore, if this off-shell effect
(m —+0) is negligibly small, as indicated by Weis-
berger's calculation, 4 we seem to have been successful
in explaining the observed branching ratio.

By using the same approximation we also compute
the mixing angle of I=0 2+ mesons, f and f ', directly
from experiment. We obtain a value which is close to
the one predicted by the Gell-Mann —Okubo mass for-
mula. These results seem encouraging and lend support
to our approximation. For the sake of theoretical
interest, we also present some estimates of the effect
of the off-shell extrapolation m~ —& 0. We also compute
the P —+Z+Z decay width using, however, the ex-
trapolation mz ~ 0. Finally, we point out that one can
derive a set of sum rules using specific charge com-
mutators for the axial-vector coupling constants of the
leptonic decays of hyperons which seems to give new
insight to the Cabibbo theory of leptonic decays. All
our arguments are based on only the charge algebras,
not on relations involving the commutators between
two currents.

1. The method consists of the use of commutators
typified by Az= LVz,A„]. (6)

We take the matrix element of (6) between the state
Q and I' with four-momenta q„and p„.

&Q«&IA I~(p)&

=Z&Q(v) I
I'zIQ'(v')&&0'(v') IA-II'(p)& (7)

—Z&Q(v) IA. lf"(P')&9"(p') I
I' l~(p)).

+ With coast=cosgr=0. 978& we obtain (Cz/mx )'=2.82X10'
(MeV), whereas from the pion decay, (C /m, ')s=1.73X104
(MeV)'.

"Throughout this paper, we treat all the resonances as stable
.particles.
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We now evaluate (7) at lql = Ipl =~." Then, for
instance, (Q(q) I V&r I

Q'(q')) will be evaluated at (q —q')'
=0. In picking the state Q' we make the following
approximation: We note that V&r is an SU(3) generator
in the symmetry limit. We propose to keep only the
states Q' which have the same space-time quantum
numbers as the state Q. Suppose Q and Q

' belong to
the same SU(3) multiplet and can be connected by the
operator Vrr (like the case Q=3 and Q '=E). If there
are no other states which have identical quantum
numbers to Q and Q ', the value of the matrix element
under consideration, (Q I

V&r
I Q '), is known to first order

in the symmetry-breaking interaction. " However, for
instance, there may exist two states, Q

' and Qe', cor-
responding to the intermediate state Q' in question
(e.g. , the case Q

'= co and Qe' ——p). In this case we write
the states, Q

' and Qe', to first order of symmetry breaki Ng,

in terms of the two fields, Q
&'&' and Qe&'&', which belong

to different SU(3) multiplets in the symmetry limit. If
the masses of Q

'&'& and Qe'&'& are close, there may be
appreciable mixing and such terms should be kept. By
the procedure described above, we can evaluate the
matrix elements (Ql V&r IQ ') and (Q I V&r IQe'&, to first
order, with a mixing parameter. We apply the same
procedure whenever the mixing possibility exists. All
other states Q~' will be dropped for the sake of simple
calculation. We note that, since Q~' has different space-
time quantum numbers from Q, and since V&r is essen-

tially a scalar quantity, (Ql V&rlQ ') must involve a
higher-momentum barrier than the diagonal term

(Q I Vr& I Q '(or Qe')&. Also, since Q and Q
' do not belong

to the same SU(3) multiplet, the mass difference be-
tween Q and Q~' will in general be large compared with
that between Q and Q, ' (or Qe'), which suppresses the
importance of these Q~' terms. Experience with calcula-
tion of the type in question indicates that these factors
tend to make these contributions of the omitted states
small, and this seems plausible from the point of view
that the contributions of the continuum are dominated

by those of one-particle resonance states. (See, for
instance, Ref. 22.) Therefore, even though the term

(Q I
V&r I

Q&') &s formally of first order, the net contribu-
tion may be small, of comparable magnitude with the
second-order term in the diagonal terms. Thus our
computation may be good, in eGect, to first order of
symmetry breaking. Of course, we do not exclude the
occurrence of some special circumstance. For instance,
if the Q~' is a low-lying state which couples much more
strongly than the corresponding Q

' or Qe', it might
upset the argument. Needless to say, the accumulation
of knowledge of resonances will make it possible to
include estimates of (Ql V&rlQ„') terms in the present
approach.

