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Self-Consistent Equations and. Self-Coupling of Vector Mesons~
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A system of n vector mesons in self-interaction is considered, and the problem of deducing the existence
of a symmetry group for the interaction by the use of self-consistency equations is investigated. Two results
are established. The 6rst is that a technical condition of complete antisymmetry for the coupling constants,
vrhich vras used as an assumption in an earlier "bootstrap" demonstration of the existence of a symmetry
group by Cutkosky, can be derived from other assumptions. The latter have an immediate physical interpre-
tation and for this reason may be more plausible. Secondly, it is shown that for the physically interesting
case n =8 at any rate, the existence of the symmetry group for the interaction follows also from the so-called
Smushkevich principle.

I. INTRODUCTIOÃ

KCENTLV a number of papers'2 have appeared
in which the existence of an internal symmetry

group for strong interactions has been deduced from
self-consistency, or bootstrap, equations for the cou-
pling constants. Perhaps the most well-known of these
derivations is that due to Cutkosky, ' who for the case
of m vector mesons in trilinear interaction with them-
selves deduced the invariance of the interaction under
a compact semisimple Lie group of order n. In spite of
the elegance of Cutkosky's approach, however, his
derivation is subject to the limitation that in addition
to some rather natural physical assumptions (tlie
conservation of one additive quantum number and the
assumption that the states with which one starts are
the lowest energy bound states) which are used to
supplement the bootstrap hypothesis, a very strong
algebraic assumption is used. This assumption, which
at least on the surface, has no physical motivation, is
that the array C p~ of all coupling constants is anti-
symmetric in all three indices. The antisymmetry in
tmo indices is all that is required by physical considera-
tion (Lorentz invariance) and the strength of the
assumption of antisymmetry in all three indices can be
seen by noting that what one is ultimately attempting
to show is that the C p are the necessarily completely
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antisymmetric structure constants of a compact semi-
simple Lie group.

The primary purpose of the present paper is to show
that the rather unphysical complete antisymmetry
assumption just mentioned can be derived from other
assumptions which have an immediate physical inter-
pretation and seem to us somewhat more plausible.
These assumptions we shall call the labeling assumption
and o8-mass-shell assumption, respectively, and they
are as follows:

(a) Labeling AssllIIlptloll: We assu111e that tlM

particles involved are labeled by additive conserved

quantum numbers (Q, F etc.) (the antiparticles having
labels —Q, —1' etc.) and that this labeling is unique
for all except neutral particles i.e., those for which

Q, F etc. are all zero. Further, we assume that there
exists at least one neutral.

Assumption (a) is clearly satis6ed for the physically
interesting vector-meson octet (Z",p,oI). Note that
mere labeling implies nothing but invariance under the
gauge groups generated by Q, 1', etc., and in particular
implies nothing about invariance under the full isotopic
spin group or under SU(3).

(b) Off-Mass-Shell Assumption: We assume that the
interaction Hamiltonian is such that the condition

(u~ T(H(sr)II(y))d'(xy) ~P)=const&&b, e, (1.1)

where ~a), n= 1 e, are the one-particle vector-meson
states, is satisfied, both ol aed og the mass shel/. This
condition may be looked on as the generalization of
Cutkosky's normalization condition (4) for the com-
pletely antisymmetric case, or as a type of bootstrap
condition for the propagator graph of Fig. i. Equation
(1.1) can also be regarded as a second-order consequence
of the so-called Smushkevich principle, which demands
that the interaction be such that the e vector mesons
be mass-degenerate before and after the interaction is
switched on.

Fxo. 1. Propagator graph
for Eq, (1.1).
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FIG. 2. Graphical represen-
tation of Eq. (1.3).

The explicit form of the (interaction-picture) Hamil-
tonian used in (1) is assumed to be

the mass shell, and since we are assuming mass
degeneracy, it must hold in particular for the absorptive
part of the expression on the left-hand side of Eq. (1.1).
Thus, if p' denotes the four-momentum squared of the
one-particle states

~
its), the relation

&(*)=C-p,~."(*)~p"(*)~,"(*)., (1 2)

where pJ'(a), ted=0, 12,3 n=l I are the vector-
meson 6elds, and the summation convention is used.
From the divergence condition P "(x),.=0 for the
(free) vector-meson fields, ' it follows that no generality
is lost by assuming C p„ to be antisymmetric in P and y.
In fact, this is the reason for using recto~-meson 6elds.

