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Motivated by the success of the Goldberger —Treiman calculation of charged-pion decay and the assump-
tion of pion-pole dominance of the divergence of the axial current subsequently introduced, we study the
decays of the neutral pion and eta in the same way. Examining Compton scattering of real photons from
the nucleons presents a fruitful analogy to the nuclear P-decay process. Identifying the dominant nucleon
and meson-pole-term contributions to Compton scattering and utilizing the content of the exact low-energy
theorem on Compton scattering, a no-subtraction hypothesis, supported by the Regge-pole phenomenology,
then enables us to establish exact sum rules for the lifetimes r o~» and 7 g» and also the Drell —Hearn
sum rules for K~'+K ~. We also consider in detail the relation of our sum rule to the Goldberger —Treiman
calculation of x' decay and forward-Compton-scattering sum rules for systems of spin=1. Neglecting
continuum contributions, which are small, we find from our sum rules Kp =K and v. 0~2„'——~a'm Kg) /
4g pe%~'~3. 1 eV or r 0»~2.2)&10 '6 sec in approximate agreement with the experimental value
7 0»——(1.0+0.5) && 10 "sec. Better photopion-production data for the nonresonant multipoles would en-
able us to accurately estimate the continuum contributions. Including the dominant contributions to the
photopion production continuum, we 6nd that the Drell-Hearn sum rule for K„'+K„'is well satisfied. We can
estimate the g —+ 2y lifetime but our result depends on a knowledge of the eta-nucleon coupling and on non-
resonant background contributions to the photopion multipoles. Once better photopion production data for
the nonresonant multipoles Ef&, Md=, l ~( 2 for energies & 1 BeV become available, these sum rules can offer
reliable theoretical estimates for the decays x' —+ 27, q

—+ 2p.
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which is found to be within 25% of the observed decay
rate for charged pions. The essential physical ingredients
of the Goldberger-Treiman calculation, stated in a
somewhat different language than given originally, '
center around the hypothesis that the pole term from
charged pions dominates the induced pseudoscalar
amplitude for the process of nuclear p decay, e —+ p+e
+r [Fig. 1(a)].This pole-term contribution is given by
the product of the pion-nucleon coupling constant g ~
and the amplitude for pion decay which is to be calcu-
lated. Appealing to the fact that this amplitude at
threshold is simply proportional to the experimentally
determined constant Gz, and assuming a strongly
convergent dispersion relation with neglect of all but
the pion-pole-term contribution, one then obtains the
result Eq. (1.1). To reiterate: The necessary physical
input going into the calculation was (1) information

' M. L. Goldberger and S. B. Treiman, Phys. Rev. 110, 1178
(1958).

J. Bernstein, S. Fubini, M. Gell-Mann, and W. Thirring,
Nuovo Cimento, 17, 757 (1960).

I. INTRODUCTION

A BOUT eight years ago Goldberger and Treiman, '
using the techniques of dispersion relations,

derived a relation between the decay lifetime of
the charged pion into leptons v — +„-, the pion-
nucleon coupling constant g,~'/4~ 14 and the Fermi
constant for Gamow-Teller transitions Gg~(1.18)
X(1.015X10 ')M„'. The result of their calculation
may be expressed by

about the threshold behavior of the amplitude for
e —& p+e +r, in this case taken from experiment, (2)
the assumption that single-pion exchange dominates the
induced pseudoscalar amplitude, and (3) a no-subtrac-
tion hypothesis for the dispersion relation and neglect
of the continuum contributions. This technique then
enables us to compute the decay amplitude for charged
pions.

Motivated by the success of the Goldberger-Treiman
calculation of the decay rate for charged pions, we now
direct our attention along similar lines in this investiga-
tion to the decay of the neutral pion, m'~ 2& (and

q ~ 2y). Assuming, as is usual, that the decay of the ~'
is purely electromagnetic in origin, then Compton
scattering of real photons from the nucleons offers a
suggestive analogy to the nuclear P-decay process. As
we will show in the sequel, one of the six invariant
amplitudes describing the nucleon Compton effect re-
ceives a contribution from the pole term arising from m'

exchange, the residue of which is proportional to g ~ and
the pion-decay amplitude m' —+2& that we want to
calculate [Fig. 2(a)$. Moreover, the threshold behavior
of this amplitude is known exactly and is regulated by
the low-energy theorem for Compton scattering of
Gell-Mann, Goldberger, and Low' which implies the
threshold behavior is exactly given by the low-energy
behavior of the Born terms. 4 Assuming the amplitude
requires no subtractions, an assumption supported by
the Regge-pole model for high-energy scattering, we can

' M. Gell-Mann and M. L. Goldberger, Phys. Rev. 96, 1433
(1954); F. E. Low, ibid. 96, 1428 (1954).' The Born terms and pole terms for Compton scattering are, of
course, not the same differing in as much as they treat numerators
differently. Consequently, they may dier in their threshold
behavior.
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in principle calculate the lifetime for neutral pion decay.
The m' pole, of course, does not contribute to the low-

energy theorem; however, knowing the relevant ampli-
tude at two points, namely at zero momentum and
infinite momentum where we assume it vanishes, we can
get a nontrivial condition on the ~' lifetime. This is also
true for Drell-Hearn-type sum rules where one uses the
low-energy theorem to which the N* does not contribute
plus the asymptotic behavior to relate the anomalous
moments to the yNN* vertex. Since the continuum
contribution, in a first approximation of keeping only
the lightest intermediate state, can be shown to be
related to the photopion production amplitude in the
T=—,

' channel it can be expected to be small. Within the
compass of these approximations, which do not essen-
tially differ from those of the pion-pole dominance
model, we obtain for the lifetime of the m'

1 7rumm @~2 m
3.1 eV

4g pP M~/
(1 2)

e-,

or r o ~7~2.2X 10 "sec, where n= 1 /137 and g~= 1.79
is the anomalous magnetic moment of the proton in
units of e/2M~. This result is not in disagreement with
the observed lifetime r 0 (1.0&0.5) X 10 "sec. Similar
considerations also apply to the decay q ~ 2y however
here the continuum contribution is much larger related
as it is to photopion production in the T= , channei-
which includes a large resonant contribution from the
Ml+&@'& transition (1V*) which we will estimate. The
p