Returning to the terms involving A, and A&r in (7),
&Q(q) I ~&rI I'(p)& and &Q'(q') I~, IP(p)& are related, by

"S. Fubini and G. I'"urlan, Physics 1, 229 (1965)."M. Ademollo and R. Gatto, Phys. Rev. Letters 13, 264 (1964).

using PCAC, to the coupling constants of the processes
P~Q+E (m&r=0) and I' —+Q'+7r (m =0), respec-
tively. Therefore, using (7), one can express the off-shell

coupling constant for P-+ Q+E (mx ——0) in terms of
other coupling constants which involve only the pion
o8 the mass shell, m —& 0. By using this procedure, one
can replace the oB-shell extrapolation m~ —+ 0 with the
more comfortable one m —+ 0.

2. We now proceed to apply the procedure just
described. We first take the matrix elements between
3'(p') and If*+(p) with

I
p'I =

I p I
= ~, of the following

two-charge commutators:

3~&r-= LV&r-,~ '], ~x-= LV&r', ~ -].
Using our approximation outlined above, we obtain in
a symbolic notation

I&'+)=-&~3I vx I&+)«+-I ~-
I
&*+&

& 'l~ -I&*+&=& 'I v- Ilt'&«'l~--II&:*+&
—&-'l~--l.+&&+I v= Ilf*+&

One can eliminate the A~ term from the above two
equations to obtain

(1 3

d'k(&~'(p')
I Vx I&+(k))&&+-(k)

I
~- I &*+(p)&

&2m

—
&

'(P')
I
V- II&'(k)&&1&"(k)l~ -I& (P)&)

(1 3

d'k&~'(p')
I ~- It+(k)&-

«2~ "
x&&+(k) I v; le*(P)).

We define the relevant form factors as follows:

(2P3'2k3)'&3 «2 J

x P'+(q') (ko+Po')+~-(q') (k —P ')], (1o )

where

q=p' —k and F+(0)=1 and F (0)=0

in the SU(3) limit.

(23r) 38 (k—p)
&p'(k) I Vx I&*"(P)&= (-1)

(2pp2k3) "3

X((3'e ')
I f~(q") (Po+k3)+f3(q") (Po—ko)]

+(" P)3o 'f3(q")+(3 * k)eo'f4(q")

+(3& q')(ex'. q')(1/m ')

XLf3(q") (po+ko)+fs(q'')(po ko)]}, (10b)

where q'= P—k, f3(0) = 1 and f3(0)= f3(0)= =f, (0)
=0 in the SU(3) limit. e& and ex" are the polarization
vectors of the p and the E~ meson, respectively.
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Using PCAC, one can relate, for instance, the quan-
tity (Kp(k)

l
A -lK*+(p)) to the off-mass-shell coupling

constant of the process E*+ +E-o+rr+ (m '=0), as
follows:

&&'(k) I
A--I &*'(P)&I (~sl =o

(2~)48(1 —p)~C. G * . (m.s=o)
(ex* k). (10c)

(2ko2Po) "s Em ' i(kp P—p)

We now substitute expressions such as (10a), (10b), and

(10c) into Eq. (9) and take a limit lp'l =
l pl = po;

make summations over p-meson spin states; and per-
form an integration over d'k. For the spin summation
we encounter the following four types of expressions:

the expression (m, '—mz'), which is zero in the sym-
metry limit, and therefore we can safely neglect these
terms in comparison with a. This, in fact, corresponds
to a realization of the Ademollo-Gatto theorem. " We
therefore finally obtain'~" the ratio of the coupling
constants for the E"~X+ )rand p

—&4r+)r decays
where one of the pions is o6 the mass-shell:

2Gz z-. (mz', m»', m, '= 0) (m, '+mz') );(tp

G, ' o(m,—',m ', m '=0) ( 2m, ' F (0)
(11a)

Since, to first order in the symmetry-breaking inter-
action, fr(0)=F+(0)=1, we therefore obtain in our
approximation,

o= Z ("p')("' ')(Pp+ko)fr(0)
spin

&= Z (e'P')(e'P)eo "fs(o)

m +mlrz
E= = 1.19.