The main result of this paper is a demonstration
that for a Hamiltonian of the form (1.2), conditions (a)
and (b) above are already sufficient to imply that the
C p~ are antisymmetric in all three indices. Cutkosky's
original argument based on his bootstrap condition

trC CpC~=IJC p~, (1 3)

where p is a number, and C the matrix with entries
C p~, corresponding to the graph of Fig. 2, then shows
that the C p~ must be the structure constants of a
compact semisimple LIe group.

A secondary purpose of the paper is to investiga, te
the following question: If the vertex bootstrap Eq. (1.3)
above is dropped, but the consequences of the Smush-

kevich condition are assumed to be true in all orders of
perturbation, does it still follow that the C p~ must be
the structure constants of a compact semisimple I.ie
groups An alternative way of asking the same question
is to ask whether the bootstrap conditions (1.3), which

are for 3-point functions, can be replaced by conditions
on 2-point functions. The interest in this question
stems from the observation that in many cases in which

the existence of a symmetry has been derived from a
bootstrap hypothesis, it has been derivable from the
Smushkevich principle also. The vector-meson case
provides a more stringent test of this than has hitherto
been proposed. Unfortunately, it also provides more
complicated algebra than has hitherto been encountered.
For that reason, we have been able to investigate only
the cases e= 3,4,5,6, and the physicaBy most interesting

case, n=s. For these cases, we have been able to show

that the Smushkevich principle does indeed reduce
the C„p~ to structure constants.

' Ke are not assuming of course that the divergence condition
holds for the interacting, or Heisenberg fields. If it does, then it
follows immediately that the interaction is SU(e)-invariant. See
V. I. Ogieretski and I. V. Polubarinov, Ann. Phys. (N. Y.) 2S,
358 (19Q).

IL SELF-CONSISTENCY EQUATIONS IN
SECO5D ORDERS

Following the discussion of the previous section, we

assume the off-mass-shell condition (b) of Eq. (1.1)
and note that since this condition holds both on and o6

(corti I rt4(*y)II(x)II(y)
~
Pti) =const Xb.p (2.1)

p2 1 p4—
I,( p')= L4m' —psj 3

m' 4 m'

ps 1 p4-
Is(p')= —p' 8

m' 4 m'

p4 — ps-
Is(p') =—1-

m2 4rn2
'

(2.3)

3 p' 1p'I.(p') =p' 2- —+
2 m~ 4m'

Since the 4 functions in Eqs. (23) are clearly function-
ally independent, and Eq. (2.2) is assumed to hold for
all p', we obtain from (2.2) the four separate equations

CabcCP bc ~~~P ~

Cb cCbp. =M p,

CbacCcp b= p~e p p

CabcCbpc= IJ~ctp q

(2.4)

where X and ~ are constar ts. That the same constant
appears in the 6rst two and last two equations, respec-
tively can be seen by contracting each of Eqs. (2.4)
with respect to n, P and using the two-index anti-
symmetry condition C pr+C rp= 0, which can be
assumed according to the discussion following Eq. (1.2).

%e now show that a necessary and sufhcient condi-
tion for the C p~ to be antisymmetric in all indices is
that

(2.5)

For this purpose we write the two center equations
of (2.4) as

trC Cp=M p,

trC, Cp=ttb, p, (2 6)

must hold for all values of p'. In contrast to Eq. (1.1)
which is divergent, Eq. (2.1) is not only convergent but
is easily calculated. A straightforward calculation,
yields (see Appendix),

2C s,Cps,It(p')+Cs .Csp,Is(p')+Cs, C.psIs(p')

ps i t/s

+4C s,Csp, I4(Ps) = constXb pi i &
(2.2)

&ps
—4~si



w'here C is the matrix with elements Cb „and C its
transpose. From Eq. (2.6) we obtain immediately

tr(C.+C.)'= (X+@).

Since C +C is real and Hermitian, it follows that it is
zero if and only if X+p=0. On the other hand, Cp,
which is antisymmetric in e and c, is antisymmetric in
all indices if and only if it is antisymmetric in b and c,
i.e., if and only if C +C =0.This establishes the result.