—+ 2p decay-rate calculation also requires knowledge
of the coupling of the g to nucleons, which is not known
experimentally but can be related to the known pion-
nucleon coupling using SU(3) symmetry of the meson-

baryon couplings.
In the next section we will make use of the work of

Hearn and Leader' to examine the pole-term contribu-
tions to the isoscalar and isovector parts of the invariant
amplitudes for the nucleon-Compton effect and the con-
tent of the low-energy theorem. Adopting a no-subtrac-
tion philosophy for these amplitudes, we can then
establish nontrivial sum rules for the residues of the pole
terms the isoscalar and isovector parts of which yield the
sum rules for the decays q ~ 2p and m —+ 2p and the
Drell-Hearn sum rules' for ~„'+~„' and ~„'—~„', re-

spectively. Nowhere do we make use of current algebra
or the PCAC (partially conserved axial-vector current)
approximation. We also examine the issue of subtrac-
tions in the light of the Regge-pole model for the high-

energy asymptotic behavior of the scattering amplitude.

N g N N

(b)

N N

FIG. 2. Pole-term contributions to nucleon Compton scattering.

In Sec. III we estimate the continuum contributions
arising from photopion production to the decay life-
times and the Drell-Hearn sum rule. The final results
are compared with the available experimental data.

In Appendix A we consider in detail the relation of
our sum rule to the Goldberger-Treiman calculation of
~' —&2p decay. In Appendix B we investigate Drell-
Hearn-type sum rules for charged systems of spin=1
and in particular consider application to bound-state
nuclear systems.

A. Derivation of the Sum Rules

From the investigation of Hearn and Leader we learn
that the process of physical Compton scattering of real
photons from nucleons of mass m (see Fig. 3) can be
analyzed in terms of the six Prange invariants A, (s,t, s)
with

(2 1)

which satisfy s+s+t=2m' (m being the nucleonic

II. SUM RULES FOR NUCLEON-COMPTON

SCATTERING

G

In this section we will analyze nucleon Compton
scattering making use of the study of Hearn and
Leader. ' For convenience we present some of their
results. This analysis enables us to understand in a
simple way how the hypothesis of convergent dispersion
relations —when incorporated with the identification of
the dominant pole-term contributions and the content
of the low-energy theorem —provide us with exact sum
rules for the residues of the poles. Besides obtaining
purely forward-direction Compton scattering sum rules
corresponding to the Drell-Hearn sum rules, we also
extract information from the low-energy theorem in
nonforward directions which then provide the basis for
our understanding of the radiative decays of the x' and

g mesons. Having established the sum rules, we then
examine the assumed convergence properties of the
amplitudes utilizing Regge-pole phenomenology in the
asymptotic region.

FIG. 1. Decay of the
charged pion.

vN

(b) FIG. 3. Nucleon Compton s
scattering.

' A. C. Hearn and E. Leader, Phys. Rev. 126, 789 (1962).
6 S. D. Drell and A. C. Hearn, Phys. Rev. Letters 16, 908
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or'

s= W2= [(p2+m2)'~2+p]',

$= —2p2 (1+cos8)+ [(p2+m2) 4/2 —p]2

t = —2p'(1 —cos8),

(2.2)

mass). In the barycentric system of the scattering
processes these variables are related to the total energy
W, photon energy p, and scattering angle 8 according to

tion of the form

1 rt; ) r; v4 1
A;{s,t, s) =R,

i + i+ + +-
is—m' 8—m2) t—m.' t—m, ' 2r2

x;(s',s') 1
ds' dl' — +-

(s' —s) (s' —$)

p = (s—m2)/2+s,
cos8= [(s m'—)'+2st]/(s m2—)2

(2.3)
p, (s', t') 1

+ , I, (2 g)
ks' —s s' —81

'

The Feynman scattering amplitude in the s channel
is given by

{y2N2
~

F
~
ylN1) = 22, tu2( —p2)F „,241(pl) 22„(24)

P „'I'„' E„g„
Fq, =A1(S,t, B) +A2(s, t)$)— +A 2(s, t, B)

I'/2 E'

(P„'N„P„'N„)iy2— P„'P„'iy K
X +A4(s, t, e)

(P&2N2) 1l2 pI2

S„Xiy E
+ A(2st, )s+A2(s, t,s)

(P„'N„+P,'N„)iysiy K
X . (2.5)

(PI2N2) 1/2

Here P„'=P„—(P K)/K K„, P„=', (Pl„—P2„), K„-
=-', (kl„—k2„), N„= e„„p,p„'KpQ„Q„=k,„+k2„, and
(P N ) i =+2 (m $8). Tile lsotoplc-spill decolllposl-
tion of the invariant amplitudes in Eq. (2.5) is given by

A;=A I+A r2, (2.6)

where e1 and e2 are the polarization vectors of yj. and y2,
the Ny Rnd N2 are 1DltlRl RDd flDRl D11RC splDOI's RDd ln
terms of the set of invariant amplitudes free from
kinematical singularities, '

so that as s ~ eP at threshold

A;(m') =—r, v, 2 "ds ImA, (s)+—
f8~ 5$~ g go s—SF

This equation is then the basis of our sum rules. As we
will see the threshold values A;(m2) are exactly specified
by the low-energy theorem.