2mp
(11b)

spin

c= 2 (" P')(e '
k)eo'f4(o),

spin

d= Z (e'P')(" P)(e
"

k)(Ps+go')fs(0)
SP ill

After simple manipulation in the limit corresponding
to

l
p'l =

l pl~pe, these expressions turn out to be

(m +omx)(mp' m„')—
« 'fr(0)

2mp ~0.8 (BeV)sfr(0)epx',

(m '—mxz')(m '—m ')
b= epx*fs (0)

4m„' —0.05 (BeV)'fs(0)e() '

(mx"—m, s) (m,'—m.')
c= pox*f4(0)

4mp'
~0.05 (BeV)'f4(0) epx',

m~*' —m ' ' m '—m~'
eo 'fs(o)

The corresponding ratio on the mass-shell determined
from the experiment' is 1.15. That is, the value of
(11b) predicts F(E*+—+ all) 52.5 MeV from the ex-
perimental width, compared with the experimental
value 50+1.4 MeV. '~ In order to have some feeling
about the e6ect of second-order symmetry breaking,
we note that from the experimental E,3 decay rate,
assuming that the form factor F4.((ts) is dominated by
the E* meson, we infer F+(0)~1.04.rs Since the mass
difference between the E*and the p meson is small, we

may expect f&(0) is very close to 1.
3. We determine the mixing angle between the I

=7=0 2+ mesons, f(1254) and f'(1500). We again
take the matrix elements of the commutators (8), now
between the 4r' and E**+(1415),and proceed as above.
We write, to 6rst order of symmetry breaking, for the
physical f and f' in terms of the unitary singlet f& and
the I= I =0 member of the octet, fs,

f=cos8 fr+sin8 fs, f'=cos8 fs —sin8 fr. (12)

Experimentally the rate f' —+4r+4r is very small" so
that we assume Gy =0. Then we obtain, " in our
approximation,——0.018 (BeV)'fs(0)epx".
Gxzz+rro -(mxzzs, mxs, m '=0)

We notice that, whereas f)(0)=1 in the symmetry
limit, fs(0), f4(0), and fs(0) are all zero in the symmetry
limit and are of the 6rst order in the symmetry-
breaking interaction. The b, c, and d terms also involve

Gr o o(mr', m ', m '=0)

(mrs —m.') (mr4+mrc-4+4m pmrc-')
(g6) sin8.

6 (mlc*zs mxs)mg4—

(13)

"Numerically similar results have been obtained by H. T.
Nieh, Phys. Rev. Letters 15, 902 (1965); Phys. Rev. 146, 1012
(1966);Riazuddin and Fayyazuddin, ibid. 147, 1071 (1966);R. J.
Rivers, ibid. 152, 1263 (1966).

» We note that the results (11), (13), and (14) do not depend
on C and Cz. Therefore, they also follow from standpoint (I).
However, the results are approximate to the extent that the rela-
tions (1) and (4) are approximate.

"The effective coupling constants for S(0+), V(1 ), and T(2+)
meson decays into pseudoscalar mesons P and P' are dered by
writing the corresponding effective Lagrangians in the form
Gspp'SPP', 4Gvpp'V, P''a.P' (a,P) P'] and —Grpp T„.(S„P)
X (8j"l.

"A. H. Rosenfeld et a/. , Rev. Mod. Phys. 59, 1 (1967)."S.Oneda and J. Sucher, Phys. Rev. Letters 15, 927 (1965);
15, 1049K (1965).

"P(f'-+K+Zl/I'(f'-+all) 0.6. Since phase space favors
f' —+ m+m- compared with f' —+ E+E, this is a good
approximation.

Q~s s+~p 2 p5 3
20 r (X**0~ E+~-, E0~0) =

30m m~2 2'

Gf0 p p2 p5 3r(t0~ ~0~0 ~+~-) =
15m mP 2'

where p is the momentum of the secondary particle.
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Using'r I'(E'**+—+ E'+rr)/I'(E**+ —+ all)~0.5+0.1, I'

&&
(E**+~all) (96+7) MeV and I'(f~ 2z) = (112

+8) MeV, we obtain 8 33'. It is interesting to notice
that this value of 8 is close to the value 8 30' obtained
by using the first-order Gell-Mann —Okubo mass for-
mula. "Considering the experimental uncertainty in the
width, the result seems to be satisfactory. For possible
future usefulness, we write a similar sum rule for the
hypothetical 0+ nonets. We introduce IC' (I=—',, 1'= 2),
$ (I=O, Y=O), and o. (I=O, V=O). The a. and the $
are related to the unitary singlet or and the octet te in
a similar way to (12) by an angle O'. We obtain

Gx*x.(mx' ——0) C ) (mx')
1=0.78.

