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A. dynamical model based on linearized D functions leads to a series of relations called the bootstrap
algebras. Under speci6c conditions these algebras imply that the ~~+ baryons must belong to a representation
of the Lie algebra whose structure constants are given by the vector-meson coupling constants. If the
e-channel forces admit of a static approximation, the algebras lead to consequences which are the same as
those of the spin-internal-symmetry groups, while avoiding the usual difEculties encountered for the cou-
phngs in these groups. Several such systems leading to consequences of groups like SU(6), Sp(16), and the
strong-coupling group are discussed. The results are shown to be applicable to meson-meson scattering even
though the light pseudoscalars are exchanged in the I channel. It is found that the pseudoscalar-meson-
vector-meson couplings in the SU'(6) model and the strong-coupling model are in remarkable agreement
with each other.

L INTRODUCTlON

HE quest for a dynamical basis for internal sym-
metries has led to several discussions' 9 of the

bootstrap philosophy'0 as the origin of symmetries in
the strong-interaction phenomena. The erst real pro-
gress in this direction was made by Cutkosky' who
showed that for an idealized world of vector mesons,
the bootstrap requirements yieM the result that the
vector-meson coupling constants are the structure con-
stants of a compact semisimple Lie algebra. It has since
been shown' that this result is retained in a somewhat
more realistic model which allows the existence of both
vector and pseudoscalar mesons. It was also found that
the pseudoscalar mesons themselves must belong to a
representation of the Lie algebra described by the
structure constants of the vector mesons.

There has been another class of attempts in which
spin —unitary-spin combination arises out of bootstrap
requirements. Here impressive results come out with
the use of the static model. It has been shown by Cook,
Goebel, and Sakita that in the strong-coupling limit,
the pseudoscalar mesons and baryon isobars have an
underlying noncompact Lie group. Thus, for example,
the group for an octet of pseudoscalar mesons scattered
by static baryons is LSU(2)SU(3)jXTss, a direct
product of the invariant spin group SU(2) and the
invariant internal spin group SU(3) and a semidirect
product with T24, the translation group in 24 dimen-
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sions. There have been some other attempts' ' ~ which,
starting from some approximate or unrealistic model,
give results which are similar to those obtained from
SU(6).

In the present study we develop a dynamical model"
which with the bootstrap requirements yields certain
algebraic relations between various coupling constants.
These relations are quite general and apply to any
multichannel system. It is then shown that under some

speci6c assumptions the baryons must belong to a rep-
resentation of the Lie group whose structure constants
are de6ned by the vector-meson coupling constants.

If one introduces the static approximation for the
exchange of heavy particles in the I channel, one ob-
tains groups which combine spin and unitary spin.
In this context, the familiar SU(6), the strong-coupling
noncompact group, ' R(11) the rotation group in 11
dimensions, and SP(16) the symplectic group in 16
dimensions, are discussed with reference to the baryon
isobars. It is found that the results of only the 6rst
two groups, the SU(6) and the strong-coupling group,
are in reasonable agreement with the experimental
results. The extensions of the model to describe the
spin —unitary-spin combination for mesons are discussed
and it is shown that the results are almost identical for
SU(6) and the strong-coupling group.

G. THE DYNAMICS

Consider a multichannel scattering for a system with
a given angular momentum, baryon number, etc., the
channels being characterized by an index i and the
scattering amplitude from channel i to channel j by
T 'j . %e assume I orentz invariance, Bose statistics,
charge conjugation, parity, and time-reversal invari-
ance, and that the 6elds describing the various mesons
are Hermitian. %e further assume that aO the particles
in a state characterized by a given angular-momentum,

parity, baryon number, etc., have the saxne mass; e.g.,
the 8 pseudoscalar mesons have the same mass; and so

"It has been pointed by L. A. P. Balizs (private communica-
tion) that many of the results of our model can be obtained from
superconvergence relations.
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do the baryons in the 2+ octet. The unitarity condition
foI' tlM amplitude Tg ls of thc forIQ

~ij ~tj'= 2&rki ~kj pIt, p (2.1)

~here p~ is the phase-space factor in channel k. We use
the usual ND ' method to describe the analyticity and
unitarity properties of the T@ amphtudes. In the matrix
notation we write

case we ignore)

F p'Fts'+F, t'Fsp'+F s'Fpt'=0, (2.9)

which can be written in the form of the Jacobi identity
and the I 's can be regarded as the structure constants
de6ning a Lie algebra. We note that (2.9) can also be
written in a diIferent form' making use of the de6nition
of R CI'osslng matrix~