%e add the following observation. Since the right-
hand side of (2.8) is independent of n, (X+p) =0, if for
any single pt, C +C =0. In other words, C +C =0
foi' aIly SIllgle II, IIIlplies C +C =0 fol ail IL

Ke do not know the accessary conditions that
C +C be zero for a single n. However, in the next
section we shall show that a sufhcient condition is that
the set of e mesons considered satisfy the labeling
assumption (a) of the introduction.

Fn. 3. Fourth-order
self-mass diagram.

Combining Eq. (3.5) with the relation C,pp=5 pC p „
implicit in Eqs. (3.1) and (33) we obtain finally

(3.6)

for all u and P.
But Eq. (3.6) is just the relation Cp+Cp=0 which,

according to the discussion of the previous section, is
su%.cient to imply that the C ~~ are antisymmetric in
all indices. Thus we have now shown that the two
conditions (a) and (b) of the introduction are suKcient
to imply the complete antisymmetry of the C p~.

As mentioned in the introduction, if one now assumes
the vertex bootstrap condition (1.3), Cutkosky's
original arguments can now be applied to deduce that
the C p~ are the structure constants of a compact
semisimple Lie group.

C4.= —4-. , (3.2)

the second equation of which essentially deines p, .
In (3.1) the space-time indices have of course been
suppressed. It follows from (3.1) that the only contribu-
tion of pI to (1.2) is of the form

III. DEMVATION OF COMPLETE ANTISYM-
METRY FROM THE LABELING

ASSUMPTION

Let ~ denote one of the neutral mesons in the set e
(by hypothesis there exists at least one neutral). Since
the additive quantum numbers are conserved, the or

can couple to the non-neutral mesons only through a
couphng of the form

(3,1)

where a is the (unique) labehng operator for the non-

neutrals. If x denotes the labehng index for the neutrals
and C the charge-conjugation operator we have (since
the mesons are spin 1)

(4.1)

into which Eqs. (2.4) collapse in the completely anti-
symmetric case. The Smushkevich principle which
involves only self-masses does not yield any conditions
in odd orders of perturbation. In fourth order we get

trC C~CpC~= constX8 ~, (4 2)

IV. SMUSHKEVICH PRINCIPLE

As mentioned in the introduction, in many cases in
which the invariance of an interaction under a compact
simple Lie group can be derived from a bootstrap
hypothesis it can be derived from the Smushkevich
principle which is dered in that section. It is interest-
ing to ask whether the same is true of the interaction
(1.2). The second-order Smushkevich equations are of
course Eq. (1.1), and so if these are taken off the mass
shell and allied to the labeling assumption (b) they
already yield

(i) complete antisymmetry of the C,pI, and
(ii) the equation

Cpa —app "Qa"0—a,a+ 2Cep —ala"Ip "0-a",a
+C*pA."4'w"4*",a ~ (3.3)

corresponding to the self-mass diagram of Fig. 3.
Similarly in sixth order we get

Charge-conjugation invariance implies the equality of
Eqs. (3.3) and (3.4). Comparing coefficients we obtain

Cxyz= 0

C.o-.= —C-.o (3.5)

wllel'e fol' definiteness pp llas beell ldentlfied wltli

The charge conjugate of this expression is, from
Eq. (3.2),

Cpa apI"$—a"Qa-"a 2-Capep, —a"pI "$a-"-
-C.,A*"4."4.",' (3 4)

trC C~C)CpC~Cg =constX~ap, (4.3)

and so on. It is easy to check that the 4th, 6th, . . .
order Smushkevich relations follow from the second-
order Smushkevich relations (4.1) and the vertex
bootstrap condition (1.3). The question we shall be
interested in is whether the converse is true, i.e., whether
the vertex bootstrap condition, or equivalently its
structure-constant consequence, can be recovered from
Eqs. (4.1), (4.2), (4.3), etc.

On account of the complexity of the algebra we have
not been able to obtain a general answer to this question.
Instead we have investigated the somewhat trivial
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cases n=3,4,5,6, and the nontrivial and physically
interesting case e= 8.