Gx~x. (m.'=0) m ') ECir )
(15)

In a similar way, we get, using (8),

2G,os-x+{mx'= 0)

Gp~ - +(rw '=0)

(mx. —m, ) (C, )/m 2

=0.76, (16)
4mrc*'ml, n km '/ k Crc

GK'K (re'=0) ~z' —~ ') (C ) (riiK)
1=14

Gx x~(m '=0) mx' rnx'/ Em '3 EC—x /

(for mir'= 725 MeV). (17)

5. By taking the matrix element of the erst expres-
sion of (8) between the E and the P' meson, —we obtain,
in our approximation (8 is the io-P mixing angle),

Geox x+(me', mx', m-rr'=0)
= —V3 (coso)n,

Gx~+rr-, o(mx",mx', m '= 0)

mx"+me' C, q ymir'q
1=0.90.

2m'' m '/ (Crr i
(18)

"S.L. Glashow and R. H. Socolow, Phys. Rev. Letters 15,
325 i1965l.

Gx +z0.—

= (g6) sin8'
m+ —mQ mg mar

G)0 0 0

+ (g6) cos8', (14)
mgI m&

where, in each of the expressions for G, one of the pions
is on the zero mass-shell. We note that in deriving Eq.
(14), we neglect the contribution of vector-meson
states. Since the vector mesons are the low-lying and
strongly coupling particles, the status of the relation
(14) Land correspondingly (17)] might be more de-
batable than that of (11), (13), (15), and (16).

4. The commutators (8) can also be used to replace
the off-mass-shell coupling constant (mx=0) with the
one (m =0). From (9) alone, we get

gee= gz'a (V'a)gna cos4. —

In the same way we also obtain a set of sum rules

g-.-= —(1/~)g. z-+(v'l)g-- cost»

g~z ~~gz+z'+ gr»

g& ~ ( V 2)gzo „—cosg +gaz

g, .= (1/~-~)g.—.;+(v'l)g.

gz+ o=g. o&-+42gzoz-.

(20)

(21)

Note that in deriving these sum rules me do not use

~ If the experimental numbers become very precise, one could
try to include the off-mass-shell correction based on the feeling
obtained from the estimates, (15) and (16). Since m~)m„ the
off-shell correction (m~ —+ 0) for the qb ~ E+Z coupling may be
small compared with that for p —+ X+K coupling.

~ Dr. J. Sucher called our attention to the work of K. R.
Mccliment (unpublished). He used a similar approach to ours
for this problem. The main difference is that we are dealing, in
the spirit of the current-commutator calculation, with the directly
observable quantities such as g„g, etc. He made an estimate of
the[Q„' term which we dropped. Namely, )he kept the decuplet
states and concluded that their effects are small.

The factor n does not appear in the usual SU(3) ca,lcula-
tion. If we take'r I'(p —+ all) =3.6 MeV and I'(p —+ E+
+K )/I'(&~all)=0. 47, we obtain from (18) 8 35',
compared with a value 8 39' predicted by the first-
order mass formula. However, uncertainty in the experi-
mental P width and branching ratio is, at the moment,
still uncomfortably large. Moreover, Eq. (18) involves
off-mass-shell (mx —+ 0) coupling. Therefore, the above
evaluation of the value of 0 is not very useful at
present. "

6. We now discuss the Cabibbo theory from a point
of view of the present approach. We notice that (par-
ticularly in the quark model of hadrons) the currents
we are dealing with, V„, A„, V„~, and A„~, are
exactly the Cabibbo currents which govern the weak
interactions. We point out that, in the presence of the
SU(3) symmetry-breaking interaction, the following

approach to the semileptonic interactions based on the
commutation relations of type (6) satisfied by these
basic weak currents gives an instructive insight into
the analysis of semileptonic processes. Take the matrix
element of the adjoint of the second expression of (8)
between the proton and the A. with infinite momenta. "
In our approximation, we get

—&pic l~)=&pl v Iz+&&a+la. I~&
—

&P I
~."

I ~&&~ I
I'x

I ~& (19)

We note, for example, &p I
A „x+

1
A) ~ gi,aN„pe„uq, where

Gg„a sin8~ [g„q—= (g~)a of Eq. (5)] is the observed axial-

vector coupling constant for the 4-+ p+e+i d.ecay at
zero momentum transfer. G is the coupling constant of
muon decay. For the sake of generality, assume that
there exists another I= I'=0 -',+ baryon I' and write
the physical i1 as h. =cos&A~ —sing Yi, where the Q
and I't denote the octet and singlet. Then from (19),
a sum rule follows to our approximation,
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PCAC. Therefore, a test of the Cabibbo theory (i.e.,
the determination of the angle 8~) in the broken SU(3)
symmetry is provided by looking at these sum rules.
However, we note that the same sum rules are also
obtained in the original pure SU(3) analysis due to
Cabibbo if &=0 (by eliminating the ratio of d-type and
f-type coupling of weak currents, which we do not need
to introduce in our approach). This means that the
sum rules, which are independent of the d/f ratio in
the pure SU(3) analysis, may still be valid, effectively
to the 6rst order in the symmetry-breaking interaction,
if our approximation is valid. "The validity of these
sum rules has already been tested by experiments to a
rather satisfactory extent. However, in order to really
study the pertinent question whether we have one angle
8~ =Hy or not, we seem to need more accurate
experiments. '4