T(s)= N(s) D-'(s), f= C, ~f+C-f, (2.10)

(s)=- LIm T(s') )D(s')
ds

$ —s
(2.3)

(s—s„)
D(s)=C—-- p(s')N(s')

ds'. (2.4)
$ —s s —St

The D functions have only the right-hand singularities
and N functions only the left-hand singularities. The
expressions for D are once subtracted. We further
assume that the integrals in (2.4) are slowly varying
functions of s and replace them by constants A;;;

where C,& is the crossing matrix from f to s channel and
C,„from ts to s channel, and f is the square of the re-
duced matrix element obtained from Il p&. For the
vector mesons under consideration, the relevant element
of the crossing matrix is the diagonal element cor-
responding to the regular representation and this being
the same for C,& and C,„, must be equal to ~. This is
true, for example, for SU(2) or SU(3).

We will be making extensive use of the relations of
the type (2.10) and hence wouM like to note two straight-
forward but useful results applicable to equations of the
foHIl

D(s) C+(s—s„)A. (23) f=C. f+C.~v (2.11)

If s„ is taken to be the position of the resonance of the
stable particle in the state characterized by the quan-
tum numbers of the system, then the assumption that
the T matrix has no other poles in the complex s plane
essentially implies" that

(2.6)

The T matrix can then be written as

(2.12)

(2.13)

Proposition 1.

Consider the scattering process

Ps+tn; ~ P~ +tÃ~

whclc 5$i belong to a self-conjugate multlplet l.c.

2'' (~) =--
x' s—st

Therefore

LIm T(s')];;(s'—s,)
dS .

s —s

1
ResT;;(~,)=— ImT;tn(s')ds'.

'r
(2.7)

where C denotes the charge-conjugation operator.
Then it has been shown" that the column vectors of
C,& corresponding to states symmetric in the inter-
changes of mi and m; are eigenvectors of C, with
eigenvalue +1 and those corresponding to states
antisymmetric in the interchanges of nsi and m; are
eigenvectors of C,„with eigenvalue —j..

One may need a cutoff in (2.7), but for our purpose this
does not change the basic results. Since the integration
is on the left, we have assumed that the integrand in
(2.7) is given by the sum of the Born terms obtained
from the various exchanges in the t and. I channels. It
is clear that (2.7) yields various algebraic relations. As
a simple example we obtain Cutkosky's results' for
vector-vector scattering. If F p& is the totally anti-
symmetric coupling constant for 3-vectors, (2.7) yields

F.p'F. s'= &(F-t'Fps' F-s'Fp;)— (2 g)

(summation over the repeated, index). The total anti-
symmetry of F then implies that (unless a= —~s which

"The result I,
'2.6) does not quite follow from the assumption.

There are exceptions. However, C;; are arbitrary to some extent,
and I'2.6) does not obviously violate any of the requirements and
it automatically gives a pole at S, in the T matrix which is what
we need. The author is grateful to C. Fronsdal for discussion on
this point.

Proposition 2.

Le't us write (2.11) 1n the form

f=C f+v'. (2.14)

In this section we discuss the implications of (2.7)
to the case in which the only baryons that exist are the
g+ baryons.

"H.S.Mani et a/. , Ann. Phys. (¹Y.}36, 285(1N6); see Biswas
8$ Gl.p ln Ref. 9.

Then since C, '=1 (for tn=tn), solutions to (2.14)
exist if and only if y is an eigenstate of C,„with
eigenvalue —1.

With the above results in mind we consider the prob-
lems of meson-baryon and meson-meson scattering.
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Equation (2.7) decouples the multichannel problem
into single-channel problems. Therefore for establishing
baryon symmetries one can consider the scattering of
vector mesons by -', + baryons. Let the allowed exchanges
in the t channel be those of pseudoscalar, vector, and
tensor mesons, and let the baryons be represented by
indices i, j, k, the vector mesons by the indices n, P, p,
and the pseudoscalars and tensors by u, b, c. Let the
3-vector vertex be denoted by F ~&, the vector-vector-
tensor or pseudoscalar vertex by 6 p, and the baryon-
baryon-meson vertex by g,; (for vectors) and f,,'
(for tensors or pseudoscalars). We assume that the
relevant couplings are such that F„p& is totally anti-
symmetric and G p' is symmetric in n and P. Then the
use of (2.7) for the scattering of vector meson n by
baryon i into vector meson P and baryon j yields

gik gbj = &gik gkj +ypap gij +zGap fij ~ (3 ~ 1)