The pole terms in Zq. (2.8) correspond to single-
nucleon exchange in the direct and crossed channel and
2r' and rt exchange in the t channel (Fig. 2). The residues
E; depend only on the total charge and total-nucleon
magnetic moments

where 8;, r;, e; are residues of the pole terms, so
= (m+m )' is the threshold for photopion production
and X,(s',s') = rt, X,(s', $'). A similar representation can be
written for the amplitude A;{s, cos8)= A;(st, s) con-
sidered as a function of s and cos8.' We will also be
considering the function A;(s) =A, (s,0,8) =A;(s, 1) which
has cuts for —~(s(—$2+2m2 and $2(s(~ and

A;($)=2t;A;($). This A;(s) for i=1, 2, 3, 6 has a
representation of the form

r, e; 1 "ds' ImA;(s')
A (s)=- — +-

81~ Pb~ Ã gg s —S

1 "ds' ImA, (s')
(2.9)

so that for Cornpton scattering from photons and
neutrons, one has A;" "=A +A .The isoscalar (s) and
isovector (e) parts of the Compton amplitude in this
analysis refer, respectively, to the sum and difference of
the scattering on photons and neutrons and have
nothing directly to do with the isotopic character of the
photons. Crossing symmetry, exchanging initial and
final photons, implies

El 2mF2', E2 0, ——R2 ——mF 1(F——1+2mF2),

It4 ———Fl', E2 (Fl+2mF2)', ——
R,= —F1(F1+2mF 2),

with
F1———,'e (I+r2),

F2 [-', (~„+14.)I+ ', (a, ——a.)r2]e/2m, -—

(2.10)

(2.11)

A;(s, t, e) = rt;A;(s, t,s), (2.&)

with 2t, =+1, i=1, 2, 3, 6 and 2t, = —1, i=4, 5.
With Hearn and Leader, we vvill erst assume that the

amplitudes A;(s, t, s) satisfy a Mandelstam representa-

where x2,=+1.79, x = —1.91, e2/42r=42=1/137.
The residues of the mo and q poles are just the product

of the meson-nucleon coupling constant and the meson
decay amplitude into two photons F (—m ') and
F,( m„') We find —that th. ese are given by

There is a purely typographical error in Ref. 5 @&here the spin
factors of Ao are given by (I'„'E,—I','E„).

r2 ———-', g ~m„2F (—m.')r2,

e2 ——-,'g„~m,2F„(—m„')I, —(2.12)



r;= v;=0, ~&3. The function F we have introduced is
identical to that used by Goldberger and Treiman in
their examination of m- decay' and is expressed in terms
of the lifetime of m' —+ 2y and q ~ 2y,

F '( m'—)=64~/m, 'r. ,

F„'( m„'—) =64m-/m„'r„.
(2.13)

We note that the m' and g pole contribute only to the
isovector and isoscalar parts of one amplitude, As(s, ),8).

Next we turn to the content of the low-energy theorem
(let) for Compton scattering. ' This imposes exact con-
ditions on the Compton scattering as the photon fre-
quency p —+ 0 for Axed cos8. Denoting

A;""=limA, (s t 8)

+F, ~(cos8—1)—2P, (P,+mP, ),
2m i

the low-energy theorem expressed in terms of the
invariant amplitudes is

P 2

Ar'" —— (cos8—1) Am'"=4F2(p]+mp2)
p

the need for a subtraction, as did Hearn and Leader, or
one assumes no subtraction is required in which case
there are consistency conditions or sum rules for
Compton scattering and one can in principle calculate
the discrepancy ~i e~ g .po~e from a knowledge of the
Compton-scattering continuum.

We will adopt this latter alternative and assume no
subtractions are required for the amplitudes Ae(s, )',8),
A()(s, t,8), Ae{s,t, 8) At—(s,t,8),' an assumption we ex-
amine in the next part of this article. Specializing to
cos8=1 and using Eqs. {2.9), (2.12)—(2.14), we obtain
the following sum rules expressed in terms of A, (s):

e'——2g.xp. (—m.') = (2x„+x,' ((.')—
4m

2 "ImA "(s)ds
(2.16a)

g 8P 5—7Ã

e2

', g„~p—„(-m„') =— (2x,+x„'+a„')
4m

2 "ImA '(s)ds
(2.16b)

80 S—f5

FP 4m(pr
+p i

pm p &2m

pr(p~
A,"'=2P ' —

~

+F )(cas8 —o.
m (2m

(2.14) e' 2 "ImA()" (s)ds
Kp K~

4m2 m „S—m2

e' 2 " ImA()'(s)ds
Kp K~ .p

(2.17a)

(2.17b)

P 2

A p"'= (cos8—1), A eo"'=0,
m

A." =F,
~

—+F, ~(-8—1)
&2m

e2

(2x„+x~'+x„')
2m

This is necessarily the exact behavior of the A; as p —+0. (2„+„„e x 2)
On the other hand, the pole terms appearing in Eq. (2.8) 2m
in the limit p —+ 0 yield

2 "Im(AI" {s)—A g" (s))ds
(2.18a)

+2g,)rp, (—m, ') r3+2g„)r F„(—m„')I, (2.15)

"Im(A e'(s) —A t'(s))ds
(2.18b)

F)2 4m(pg
vole A pole —

~

+P
pm p (2m

A s""=—+p )(t:Ose —o,
m 2tg

so that for i=2, 3, 6 A;I"" does not yield the correct
threshold behavior. We now extract the physical con-
tent of this observation. Either one assumes that the
mismatch between A '" and A I'" at threshold implies

Our exact result, Eq. (2.16a), for the s-o-+ 2~ hfe-
time, it turns out, is the essential content of the
Goldberger-Treiman calculation, although they begin
from a diferent point of view and make Inany assump-
tions which are dificult to justify. The similarity of our
calculation and the essential content of the Goldberger-
Treiman calculation along with numerical disagreements
between our results is elaborated in Appendix A. We
also point out that if there are other particles with the

9%e consider the contribution Ag —AI instead of just Ag be-
8 M. L. Goldberger agd S, 3, Treiman, Ngovo pimento 9, 45j. cause a possible 0+ pole in the t channel contributes according to

(1958), A p(s, t,s) =A p(s, t,s) =c/(3 m') and not to t—he other an)plitndes.
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same quantum numbers as the m and p they will also
contribute pole terms to 3 3 and must be included in the
calculation. The 2+ mesons do not contribute to 33 since
only odd-parity mesons can contribute poles to this
amplitude.