Finally, we remark about the sum rules for the strong
BBP coupling and the generalized Goldberger- Treiman
relation. If we use PCAC in (19), we obtain a sum rule
similar to (20) for the strong BBP coupling (in our
approximation):

(C~ (mits
G.«(mx'= o) =

( I CGz's. -(m.'= o)
Em.s &C

—(g-,')G, .-(m.'= 0) cospj. (22a)

The oG-the-mass-shell extrapolation is indicated ex-

plicitly. Sum rules corresponding to (21) are obvious.
The study of these sum rules is interesting, although
we have to be aware of the extrapolation m~ ~ 0 for
the G„g~ coupling. We notice, however, some suggestive
features of the sum rule (22a). In the usual pure SU(3)
analysis, by eliminating the ratio of F-type to D-type
coupling, an analogous sum rule on the mass-shell to
(22a) is obtained,

Gv«= t Gz'~- (v's)Gv- j-— (22b)-
The factor, (C /m ')(mrcs/Cx) 0.61(1, which stands
in front of the right-hand side of Eq. (22a) makes the
value of G„«(mrrs=0) smaller than the one Predicted

by the pure SU(3) calculation, (22b). This is, at least,
in the right direction to agree with the experimentally
indicated small value' of G~q~.

From standpoint (III), (2) and (5) imply, for instance,

gva

(G»~-(m '=0)/ Gvirr (mrr'=0)l-

=0.85. (23)
(C ) /mrr )m +my

'm. sJ &Cx/ 2m,
'4 At the moment there is no convincing evidence for the exist-

ence of the Y . If we discard the effect of F', we expect, under our

We note again that Gvz&-(mx' ——0) may differ from its
on-mass-shell value by an appreciable amount. (One
might say at least 20% from the experience indicated
by (15) and (16). We also do not know the sign of this
correction. ) Therefore, the corresponding va, lue of the
ratio (23) otr the mass shell could deviate from unity to
some extent, although the possibility that the off-mass-
shell effect acts in such a way as to restore the value
obtained in (23) to unity cannot also be ruled out. From
these consideratioris, we should keep in mind the possi-
bility that the ratio of F-type to D-type coupling (in
the usual SU(3) analysis terminology, which we do not
need to use in our approach) may differ to some extent
(probably at most 30—40%) between the strong BBP
interaction and the weak axial-vector coupling. There-
fore, it is not surprising even if we observe some
deviation from the generalized Goldberg-Treiman rela-
tion. If we know the rather precise value of Gy. +z-
coupling, using (22a) we may check the validity of the
Eq. (23) by measuring the value of gvz.

)Vote added in proof We rem.ark here the following
interesting possibility which will also favor our approxi-
mation adopted in discussing the broken SU(3) sym-
metry: The degree of the SU(3) breaking in the matrix
elements of the SU(3) generator, Vsr, at zero momen-
tum transfer may be considerably smaller than the
corresponding SU(3) breaking in the matrix elements
of the axial-vector charges. We know that at least
in the E,3 decay, the value of the matrix element

(ir(p')
~
Vrc~Z(p)) at zero momentum transfer Lsee, for

instance, Eq. (10a)] is very close to the SU(3) value.

If this is generally the case, our approximation will be

good since we do not make approximations on the
axial-vector coupling constants. In particular, if we

assume small renormalization of the vector coupling

constants, we are justified, in. the broken SU(3) sym-

metry, to determine the axial-vector Cabibbo angle 8~

from the sum rules (20) and (21). We note that if we

use the presently available experimen. tal rates of P,
A. —+ p+e+v and Z —+A+e+v decays, the sum rule

(20) is compatible with having ev =8~ within the experi-

mental error. Much more accurate data on these decays
is required to settle the question of whether we have

ey=og or not.
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approximation, that by checking the sum rules (20) and (21), we
obtain for the observed value 8& av within, say, 10% if we have
the equality in the bare coupling.