Interchange of n, p gives

gik gkj &gik gkj +yFpa gij +sGpa fij ~ (3 2)

Subtracing (3.1) from (3.2) and using the symmetry
properties of F and G, we get

(g,k gk,' g,k'gk, ') =—«&.p'g;, (3 3)

where «=y/(1+@). Thus, unless x= —1, or y=0, rela-
tion (3.3) implies" that the baryons belong to a rep-
resentation of the Lie algebra defined by the structure
constants F p&. Many other results may be obtained by
consi.dering other scattering processes such as pseudo-
scalar meson —baryon scattering but these are not of
great interest since our present model is unrealistic
in the sense that baryon resonances have been ignored.
Our purpose was only to point out that for su%.ciently
simple models the bootstrap requirements induce in-
ternal symmetries for baryons.

For all the following considerations we will implicitly
assume given internal symmetries and discuss the
implications of the bootstrap principle with reference
to (2.7) for the couplings of particles with different
spin.

IV. COMBINING SPIN AND INTERNAL
SYMMETRIES FOR BARYONS

In the following considerations we 6nd it very con-
venient to describe the various relations in terms of
crossing matrices and reduced matrix elements analogous
to (2.10). Equation (2.7) being decoupled, we can dis-
cuss each scattering amplitude separately. We assume
that the Born term in (2.7) is saturated by the ex-
changes, in the N channel, of various baryons of dif-
ferent spins denoted by the indices x, y and by the ex-
changes of various mesons of spins r in the t channel.
We will confine ourselves to meson-baryon isobar scat-

' Polkinghorne has obtained this result starting from different
assumptions. J. C. Polkinghorne, Ann. Phys. (N. Y.) 34, 153
(1965).

tering in the p wave. Then for the scattering of some
state i into i, the relation (2.7) yields (after the use of
crossing matrices)

r*=D„*C,„r +A,*C„~, (4 1)

where C,„and C, & are the crossing matrices from N to
s and t to s channel, respectively, F* is the square of the
coupling of the state i to the baryon isobar of spin x,
y" is the product of the couplings of the meson of spin
r to the two external mesons and the external baryon
and antibaryon. The numbers D„and A„* are con-
stants which are obtained by the integrations on the
right-hand side of (2.7), of the imaginary parts of the
various Born terms. Of course (4.1) can easily be general-
ized to the scattering in any partial wave but for our
present purpose we need only the P-wave scattering
amplitudes. The only approximation that has gone
into the derivation of (4.1) is linearization (2.5) of the
D elements. However, (4.1) as it stands is still too
complicated to be transparent. In order to see the
wealth of information hidden in (4.1) we make the
assumption that the forces which arise from the ex-
change of baryon isobars in the N channel, which give
the 6rst term on the right-hand side of (4.1), can be
approximated by their static limit. This then means
that the D„* is actually the spin crossing matrix from
the N to s channel. Thus, symbolically,

r = (CgX Ctr), I'+ (A XCtr) „y, (4.2)

where subscripts J and U stand for spin and internal
symmetry, respectively, and the multiplication stands
for the direct product.

Now (4.2) is an inhomogeneous equation of the type
(2.14) considered in proposition 2 of Sec. II. Then by
proposition 2 the solution to (4.2) exists if and only if
(A Xcri) „y is an eigenvector of (C~Xctr),„with eigen-
value —1. Furthermore by proposition 1 of Sec. II, we
know that the column vectors of (Ctr), & are eigenstates
of (Crr), „with eigenvalues +1;+1 if the column corre-
sponds to the exchange of a meson whose coupling to
the external mesons is symmetric in the internal-
symmetry indices of the external mesons and —1 for
antisymmetry in the same indices. Therefore in view of
these observations the column vectors of A must be
eigenstates of (Cq), with eigenvalues +1. More
specifically the column vector of A, corresponding to
the exchange of a particle which couples symmetrically
in the internal-symmetry indices to the external mesons,
is an eigenstate of (Cg),„with eigenvalue —1; it is an
eigenstate of (CJ),„with eigenvalue +1 if the coupling
of the exchanged meson to the external mesons is
antisymmetric in internal-symmetry indices of the
external particles.

It is plausible from the above observations that by
the proper choice of the exchanged mesons the second
term on the right-hand side of (4.2) can be formally
regarded as coming from a coupling which is totally
antisymmetric (including spin and internal symmetry),



and hence meson couplings can be looked upon (once
again forlnally only) as structure constants of a spin-
internal-symmetry group.