In all these cases it will be assumed from the start
that C p~ is completely antisymmetric. This assumption
we can regard either as a direct assumption (following
Cutkosky) or as a consequence of our conditions (a)
and (b) of Sec. I. For the physically interesting case
I= 8, we assume in addition (again following Cutkosky)
that there is one conserved additive quantum number.
We make this assumption a little stronger than
Cutkosky's by assuming also that there are four
neutrals. This latter assumption is motivated by the
observation that if the conserved quantum number is
identified with the charge, then for the physical 8 (X*,
p, co, with cu-p mixing neglected) four of the particles
are neutral. On the other hand, we do not make
Cutkosky's "lowest-bound-state" hypothesis.

Under these conditions we 6nd that for the rather
trivial cases n=3,4,5,6 the second-order Smushkevich
Kqs. (4.1) are already enough to ensure that the C p~

are the structure constants of a compact semisimple
Lie group. In particular the C p7 are zero for m= 4,5 and
are the structure constants of 0(3) and O(4) for n=3
and 6, respectively. In the more interesting case n=8,
the second- and fourth-order Smushkevich relations
(4.1) and (4.2) are together sufficient to imply that the

C p~ are the structure constants of a compact simple
Lie group, SU(3) in this case. Thus for v= 3,4,5,6, and 8
at any rate, the Smushkevich principle seems to be
"as good as" the bootstrap condition in forcing the
invariance of the interaction.

The calculation for the case m=8 is sketched in the
next section. For the full details for m=8 and for the
case m=6 the reader is referred to Ref. 4.

V. THE SMUSHKEVICH PRINCIPLE FOR
THE CASE n=8

In this section we consider the case of 8 vector mesons
in self-interaction by means of the Hamiltonian (1.2)
where, as mentioned in the last section, we assume that

(a) C p~ is antisymmetric in all indices, and
(b) one additive quantum number (to be identified

with charge and with respect to which 4 of the 8
particles are neutral) is conserved.

Charge conjugation then demands that of the remaining
four particles two be positively charged and two
negatively. For definiteness, we identify the neutrals
with linear combinations of the fields P;, i = 1 4, and
identify the charged particles with (&5&i&6)/K2 and
(y7+iP, )/W2, respectively. The most general set of C ~,
satisfying (a) and (b) above can then be seen to be

0
0
0
0

0 0 0
0 0 0
0 0 x
0 —x 0

o y o o
—y o o o

0 0 0 3
0 0 —3 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 a~ b:
—ug 0 —cg
—b2 cg 0

C2

bg

0

0 0 0 —x
0 0 0 0
0 0 0 0
x 0 0 0

0 a3 b3 c;—u3 0 —c3 b3
—b3 c3 0 d3
—c3 —b3 —d3 0

0 0 x 0
0 0 0 0
—xo 0 0
0 0 0 0

0 a4 b4
—64 0 —c4
—b4 c4 0
—c4 —b4 —d4

c4 0
b4 y
d4 0
0 0

0 0 0
a2 a3 a4

b2 b3 b4

Cg C3 C4

0 —y 0 0
0 —82 —b2 —c2

0 —u3 —b3 —c3
0 —u4 —b4 —c4

—p —82 —83 —84
0 0 0 0
0 —cg —c3 —c4

0 b2 b3 b4

y 0 0 0
u~ 0 c~ —b2

u3 0 c3 —b3

e4 0 c4 —b4

0 —b2 —b3 —b4

0 c2 c3 C4

0 0 0 0
d2 d3 d4

0 0 0 —z

bg —c2 0 —dg

ba —c3 0 —d3

b4 —c4 0 —d4

0 —cy, —c3 —c4

0 -b, -b3-b4
—S —d2 —d3 —d4

0 0 0 0

C2

C3

C4

0
b2

b3

S ol
d2 0'.

dB 0
d4 0 (5.1)

where we have utilized the fact that since the neutrals
are not completely identic. ed, we are free to make
orthogonal transformations in the space spanned by
the p;, in order to set some of the coeKcients in the

matrices (5.1) equal to zero. This freedom has actually
not been utilized to the maximum. The maximum use'

4 R. Musto, Syracuse University thesis, Part I, Sec. 3, 1967
(uiipublisbed}.
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would correspond to setting also

b2= b3=0. (5.2)

However, for reasons of symmetry we do not use
Eq. (5.2) for the moment. Altogether therefore there
are 13 independent coupling constants in Eq. (5.1).
What has to be shown is that the Smushkevich principle
determines all of these in terms of one over-all constant.