If we had used the Born terms instead of the pole
terms in the Mandelstam representation, then since the
Born terms taken as p —& 0 reproduce the low-energy
theorem we would be obliged to use a subtracted form
for the continuum contribution to A, (s, cos8)."The no-
subtraction hypothesis implies that A; —+ 0 as p ~ on.
In this limit the Born terms reproduce just the differ-
ence between the pole terms at P ~ 0 and the A "n
and we again obtain the above sum rules. These sum
rules do not depend on the technical differences between
Born and pole terms but only on the no subtraction
assumption.

'

In obtaining these conditions on Compton scattering
we have not deviated essentially from the original
philosophy of pion-pole dominance. We have simply
observed that the pole terms do not necessarily repro-
duce the known low-energy behavior of the amplitude
and hence if one assumes the amplitude does not re-
quire a subtraction there emerge conditions or sum rules
which must be exactly satisfied by the Compton-
scattering process. Then one can calculate the residues
of the poles from these sum rules.

B. Subtractions

Now we turn to examining the crucial assumption of
no subtractions on which our sum rules were derived.
This issue is decided on the basis of the high-energy
behavior of the invariant amplitudes. We consequently
will utijize the Regge-pole model which it is hoped offers
at least a phenomenological basis for understanding the
behavior of the amplitudes for large s."

First consider the sum rule Eq. (2.17) for tr„' and, K„'.
Examining the helicity decomposition in the t channel
given in Hearn and I,eader one can establish a Regge
representation for A s(s, t, 8). Denoting the leading Regge
trajectory by rr(t), one finds from this representation
that as s ~ac, As(s, t, 8) —+ s t" '. Exercising special care
in going to the forward direction t=0 because of the
pecularities of the kinematics with mass-zero photons,
one finds As(s) ~ s "i '. Since the Pomeranchuk pole
does not contribute to As, we have n(0) &1 and con-
clude the sum rule Eq. (2.17) is valid.

If we examine the sum rule, Eq. (2.18), for 2'„+it„'
&tr ' in the same way we find that as s —+~, As(s)

A i(s) ~ s ~s' so that the sum rule as written may not

"See Ref. 5, Eq. (5.5).
"The t-channel Born terms behave like t/(t —mrs) and, of

course, do not contribute as p ~ 0.
"The fermion Regge-pole analysis in the 8 channel has been

carried out by V. G. Gorshkov, M. P. Rekalo, and G. V. Frolov,
Zh. Eksperim. i Teor. Fiz 45, 285 (1963) LEnglish transl. : Soviet
Phys. —JETP 18, 199 (1964)j. For the t-channel Regge analysis
see V. D. Mur, Zh. Eksperim. i Teor. Fiz. 44, 2173 (1963) LEnglish
transl. :Soviet Phys. —JETP 17, 1458 (1963)j.

be valid. "Whether or not some other combination of
invariants will exhibit convergent behavior using a
Regge model is not known. We do point out as inde-
pendent, but by no means conclusive, evidence that the
amplitude As(s) —Ai(s) requires a subtraction, the fact
that if one keeps only the resonant $*(1238) contribu-
tion to the continuum which is expected to dominate,
then ImA;"(s) =0; this in particular implies, from Eq.
(2.18v), that 2tt~+tr„s = tr„', in considerable disagreement
with experiment. Of course, a large contribution from
the high-energy region or pole-term contribution in the
t channel would invalidate this observation. We will not
subsequently consider the sum rule Eq. (2.18).

Finally we examine our sum rules, Eq. (2.16), for the
meson lifetimes. To find the large-s behavior of A s(s, t, s),
we assume, of course, that it is the exchange of the m.

and g Regge poles in the t channel that dominate the
amplitude for large s. From the helicity analysis in the t
channel, one finds as s —+~, As'(s) —+ s t'i, As'(s) ~
s ~, and since u (0)&0, n„(0)&0, we conclude that
As(s) ~0. This behavior apparently contradicts the
representation Eq. (2.9) which implies that A s(s) —+ const
as s —+~. However, since we have assumed in estab-
lishing the high-energy behavior that the x and p are
Regge poles and not fixed poles, the poles appearing in
the Mandelstam representation should be replaced by
their Regge expressions and the appropriate crossing
symmetric Regge representation of Khuri" should be
used for the amplitude. Since the Regge-pole residue
with its characteristic s dependence and the background
integral vanish as s~~, this implies for t —+0 that
As(s) ~0. The Regge-pole expression and spectral
function do not differ from the fixed pole and ImAs(s)
in the sub-BeV region for which the sum rules are
written, so we will use the representation Eq. (2.9) and
not consider possible small high-energy corrections in-
duced by Regge behavior.

To be more explicit, if we assume As" (~)=0, then
we have the representation

1 ImAs" (s')ds'
As" (s) =—

s —s

and can directly exhibit the contribution of the Reggized
pion to the absorptive part by writing ImA s"(s)
= ImR (s)+ImA, (s), where ImA, (s) is the continuum
contribution. Then we have

1 ImA, (s')ds'
As" (s) =E,(s)+-

7r s —s

and note that for s=m' the Regge-pole expression
R (ttt') and the fixed-pole expression at t=0 do not
markedly differ. Furthermore restricting our attention
to the sub-BeV continuum contributions which are not

"The leading trajectories could be the f0(1250) or fI(1525) for
which 1&n(0) &0.

"N. N. Khuri, Phys. Rev. 132, 914 (1963).
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modi6ed by Regge behavior, we may approximate
ImA ~ImA3 which then gives us our sum rule. What
we have essentially done is to split the contributions to
A &'(m ) into a high-energy contribution from the pion-
Regge pole and the low-energy continuum contribu-
tions. Alternatively one may reject the Regge model and
simply assume the unsubtracted Mandelstam repre-
sentation for A3" (s,t) which would then directly supply
the sum rule from Eq. (2.9).