%e will now elucidate these considerations by apply-
ing them to models leading to various groups of physical
interest and discuss the various consequences. The
models we discuss will lead to SU(6), SO(11), Sp(16)
which are all compact" and. t SU(2)SSU(3)jX&s4
which is the strong-coupling noncompact group. Of
these, only SU(6) and the strong-coupling results give
physically reasonable results.

A. "SU(6)"for Baryons

As far as baryon classi6cation and couplings are con-
cerned, we 6nd that SU(6) is probably the most
physically appealing group. Some bootstrap aspects of
SU(6) have been discussed in Refs. 3, 4, and 6.

Let us consider a world in which the only mesons
that exist are the eight pseudoscalar mesons, nine vector
mesons, and nine tensor mesons belong to 8 and 1
representations of SU(3); the relevant baryons are the

octet of -', + and decuplet of —,'+ baryons. Since the vari-
ous channels in our model are decoupled, we can con-
sider them separately. We 6rst discuss (4.2) for
pseudoscalar-meson and s+ baryon scattering in p
wave. There are two angular-momentum states ~+
and g+ and

(C~)-=
(

tt' —s s)
-', /

'

whose eigenstates are

(1)

with eigenvalue +1, and

with eigenvalue —1. Now since the tensor mesons
couple symmetrically to two pseudoscalars while vectors
couple antisymmetrically, Eq. (4.2) reduces to

1
3
R
3

0
0

0 2/g5
,' X(Cv). 1'+ ' X 0 +13 —2/+5

0
0 . 0

0
0

—2/V'5
+ ' X v —

s +~+2/Q5.b2,
'

02

10 0
0 0

8

+e s
1

8

,0

(4.4)

where the multiplication is the direct product, and (4.4) to be
has a solution if and only if

is proportional to
(as&

to be

to

ill (4.4) tllc c0111pollcllts corrcspond to folccs 111 states
1, 27, 10*, 10, A, S, Q, where A is the amplitude cor-
responding to antisymmetric-antisymmetric octet cou-
pling, 5 is the symmetric-symmetric octet coupling,
and Q is the symmetric-antisymmetric octet coupling.
%ithout loss of generality we take

ka,)
"D. W. Joseph, Phys. Rev. 139, 81406 (1963}.

However the solution of (2.21) is not unique since the
corresponding homogeneous equation has seven linearly
independent solutions. " From the point of physical
interest we will look for a solution in which only the
~+ octet baryons and ~+ decuplet baryons exist. Such a
solution exists and is unique. The solution is formally
the same as the one obtained by Fulco and Wong6
though the assumptions and the physical ideas going
into the two derivations are quite different. %e thus
have

I'1 1's Vg'e 7 3:P:u=i:5/4:1:s + 1/5 0 —' (45)
The consequences of this result are

1. The D/F ratio for both pseudoscalar- and, tensor-
"R.C. Hwa and S. H. Patil, Phys. Rev. 138, 3933 (j963).1
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meson coupling to -', + baryons is ~. On the other hand,
the vector-meson coupling to -', + baryons is pure F type.

2. The ratio of the couplings of ~+ and ~+ baryons to
pseudoscalar mesons and ~+ baryons is t,/t -= —k (4.8)

ratio for proton and neutron is the same as the one ob-
tained by Fulco and Wong' and the SU(6) result

which gives

gx,x.'/gx*, x '= 25/8,

(4.6) We now calculate the amplitudes for scattering of the
pseudoscalar octet by the ~~+ baryon decuplet. The
allowed SU(3) channels in the s and I channels are

8 x10=8+10+27+BS, (4 9)
which is somewhat large compared to the Chew-Low

static theory result of 2.
While the model gives essentially the same results as

SU(6) there are two important differences. In our model,
the exchange of tensor mesons in the t channel is
necessary whereas in SU(6) the tensor mesons do not
belong to the BS representation. However, the intro-
duction of tensor nonet avoids the difhculty for cou-

plings, which arises in SU(6) and we get a nontrivial
result.