We first apply the second-order Smushkevich rela-
tion (4.1).These yield' the sets of equations

tranpformations in the P space. Of course, only or-
thogonal transformations preserving charge conserva-
tion, charge conjugation, and Eqs. (4.3), (4.4), and
(4.5) are utilized.

It is clear from Eq. (5.6) that although the second-
order Smushkevich equations drastically reduce the
number of independent coupling constants in Kq. (5.1),
they do not determine them completely in terms of one
over-all coupling constant. At this stage, therefore, we
use the following members of the fourth-order Smush-
kevich Eqs. (4.2):

y2+s2 1x2

a;2+2(b;2+c 2)+dp= ', x'+8-,2x2, i= 2, 3, 4, (5.3)
p trCIC CIC„=Q trC2C~C2C, =Q trC2C, C,C . (5.7)

y2 s2 —Q (d,2 a 2) A straightforward but tedious calculation4 shows that
Eq. (5.6) then reduces to

ya;+sb, =0,

a;a;+2(b;b;+c;c;)+d;d; =0,

i=2, 3, 4,

i, j=2, 3, 4, (5.4)

f= gX6)

Z= gSc ~

and
g b;(a;+d~) =0, d2 = —a2 =+ ', xc 0-

d4. C4. 0

P c;(a~+d;) =0, (5.5)

d2 V3 cos8

a2 =—y2(s/x) SII18
Z

«d4 «84- 0

b2
r0&

C2 —V3 sin8

where Eq. (5.3) comes from trC C, Eq. (5.4) from

trC, C;, ij=1 .4, i&j, and Eq. (5.5) from trC Cs,
a,p=5 ~ ~ 8, c2+p. All other second-order Smushkevich

equations are then automatically satis6ed.
The Eqs. (5.3), (5.4), and (5.5) can easily be solved

by noting that y and z cannot both be zero and that
there is no loss of generality in assuming z&0, by
considering a;, b;, c;, and d;, i=2,3,4, as 3-vectors, and

by using Eq. (5.2). The solution can be written in
the form

b2 0
b, =-,'x 0.b4. .1.

r 0&C2

C3 =g$6 1
.C4. .0.

where e= +i.
Thus the only freedom left is in the sign of ~. How-

ever, it is easy to show4 that this freedom corresponds
only to a change of sign in some of the fields $ . Thus
up to this change of sign, Kq. (5.8) expresses all of the
coupling constants in Eq. (5.1) in terms of one over-all
constant as required.

The unique determination of the coupling constants
in terms of one over-all constant implies of course that
the interaction must be SU(3) invariant, since we
know in advance that an SU(3)-invariant interaction
satisfies the Smushkevich principle to all orders. How-
ever, the SU(3) invariance may also be checked directly
by showing that the matrices (5.1) with elements (5.8)
satisfy the usual SU(3) commutation relations.

b3 =~@ 0 C3 = 2$ COS8—1 (5.6) ACKNOWLEDGMENTS

where

«b4 «C4&

(y' —s')x' cos'8= 0,

(y—s)x cos8 sin8= 0,

y +s2= -',x2,

0 The authors wish to thank Dr. H. Leutwyler for
correcting an error in the erst draft, and to thank him
and Dr. K. C. G. Sudarshan for some invaluable
discussions.

APPENDIX

Using the Hamiltonian (1.2), the expression for the

and 2(s/x)=+1 according as (z/x)~~0. In deriving left-hand side of Eq. (1.1) which corresponds to the

Eq. (5.6) some extra freedom allowed by Eqs. (4.3), Feynman graph of Fig. 1 is easily derived from the

(4.4), and (4.5) has been used to make orthogonal Feynman rules. It is, apart from some over-all con-
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stants, ej"e& times