In summary we conclude that the sum rules for 7. , r„
LEq. (2.16)] and x~'&x„' LEq. (2.17)] are consistent
with Regge behavior, while the 2~„+x„'&x ' sum rule
Eq. (2.18) may not be. This analysis of the asymptotic
behavior of the invariant amplitudes is consistent with
the work of Mur, "who classi6ed the t-channel Regge
poles as P trajectories with vacuum quantum numbers

(—1) P=+1, (—1)~C=+1, Q trajectories with nega-
tive signature (—1)~P= —1, (—1)~C= —1, and S
trajectories with negative parity (—1)~P = —1, (—1)~C

=+1. Only Q trajectories contribute to A6(s) so this
amplitude is asymptotically small and only S trajecto-
ries contribute to A3(s). It is clear that an even-parity
meson like the A2(1230) will never show up as a Breit-
Wigner resonance in the amplitude A 3, since, for physical
J=n(m~, ') = 2, the residue function of A3 must vanish
because of parity conservation. If one assumed that the
A 2 Regge trajectory with n&, (0) = +0 4 could contribute
to the asymptotic behavior of A3~Ps~»~o& in the s
channel (thus destroying the no-subtraction assumption
for this amplitude), even though it never showed up as
a t-channel resonance, the usual connection between
direct-channel asymptotic behavior and crossed. -channel
poles would be lost removing much of the motivation
for the Regge model. "If such a connection is lost, one
could always imagine a trajectory n(t) with, let us say,
n(0) =0.3 but which turned back before crossing J'= ~.
Such a trajectory could dominate asymptotic behavior,
but there is no way of identifying its parameters with a
resonance. Admitting such trajectories would remove
the usefulness of Regge phenomenology. We will thus
assume that the A 2 trajectory will not contribute to the
asymptotic behavior of A3(s). Lacking experimental
evidence or any rigorous theory of Regge behavior, we
can neither prove nor disprove this assumption. We do
point out that if one assumes that the A 2 trajectory does
not turn back but goes on, as apparently some of the
nucleon trajectories appear to do, the vanishing of the
residue function of A3 at all odd-J values because of a
signature factor, and at even-J values because of parity,
is sufFicient to rule out any contribution of the A2
trajectory to our amplitude.

C. Forward Comyton Scattering

It is instructive to examine the Compton-scattering
amplitude in the forward direction which has the

'5 The author would like to thank Professor S. Treiman for
discussions on this point.

general form"

f = &r*fh~(P)e~* e~+h2(P)ie (s&* x s,)]X,. (2.19)

Here p, as before, is the frequency of the photon. The
functions h, (p) are analytic in the cut p plane and may
be expressed in terms of the invariant amplitudes ac-
cording to

4m-h, (P) =—(s—m')
A g(s) P.= (p'+m')'".

2E
(2.21)

The low-energy theorem informs us that at threshold
the Ig, (p) are expressed directly in terms of the static
electromagnetic properties of the target particle, its
charge, and anomalous magnetic moment:

47rhg(0) = FP/m, —
4~h2'(0) = 2F22. — (2.22)

Furthermore the absorptive parts of h, (p) are simply
related to physical cross sections, since we are dealing
with elastic-forward. scattering, and from the work of
Drell and Hearn, ' or from the helicity analysis in Hearn
and Leader, ' one has for p) 0

P ~+(P)+~ (P) P-
Imhg(p) =- 0 tot

4m 2 4~

(f) ~+(f)-—
Imh~(p) =-

4m 2

(2.23)

Here 0+(p) is the total cross section for circularly
polarized, photons with spin parallel and antiparallel to
the target spin and in principle is directly open to ex-
perimental measurement.

From this we see immediately using Eq. (2.21) and
(2.23) that the sum rule Eq. (2.17) is completely iden-
tical to that of Drell and Hearn,

~2 =' 'p
(xn'~~-') = —L~+'"(P)—~-'"—(P)], (2 24)

4m' m- p

when written in the more conventional form. Here
0+"=0+'+0+, a+"=a+'—o+".This is the only forward-
direction sum rule one can write for physical Compton
scattering. '~ One cannot assume an unsubtracted dis-
persion relation for h~(p), otherwise there emerges the
contradiction —27r2n/m= J'dp o~, t, (p)) 0 which also

"M. Gell-Mann, M. L. Goldberger, and W. Thirring, Phys.
Rev. 95, 1612 (1954).

'7 For the non-Abelian Compton eftect there are additional sum
rules, M. A. B. Beg, Phys. Rev. Letters 17, 333 (1966). Beg also
obtains the sum rule for ~„'+~„'as one of his sum rules.

4m.h~(p) = (2E) '{mPA2(s) —A~(s)]

—-', (s—m') t A ~(s) —A4(s)]), (2.20)
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serves to inform us that at least one dispersion relation
for the A, (s) must have a subtraction; the combination
given by Eq. (2.20). One can, however, incorporate
information from the low-energy theorem for non-
forward directions, and this is the origin of the sum
rules for the m-' and. q radiative decays. Here the
continuum contributions are no longer simply related to
directly measureable total cross sections, but this in no
way prevents our estimating the continuum contribu-
tion, or relating it to experimental quantities, as we do
in the next section.

We also remark, as is well known, that the low-energy
theorem provides one with an experimental definition of
the total physical charge of a particle. For forward
scattering it also provides an unambiguous definition of
the anomalous magnetic moment of a particle and a sum
rule for this quantity. Not only is this the case for spin -„
but also evidently for higher-spin systems as well. For
example, for a spin-1 system one can show that

~'u(1 —/()'

m2

00 dp
0+ 0'

0 P
(2.25)

where the total magnetic moment of the spin-1 particle
is /(= (1+/()e/2/n and o~(p) are the total cross sections
for photon-helicity parallel and antiparallel to the
target spin. The sum rules for the magnetic moments of
spin-~ and spin-1 particles have the immediate physical
significance that in the absence of strong interactio'ns
one recovers from the Drell-Hearn sum rule the fact
that the normal Dirac moment of a spin-~ particle is
p=e/2m, while from Eq. (2.25) we have that the
normal moment of a spin-1 particle is p=e/no. In

Appendix 8 we derive and d,iscuss the spin-1 sum rule,
Eq. (2.25), further.