The same calculations can be carried out for the
scattering of p-wave vector-meson octet by —,

'+ baryons.
We will discuss only the M1 transitions, i.e., the orbital
angular momentum 1 combines with the vector-meson

spin to give an angular momentum of 1. The calcula-

tions are essentially identical to the calculation for the
pseudoscalars except that we have additional exchanges
of pseudoscalar mesons in the t channel. However, the

coupling of two vectors and a pseudoscalar is symmetric
in the internal-symmetry indices of the vector mesons;
hence the e6ect of this additional force is to change the
magnitudes of y and h by the same amount since D/F
ratios for both pseudoscalars and tensors was found to
be the same. However, the solution to (4.4) assuming

the existence of only the ~+ octet and ~+ decuplet, is

unique and the various ratios of n, P, etc., are the same

as in the case (4.5). This then implies that the pseudo-
scalar octet does not couple to two vector octets. We
note however that if we had allowed for the exchange of
an additional pseudoscalar singlet (which is physically
reasonable) then the forces due to pseudoscalar-nonet

exchange can be proportional to those due to tensor-

nonet exchange and a solution exists for which the
pseudoscalar-octet coupling to two vector octets is
nonzero. In either of the two cases, the external vector-
meson coupling to baryons is the same as the
pseudoscalar-meson coupling to baryons. Specifically
the D/F ratio is -', and

g~,~,'/g~', zr p'= 25/8 (4 7)

One notes that the D/F ratio for the t-channel vector
mesons is different from the D/F ratio for the external
vector mesons. But this is not a contradiction, since for
the static baryons the real vector-meson coupling is

essentially magnetic while the t-channel vector is virtual
and in that case the coupling is probably mostly elec-

tric. With the assumption of photon vertices being
dominated by vector mesons, and the external vector-
meson coupling D/F .ratio of s3, the. magnetic moment

whereas in the t channel they are

1+8+8'+27. (4.10)

1X)=-,+r+r
and the corresponding crossing matrix is

1/6 —2/3 3/2
(Cg), = —1/3 11/15 3/5

1/2 2/5 1/10.

Then (2.7) leads us to t in analogy to (4.4)j

(4.11)

(4.12)

81
y=(Cg). X(Cp),„v+ a~ X

2 . . 1
01 3 C1

+ &a X 3 + ~~ X 1, (4.13)

where the 4-vector components correspond to repre-
sentations 8, 10, 27, BS, respectively. Now

6
3
1
3

rs an eigenstate of (C~),„with eigenvalue —1 while the
remaining two 4-vectors in (4.13) are eigenstates of

(C~),„with eigenvalue +1.Hence, by the earlier dis-
cussion in this section, solution to (4.13) exists if and
only if u; is of the form

1 1
n1+P 0
.1. .5/9.

b; is of the form
5
2

—3
and c; is of the form

One 8 couples symmetrically with the external mesons
while the other couples antisymmetrically. The allowed
angular momenta in the s and I channels are
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gx, rv*w /ger", N* '=32/25. (4.15)

The calculations are repeated for p-wave vector octet
and -'+ decuplet scattering. We conGne ourselves to that
amplitude in which the orbital angular momentum com-
bines with the vector-meson spin to give unit angular
momentum. The comments we made about the pseudo-
scalar exchanges in the case of vector ——,'+ baryon scat-
tering are applicable here also. In any case, the ratio of
the -', + octet and -', + decuplet couplings is the same as
(4.14). As a consequen. ce

gN, ~*p'/g~*, ~*,'= 32/25. (4.16)

Assumption of the dominances of photon vertices by
vector mesons then yields

t,= t rr* = t o = s~—~t ~-* -„(4..17)

All these results agree with those from SU(6).
We have reproduced almost all the good results of

SU(6) by our physically oriented bootstrap algebra. ~

In particular we have been able to express the couplings

i.e., u; is the general eigenstate of (Cq), with eigenvalue
+1 and b, and c; are eigenstates of (Cq),„with eigen-
value —1. Assumption of the existence of only the —,'+
octet and ~3+ decuplet once again yields a unique solution

ys'.pro'. rr: P: b: e= 60:60:3:0:1:2, (4.14)

where y8 and y~o are the couplings of the ~+ octet and
2+ decuplet, respectively, to ~+ decuplet and octet of
mesons. From this we get

of all the octet of vector mesons to all the baryons and
baryon isobars in terms of a single scale parameter.
Assumption of photon vertices being dominated by
vector mesons then gives all the magnetic couplings in
terms of one parameter. Following Kuo and Yao, '~

we can then make a two-parameter calculation of
electromagnetic mass di6erences;

8m=aM M+bQ'. (4.18)

The only intermediate states allowed in our model are
the -,'+ octet and ~+ decuplet baryons. One is then able
to reproduce almost all the results of Kuo and Yao."
One interesting point to note is that in most cases the
contribution to the mass differences by the Q' term in
(2.36) is less than 30% and is of opposite sign to that
of the M M term.