2C p Csp k (k —p )6""'(k)/4""'(k p)—d'k

+Cp..C.»p,p: a""'(k)A»'(k p)d—'k

+C C & p p ~ 6"s'(k)as"'(k p)d'—k

+4C.p.Cps.p, (k —p )6""'(k)iI4 "&'(k—p)d'k (A1)

where e(p) 'p= e p =0 and

g„,—k„k,/m'
a„,(k) =

k' m'+—i e

is the vector-meson propagator. We first note that
in general T» (p')=g» I(p')+p„p„J(p'), and hence
—T;;(p') =3I(p') —y'J(p'), which we then evaluate in

the rest frame y= 0. The absorptive part of this expres-

sion is obtained by putting the intermediate particles
on their mass-shells, i.e., by replacing the denominators
(k' m—'+is) ' in the propagator by e(kp)5(k' —m').
This yields finite integrals, which are easily calculable
and lead to the results listed in Eq. (2.3). For example,
for the coeKcient of Cp,C,trp in (A1) we obtain

T4, (pps) = d'k e(kp)8(pp kp)—h(k' m'—)8$(p k)'—m'—5

XLpo' —(poko)'/ '5(—3—&'i ')

~(pps/4 ms)1/s(pp ppp/4ms) (2+pps/4ms)
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Partially Conserved Axial-Vector Current, Charge Commutators,
Off-Mass-Shell Correction, and the Broken SU(3) Symmetry

S. MATSUDA AND S. ONEDA

Dep grtnsemt of Physics and Astrowomy„UN&ersity of JI/IcrylurId, College Park, JJ/Icrylamd

(Received 15 December 1966; revised manuscript received 6 March 196/)

We point out that the extension of the PCAC (partially conserved axial-vector current) relation 8„A„~
=C,4/

~ to S „4f„x=Cr4g» and the use of charge commutators typi6ed by A4r= LVx,A g are useful in the
study of broken SU(3}symmetry. The use of the B„A„~=C~@~condition usually confronts us with a con-
siderable off-mass-shell extrapolation mz ~ 0; However, by using the above charge commutators and the
approximation we propose, the off-mass-shell extrapolation mz —+ 0 may be replaced by a more comfortable
one, m —+ 0, effectively to first order in the symmetry-breaking interaction. This approach is applied to the
study of the SV(3) symmetry breaking. Encouraging results have been obtained in the case of V —+ P+P
(i.e., E*~E+7r and p ~ 2I+2r) decays and in the direct determination of the f—f mixing angle from their
decay widths. We also make some estimate of the off-shell extrapolation m~ —+ 0 compared with the case
m —+ 0. Another useful application of the above charge commutators is for the weak leptonic decays. We
can derive a set of sum rules for the axial-vector coupling constants of the leptonic decays of hyperons which
seem to give new insight into the Cabibbo theory of leptonic interactions.

HERE have been many interesting calculations
based on the idea of current algebra, .' In the

actual computations the use of the PCAC (partially
conserved axial-vector current) hypothesis is essential.
One may take a variety of attitudes toward the use
of PCAC.

(I) One point of view is to regard the equation

as approximately true. ' Taking the matrix element of

' M. Gell-Mann, Physics 1, 63 (1964).
~Vector and axial-vector currents are denoted by V„+(x),

V ~+(x) ~ - ' and A„~(x), A„~+(x) - ~ ~ respectively, normalized
so that in a quark model we would have, e.g., V„"+(x)=imp„
X (4+iX4)q /2, 2„x+(x) =imp„(X4+i4) q/2, etc. ; the space integral
of, say, A0~(x,0) =—=iA4 +(x,0) is denoted by A +. The PCAC
relations are used in the form B„A„+=C,@w+ and 8„A„~+
=CJi-,@~+,where, e.g., qb"+ creates ~+ mesons. .

(1) between the proton and the neutron, one obtains a
form of Goldberger-Treiman relation

- Inn
C.=v2gg m.',

G,„(m '=0),
(2)

' For instance, S. Adler, Phys. Rev. 157, B1022 (1965).

where g~ is the ratio of the axial-vector to the vector
couphng constant of P decay. The calculation' from this
standpoint involves the extrapolation of the pion o6
the mass shell (m —+ 0).

(II) In a second point of view, r)„A„~ is regarded as
a highly convergent. operator whose matrix element
satisfies an unsubtracted dispersion. relation in squared
momentum transfer q'. For small q', the dominance of