A. Isovector Continuum Contributions

The isovector sum rules for the m lifetime and
K2—K2are

4g N s'Bo) o
(2/(~+/(~' —/(„')

e ' r ) 4no
2 " ImA o'(s)ds

+— (3.1)
(~m&) ' s—m

e' 2 " ImAo'(s)ds
Ky K~

4m' x (~+~~) & s—m'
(3.2)

Retaining just J=-,', —,
' partial waves the absorptive

parts in the low-energy region are expressed in terms of
the CGLN multipoles" M ~~&" E~+&" according to"

III. CONTINUUM CONTRIBUTIONS TO
THE SUM RULES

In writing our sum rules, we have dispersed in the s
channel rather than the t channel. This has the advan-
tage that to a erst approximation retaining only the
intermediate pion-nucleon state, the absorptive parts
ImA, (s) are directly related to photopion production
amplitudes. Keeping only the J=~ and J=~, partial
waves should suKce for the low-energy continuum
contribution. We will consider separately the continuum
contributions to the isovector and isoscalar parts of the
sum rules.

ImA, v(s)=4)rid/I
I
ReL2(~~ O/o)jib' (o)e ~ O/o)~, (o)o g O/o)g (o)*

+jv~O/&)g~(o)o') 6(jd'~ O/o)g~+(o)o+Q~+O/o)~~ (o)o+jv~o/&)~~(o)@

+iilI O/2) g~(o) o'+3+ O/2) g (0)o 3~ O/2) ji/I (0)oc)] (3 3)

ImA "(s)=4m.
I

—
I ReL2 (—M) "/')M( (o)*+3E( ('/')M( (o)*—Eo+o/o)Eo+(o)*

+E~(&/&)E~(o)+) 6(jiII~ o/&)g~ (o)o:+E~~o/&)~~ (o)o—+~o/&)1''~(o)@

o/&)p~(o)o:+p~ o/&)+) (o)o+jiII~o/2)~~(o)o)] (3 4)

2= 2
Kp =K (3.5)

Incorporating this result with Eq. (3.1), the rate for

Here q is the momentum of the pion in the barycentric

system for photopion production.
First we note that large resonant Sf'+"~'&, E~~(3f'

transitions corresponding to the 1V*(1238) do not con-

tribute at all to the isovector sum rules. Thus if we

retain only the 1V* contribution we have from Eq. (3.2),

x' —+2y is

1 (no ' n' /(~'m
3.1 eV

r&o k nz g~n /4o 16
(3.6)

' G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1345 (1957).

"There are some typographical errors in Ref. 5. In Eq.
(4.17) the 6rst two terms should read +2Pqq~ ( ~Pq qN ('~*

+2gpp&~(0&fq qN~& ~*. In Eq. (4.18) in the last equation one should
replace P 3/2, &/& with —

|/t 3/2, &/2 . We also note that parity
conservation implies that the photopion partial helicity amplitudes
satisfy /zan

~= —p lt ~ ~. We would like to thank Professor A. C.
Hearn for pointing these facts out.
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or
r p~2.2X10-"sec,

the result quoted in the Introduction. Had we not used
Eq. (3.5) and neglected the continuum, then

//m. )' m n'
(2Kg+K K ')' 2.3 eV

km/ 64 (g //'/4s)

ol 7 o~2.9X10 "sec.Experimentally the result for the
anomalous moments Eq. (3.5) is valid to 14%which is a
measure of the error in the amp/i/udes in this approxima-
tion and does not differ markedly from the error in the
amplitude in the GoMberger- Treiman result for charged, -

pion decay.
There is considerable scatter in the experimental

values for the x' —+ 2y mean lifetime" with a typical
quoted value of 2.2X10 "sec obtained using emulsion
techniques to the minimum value of 0.74X10 " sec"
obtained using the Primako6 effect. An approximate
experimental value is given. by (1.0+0.5)X10 " sec."
A 20% contribution from the continuum in the right
direction could bring the calculated value Eq. (3.6)
into better agreement with experiment, However, we
emphasize that the experimental value must await
future experiments for more precise resolution.

It is dificult to present reliable estimates of the small
continuum contribution to the isovector sum rule. We
can expect it to be small because in the low-energy
region the multipoles M ~+&') and E~+&') are proportional
to the small isoscalar anomalous moment //~+//„The.

/V**(1520) dominates the contribution to the 312 o/2/

and E2 &'"' multipoles which enter the continuum
contribution multiplied by the small and dificult to
estimate M2 "& and E2 (" transition multipoles. The
dominant nonresonant s-wave threshold contribution
from Eo+" transitions enters ImA6' and, ImA3' with the
same sign, and if taken alone, improves the prediction
Eq. (3.5) while increasing our estimate of the ~ life-
time. Because the isovector continuum is so small, it is
difficult at this time to give a reliable estimate, and we
must await more refined experimental and theoretical
determinations of the small photopion multipoles before
even the sign of these contributions can be given with
some certainty.

B. Isoscalar Continuum Contributions

e' 2 " ImA q'(s)ds
Ky K~

4m'
(3.8)

The absorptive parts in terms of the CGI.N photopion
multipoles are given by

Next we consider the isoscalar sum rules for g ~ 2y
and «~'+//„',

4g„~ n-m, )'/' e'
(2,,+, 2+,„2)

m„' r / 4m
2 " ImA t/'(s)ds+-, (3 7)

(m+~~) '

ImA3'(s) =4m'Wl IPL lao '"I'+ IM'& ' "I' IM& ' ' I'+ IE~ '" I' 9IZ& ""I'y91/V

—6 «(~~ '""&~ "'"*+&~-'""~~"'"*)l+-'5(-')~ (-') 3+35(-') ~ (0)]} (3 ~)

ImA6'(s) =4m'I Ip32L IE0+""I' IÃ&—' "I'+
I
jf'&+'""I'y I&2—'""I' 3

I
E&+'""I' 3IN2—""I'(A,

E, /
6 Re(~ (3/2)E (3/2)4 E (3/2)/lf' (3/2)8)]+LL(3) ~ (1)Q+3L(3)~ (0)]) (3 10)

We see that the large magnetic-dipole transition
Mq+&3/'& enters the sum rules for the g lifetime and the
Drell-Hearn sum rule with opposite sign. Denoting the
continuum contribution by

C3,6'=—
(~m )'

ImA 3,6'(s)ds
7

s—m'
(3.11)

we estimate its contribution to the sum rules retaining

"R.G. Glasser, N. Seeman, and B.Stiller, Phys. Rev. 123, 1014
(1961);J.Tietge and W. Piischel, ibid. 127, 1324 (1962);H. Shwe,
F. M. Smith, and W. H. Barkas, ibid. 136, B1839 (1961); 125,
1024 (1962); D. A. Evans, ibid. 139, B982 (1965)."G. Belletini, C. Bemponad, P. L. Braccini, and L. Foa, Phys.
Letters 22, 333 (1966); Nuovo Cimento 40, 1139 (1965).