As examples of "simple" alternative compact groups"
we will now consider R(11) and Sp(16).

B. R(11) for Baryons

The adjoint representation of the rotation group in
11 dimensions contains an octet and a singlet of vectors
and an octet, a 10 and a 10 of pseudoscalars. The spinor
representation contains two spin-~ octets.

We consider the scattering of an octet of pseudo-
scalars and ~+ octet. In the I, channel we allow for the
exchange of an octet and a 10 and 10 of vectors and a
nonet of tensors. In the s and I channels we allow for
the existence of only —,'+ octet. Then the equation to
solve is

23 13 && C,„F

1 0
1/5 0

—2/5 —I/+5
X t, —2/5 t, 1/+5 +—e

1/2 0
-3/10 0

0 0
E

0
1 —1/3
1 b) 0

+b'~X.. 0
1 'i 1/2

1/2

0
0

1/g5—t, —1/g5 —e
0
0
0

5/4
—1/12

1/4
1/4
0

—1/2
0

(4.19)

As before, assumption that a solution exists leads us to tive quantum number. The result is

ar /1
(as 4—-',)

t, =0, t, :Fg..v, =2:~:1,
I', :I"~..e:e,:n=15/8:9/8:1/2:1:1, (4.20)

and

The column indices are the same as in (4.4) The solu-
tion to (4.19) even with only the s+ octet existing has an
additional ambiguity due to reasons pointed out by
Joseph" that the spinor representation has two octets
and these octets cannot be distinguished by any addi-

D/F =@3, (4.21)

"T.Kno and T. Yao, Phys. Rev. Letters 14, 79 (196$).

where the ratio of I'./I'9 is not determined. Let us
assume, however, that the ratio of I',/I'~ given above is
the corresponding ratio for the physical &+ baryon octet
coupling to pseudoscalar mesons. Then we can calculate
the D/Ii ratio which turns out to be
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which is close to the experimental value of —$.47.

C. 8P(16) for Baryons

The adjoint representation of the symplectic group
in 16 dimensions contains, in addition to the multiplets
in the adjoint representation of R(11),a 27-dimensional
vector multiplet. On the other hand. the spinor repre-
sentation contains only one ~~+ octet. The calculations
for the scattering of pseudoscalar octet and ~+ octet are
similar to those in SU(6) and R(11) and we only quote
the results

I',/F~ ——15/39, D/F =3/+13. (4.23)

These results are not in good agreement with the ex-
perimental results, The corresponding calculations' for
vector mesons yieM

(4.24)

which also is not in good agreement with the experi-
mental result of —1.47.

D. LBU(2)SSU(3)3X F24

This strong-coupling noncompact group' whose cor-
responding model. in bootstrap algebra does not have

which is in quite good agreement with the SU(6) pre-
diction of ~.

The calculations for M1 transitions in vector-meson-
++ baryon scattering are essentially the same as for
pseudoscalar —',+ baryon scattering. The D/F ratio for
-', + baryon coupling to vectors is also VS and conse-
quently the assumption of photon vertices being
dominated by vector mesons leads to the result

(4.22)

any t-channel exchanges, has already been extensively
analyzed. ' We only note that the results for D/F ratio
and the various magnetic-moment ratios in this group
are very encouraging.

7. COMMNING SPIN AND INTERNAL
SYMMETRIES FOR MESONS

The problem of induction of internal synm&etries for
mesons has been discussed. at some length by Cutkosky
and others. ' ' "We wiQ therefore conhne ourselves to
the problem of combining spin and internal symmteries.

Consider the situation in which the pseudoscalar
mesons (which we assume have small mass) are scat-
tered by some heavy mesons such as vector mesons. Of
course, Eq. (2.7) is quite general and is applicable to the
present problem. One would u pnori think that Eq.
(4.2) which comes out of the assumption that all the
particles exchanged in the u channel are heavy, cannot
be applied. to our case since the same light pseudoscalars
as the external ones can, in most cases, also be ex-
changed in the I channel. However, we wiQ show, by
taking specific cases, that (4.2) is indeed valid for most
of our calculations.

A. SU(6) for Mesons

Consider the scattering of p-wave pseudoscalar-
meson octet by the vector octet. We wiQ assume that
the forces from the u-channel exchanges are all due to
heavy-particle exchanges (except for the pseudoscalar-
octet exchange) and therefore can be adequately de-
scribed by their static limit. In the t channel we allow&

for the exchange of a tensor nonet and a vector octet.
(The vector singlet does not couple to the two pseudo-
scalar octets. ) Then the equation for this case analogous
to (4.4) is

1/3 —1 5/3'
1'= —1/3 1/2 5/6 X (Cp).„F

1/3 1/2 1/6.

Gg

+ ou

83

1/8
1/8
1/8

X a 1/8+P
1/8
1/8
0

1/5
—2/5
—2/5

1/2
-3/1O

0

bj
+vf2

&~3&

Cy

+~ ~2 X
,C3

r

-1/3
0

+~AX
1/2
1/2
0

1/3
0
0
1/2—1/2
0

(5 1)

where the last term has been added. to compensate for write
the fact that the I-channel pseudoscalar exchange
cannot be approximated by the static limit. The
SU(3) column indices are the same as those used. for the
discussion of baryons. Now quite generally we can

10
—5+&

Q~

(5.2)
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where the first two vectors on the right are eigenstates of
(Cq)„, the spin crossing matrix, with eigenvalue +1,
and the last vector is an eigenstate with eigenvalue
—1. Similarly one can write the SU(6) column as a
linear combination of the seven linearly independent
eigenstates r, of (Crr), ,

—1
1
3
0
0 =g xfs;, (5.3)
2
1
2

0,
where x; are well-determined nonzero numbers. Three
of the e; are already written in (5.1). The remaining
four let us say v4, v5, v6, and v& are

27/8 f 0 r 5/4 0
7/40 0 —1/12

—9/40 1/+5 1/4
—9/40, —I/+5, 1/4
—9/8 0 0
27/40 0 —1/2

0 i—1/2 0

0
1/+5—I/v'5
0
0

1/2
(5.4)

The first two have eigenvalue +1 and the remaining
two have eigenvalue —1. Now for the solution to (5.1)
to exist, the inhomogeneous term must be an eigen-
state of (Cg), „&4', (CU),„with eigenvalue —1. The
inhomogeneous terms coming into (5.1) due to direct
product of (5.4) with

are linearly independent of the other inhomogeneous
terms occurring in (5.1). Therefore these terms by
themselves must be eigenstates of (CJ), X (C~),„with
eigenvalue —1. Now consider the direct product of the
first term in (5.4) with

rd

.d3i

The first term in (5.4) is an eigenstate of (C~),„with
eigenvalue +1.Hence solution to (5.1) exists only if

The third term in (5.4) being an eigenstate of (CU),
with eigenvalue —1, the solution to (5.1) exists only if

1
2
1

tb

b2

93.

1~
3
1
3
1

~3r

) Bnd C2

C3

10
—5

1.
(5.5)

Then the assumption of the existence of only the nonet
of vectors and octet of pseudoscalars in the s and I
channels gives a unique solution to (5.1) with

5= 0 and I'i". I'g". I'8".n. P:y
= 1:5/16:27/32:1:1:5/16:27/32 (5.6)

where F1', F8' are the couplings of the vector singlet
and octet, respectively, to the vector octet and pseudo-
scalar singlet; Fs& is the coupling of the pseudoscalar
octet to the pseudoscalar octet and vector octet. If co1

and +8 are the isosinglets belonging to the vector singlet
and vector octet, respectively,

A(coi ~ 4rp) =V2A((os —+ ~p), (5.7)

where A stands for the decay amplitude. This means
that in the nonet symmetry with the mixing angle
0= tan '(1/v2), the Q meson decay into ~p is forbidden,
a result in agreement with the SU(6) "prediction. "

We will consider the bootstrap algebra for the case in
which there are no t-channel exchanges, which pre-
sumably leads to the results of the strong-coupling
group LSU(2) @SU(3)])(T24.

B. The Strong-Coupling Group for Mesons

For the scattering of p-wave pseudoscalar octet by a
vector octet, with no t-channel exchanges, the boot-
strap equation is

js an eigenstate of (Cz),„with eigenvalue +1, i.e., only
if t=0 Th. us the last term in (5.1) which came in be-
cause the static approximation for pseudoscalar ex-
change in the I channel is not valid, is indeed zero if a
solution to (5.1) has to exist!