"The author would like to thank Professor S. Taylor of Stevens
Institute for helpful discussions on the experimental status of the
~' decay. See, also, P. Stamer, S. Taylor, K. L.Koller, T.Huetter,

. J. Grauman, and D. Pardoulas, Phys. Rev. 151, 1108 (1966).

TABLE I. Continuum contribution to isoscalar sum rules.

Multipoles

g+ ~, (3/»g, (3/2)(+)
2-(1/2)g2-(1/2) (b)

Threshold &47 MeV.
gp+(3/2) gp+(3/2) (g)

Total= (a)+ (b)+ (c)

m'Ce'

0.146
0.206
0.002—0.051

+0.157

mC3'

—0.190—0.117
0.000—0.067

—0.184

~' Quoted in S. L. Adler and F. J. Gilman, Phys. Rev. 152, 1460
(1966).

just the large X* and X** contributions from the
multipoles 3f& ''&E (/) and ~2 (i/2)g2 (i/z) and the
nonresonant 5-wave contribution Eo+") up to 47 MeV
above threshold. Our results are given in Table I. We
have used Walker's parameterized form for the E*and
Ã**photopion multipoles" and the CGLN expressions
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for the threshold multipoles" which can be expected to
be valid in the low-energy region.

The left-hand side of the isoscalar Drell-Hearn sum
rule Lzq. (3.8)] is (a/4ms) (.„'+..') =0.136/ms, »d we
6nd from Table I the continuum contribution C6'
=0.157/m'. Unless there is a conspiracy of contribu-
tions from the nonresonant background or a large
contribution for the high-energy region )1 BeV, we
conclude that the isoscalar Drell-Hearn sum rule is well
satisfied, in agreement with earlier calculations.

For the q —+ 2y lifetime there is a large cancellation
between. the continuum contribution which we obtain
from Table I and the nucleon terms,

ol

4g„N (arm, ) 'I'

)

= [0.240—0.184]/m
m,'&r„i

1 (g~zr)
f
XV0eV

E.g„~i
(3.12)

expressed in terms of the ratio of experimentally de-
terminable coupling constants. For the lifetime one has

r„= (g„~/g ~)'X9 4X 10 ".sec. (3.13)

24 It is dangerous to take SU(3) predictions for meson-baryon
coupling constants. See for example M. Losiguoli, M. Restignoli,
G. Snow, and G. Violini, Phys. Letters 21, 229 (1966).From their
work one sees that g„z„s/br=4. 8&1.0 and the bound g~s',s/4jr
&3.2 are not consistent with SU(3).

Since the coupling of the q to nucleons is not known
experimentally we appeal to SU(3) symmetry which
prechcts g„~———(1/V3) (1 4f)g.pr wh—ere f is the
F/(F+D) ratio" For F/D= ~» r,= 1.1X10 "sec, and
for F/D=s, r„=035X10 "sec, so the lifetime depends
sensitively on the F/D ratio when expressed in this way.

Ke also comment that since the continuum contribu-
tion is large and negative the ti -+ 2y lifetime Kq. (3.13)
depends on the cancellation of. the nucleon terms and
the continuum, and therefore is sensitive to nonresonant
background terms in the continuum which. are dificult.
to estimate at this time. This sensitivity to the isoscalar
background continuum does not appear so dramatically
in the isoscalar Drell-Hearn sum rule since one is not
computing a small difference between large terms and
for this reason it can be expected to be reliability tested.
There are thus two features of the q ~ 2y lifetime sum
rule which prevent us from giving a reliable number.
First the q-nucleon coupling must be known and
secondly the nonresonant as well as the resonant
multipoles must be known with some precision because
of the cancellation feature discussed above. If such data
becomes available in the near future, we can then give a
reliable estimate for the q

—+ 2y lifetime and then from
the known branching ratio o6er a prediction of the
total lifetime which has as yet not been measured
experimentally.

IV. CONCLUSIONS

We have obtained sum rules satisfied by Compton
scattering which relate the x —+ 2y and q ~ 2y lifetimes
to nucleon anomalous moments and the Comp. ton
continuum. There also emerges in the same way the
Drell-Hearn sum rule for A;„'&a„'. To a first rough ap-
proximation, we can estimate the x' and g lifetime; to do
better than this requires more refined data for the
nonresonant photopion multipoles and knowledge of the
coupling g~g.