One can now proceed as before. According to the
arguments at the beginning of Sec. IV, the solution to
(5.1) can be taken to exist if and only if

is an eigenstate of (C~),„with eigenvalue —1, i.e.,
pnly jf y= s=0. Now consider the direct product of the
third term in (5.4) with

1/3 —1 5/3
I'= —1/3 1/2 5/6 X(Cp), I'+ d2

1/3 1/2 1/6. d3J

1/3
0
0
1/2

-1/2
0

(5.8)

where the last term is introduced to compensate for the
fact that the static approximation for pseudoscalar ex-
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change in the I channel is not valid. However, arguing
along the same lines as for SU(6), it is easy to show that
solution to (5.8) exists if, and only if,

d2 =0.
d3i

(5.9)

The remaining homogeneous solution is not unique; it
has 11 linearly independent solutions. " If we had a
knowledge of the representation of LSU(2)SU(3)j
)& T~4, to which the mesons belonged, we could have ob-
tained a solution by equating to zero those elements of
I' which do not belong to the representation. However,
in general it is not unique as to which representation the
mesons belong. Instead we will proceed along our boot-
strap way" and arrive at essentially a unique answer.

%e will 6rst assume that an octet of pseudoscalars,
and a nonet of vector mesons, exist in the solution to
(5.8). This suggests that the "representation" we de-
sire is the one which has those spin and SU(3) multiplets
which contain I'=0, J=l+1 elements. "This already
implies that

F»'=0 (5.10)

where the superscript stands for spin and the subscript
for the SU(3) representation. We further note that the
forces coming from the exchange of the pseudoscalar
octet and the vector nonet are significantly attractive
in the 27 spin-2 representation (and in vector-nonet and
pseudoscalar-octet states), and hence we assume that
our "representation" contains a F27' element. Apart
from 27 (2) state we find that the forces in all the other
spin-2 states are rather weak I even the forces from
27 (2) exchange]. We therefore look for a solution in
which most of the spin-2 states, except the 27 (2) state,
are either absent or have small couplings. (We note that
the equality of 10 and 10 couplings, implied by change
congregation invariance, itself implies three conditions. )
Such a solution does exist and is given by

J=O J=1 J=2
23.2 27.9 0

0 05 66
0 3.0 0
P i 3P i P ~ ( )

23.0 0 0.5
, 0, 8.52 .0

where the column indices are the same as for baryons
except that I"o term is omitted. (Fo——0 by charge con-

jugation. ) The essential points about the solution are
that I'», I'g, I»', I'8', I'27' are the only large terms.
(Fzo' ——3 is relatively small. ) We therefore feel that a
"representation" which contains these elements and

18 (CU),„has three eigenstates with eigenvalue —1 and four
with eigenvalue +1, while (C~),„has one eigenstate with eigen-
value —1 and two with eigenvalue +1.Hence the direct product
has eleven eigenstates with eigenvalue +1 and ten with eigenvalue

10

» See, e.g., V. Singh and B. Udgaonkar, in Ref. 9.
~0 See C. J. Goebel in Phys. Rev. Letters 16, 1130 (1966).

whose other elements are all positive will give essen-
tially the same ratios for the "large" elements. Ke point
out that I'»' does not correspond to the coupling of X'
(960 MeV) since X' has opposite G parity (G=+) to
that of our spin-0 singlet (G= —).

From (5.11) we calculate

2 (G)y ~ 7I p) =g(2.05), (5.12)
A (G)8 ~ 7I'p)

to be compared with the SU(6) value of W2. Further-
more, the ratio

Fs'/P ' 0.37 (5.13)

is essentially indistinguishable from the SU(6) value
of 10/27.

VI. DISCUSSION

The consequences of our bootstrap algebras are the
following:

1. In a world with the only baryons being the 2+
baryons, where the vector-meson coupling constants
are the structure constants of a Lie algebra, the ~+
baryons must belong to a representation of the same
algebra.

2. The bootstrap algebra provides a physical way of
describing the various spin and internal-symmetry
properties of a system. In a model where the forces
from the I-channel exchanges can be approximated by
their static limits, we obtain an easily solvable system
which leads to consequences of various spin —internal-
symmetry groups. These consequences are explicitly
derived for SU(6), the strong-coupling group, etc.
Most of the good features of these groups are retained
in our model, e.g., D//F ratios, baryon and baryon isobar
coupling ratios, magnetic moments, electromagnetic
mass di6erences, while the usual dif6culties encountered
for coupling in SU(6), etc. , are not present here.

3. The results are easily extended to mesons even
though pseudoscalar-meson exchanges in the I channel
cannot be approximated by their static limit. The
various coupling constants which come out agree with
the corresponding group results.

4. The meson-coupling results obtained from a repre-
sentation for the strong-coupling theory agree re-
markably closely with the predictions of SU(6), and
hence suggest that the strong-coupling theory deserves
serious attention.
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