From the point of view of exact SU(3) symmetry the

n ~ 2y and s'~ 2y amplitudes have the ratio 1/v3."
This result does not emerge in a simple way from our
exact sum rules which extract information about the
three-point function or vertex by studying the four-

point function. Of course, starting from the vertex and
calculating in any SU(3) symmetric way, one will

obtain the SU(3) symmetric result for the ratio of the
matrix elements; however, it is not obvious how this
result arises from the sum rules on the scattering ampli-
tude. If one generalizes the Drell-Hearn sum rule to the
baryon 8 in exact SU(3) and saturates with the decuplet,
then, as is known, there emerges an overdetermined
system of equations the only consistent solution to
which is that all the anomalous moments must vanish.
Our investigation has nothing new to add to this result
except that if one neglects the continuum in the m' and q
sum rules and considers Compton scattering from the
baryon 8 in exact SU(3), then the only solution is that
all anomalous moments must vanish.
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APPENDIX A: GOLDBERGER-TREIMAN
CALCULATION OP mo —& 2y

Goldberger and Treiman have examined the m ~ 2y
decay amplitude' described by the analytic function

F((k+q)') (in their notation). Assuming that the
m ~ 2y vertex is saturated by the XS intermediate
state enables them to relate ImF to the pion-nucleon
vertex described by E

t (g+Ar)'] and the E+S-+ 2y
amplitude Q so that symbolically, ImF J' ReK ReQ.
The X+E~2y amplitude ReQ, with the neglect of
continuum, is found to contain the nucleon-pole terms,
the pion pole which contains g ~Ii as its residue and a
subtraction term which is estimated from perturbation
theory in terms of the nucleon anomalous moments.
Assuming F requires no subtractions the dispersion
relation then establishes an inhomogenious linear equa-
tion. for F which is solved t Eq. (28) of Ref. 8] in terms

"S.Okubo and B. Sakita, Phys. Rev. Letters 11, 50 i1963).
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of a divergent integral Iz [if K ((N+N)') =1].In the
limit I&~~, Il remains finite and they obtain their
expression for the lifetime.

However this is easily seen to be simply a consequence
of the observation that ImF —+0 in the high-energy
limit implies (N+N)'XReQ —+0 in this limit which
imposes a condition on Ii, just their final result. Hence
the essential conclusion and content of their calculation
is that an appropriate projection of the Compton
amplitude, related by crossing to N+N —& 2p, vanishes
in the high-energy limit. In the limit (N+1V)' ~~ the
quantity (N+N)' ReQ which must vanish is just the
difference between the pion-pole residue and the sub-
traction constant, the nucleon pole terms having
vanished in this limit.

Goldberger and Treiman find for the quantity
(N+N)' ReQ which is the appropriate projection of the
Compton amplitude, here expressed in terms of the
Mandelstam variables,

g2

(N+1V)' ReQ=+—L2K —(K
' K„')—] e' z—zz(1+ K)

1 1 fg zzF
x~ + + ", (A1)

ks —zzz' a—zzz' t —m.'

whereas the Born term for the amplitude A3' in our
calculation is given by

g2

—2A "s""=+ L2K,+(K '—
K ')] e'm(1 —+K)

2m

identical to the essential content of the GoMberger-
Treiman calculation which implies (N+N) ReQ van-
ishes in this same limit i.e., the no-subtraction as-
sumption for A3'. From the point of view advocated in
this paper we can see why the Goldberger-Treiman
calculation works.

Using the relation between the pion-pole-term residue
and the subtraction and substituting this result into the
Goldberger-Treiman expression for the absorptive part
of the vertex ImF one then will encounter no divergent
integrals and can compute the function F(—zzz ') from
Imj . Neglecting terms proportional to the small
pion mass, one obtains from the dispersion integral
F= (1+K„)F„„z,where F„,z is the perturbation-theory
result. The Ii obtained in this way is an order of magni-
tude larger than the F obtained assuming the appro-
priate projection of the Compton amplitude must vanish
at high energy. This simply reflects what a bad ap-
proximation saturation of the x'~ 2y vertex with an
XE state or any baryon-antibaryon state can be.

We conclude from this investigation that the essential
content of the Goldberger-Treiman calculation is that
an appropriate projection of the Compton amplitude
must vanish in the high-energy limit, the same as our
no-subtraction hypothesis for 2 z'(s). Although the
physical assumption of XE saturation of the x —+ 2y
vertex cannot be justified, their final result is technically
the same as ours for reasons given above. Also we
believe that there is a crucial numerical error and a not-
so-crucial sign error in the Goldberger- Treiman calcula-
tion which raises their value of the lifetime by a factor
of 4.

1 1 fg~~F
x — + ~+ (A2)

s—m' s—m'& z—m.'

and the subtraction term in Eq. (A2) is regulated by the
low-energy theorem. We find however from direct
calculation that ReQ is not given by Eq. (A1) but
instead by

(N+1V)' ReQ=+ /2K~+ (K
'—K ')]—ezzzz(1+Kg)

2ns

1 1 ) &g zzF
x~ + I+, (A3)

ks—m' s—mz& r—zzz.
''

which differs from Eq. (A1) by the sign of K„'—K„z and
a crucial factor of 2 in the subtraction term which
shows up as a factor of 4 difference in the Goldberger-
Treiman result for the x lifetime and our result.

As remarked previously, the Born terms in the limit
P~~ reproduce just the difference between 2"' and
3""at threshold. The assumption of no subtraction for
A3 and neglect of the continuum then implies the Born
term vanishes in this limit and as is seen from Eq.
(A2) gives us our result for the zro lifetime. This is

APPENDIX 8: FORWARD COMPTON SCAT-
TERING FROM SPIN-I SYSTEMS

fz(p) = 2Lf-(P) —f+(P)]. (Il2)

Here we examine forward Compton scattering from a
spin-1 charged particle of charge e, magnetic moment
zz= (1+K)e/2zzz and quadrupole moment Q. If e;,r is the
polarization of the initial and final photons and X;,~ is
the polarization of the spin= 1 particle in the initial and
final state, then the general form for the forward-
scattering amplitude is

f= fz(p)sr* KPr 2+f,(p)(s,*xs,) (Xf xXz)

+fz(p) (sr '2r Fz'2 j+Kz'2r Ky. '2z)

+f4(p)(&r* s,)(&r*XP) (),Xp), (81)

where p is a unit vector in the direction of the incident
photon and p is the frequency of the photon. One may
define the coherent amplitudes for scattering with
circularly polarized light with spin parallel f+ and
antiparallel f to the spin of the target

f+(p) = fz(p) f2(p)+ fz(p)+ f4(p—),
1 2 3 4 )

so that
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e2 e2p
42rf= sy ' RP f 'X~ (1 K)

m 4m'

Radiation from the quadrupole moment contributes
only to 0(P'). Thus we have 42rft(0)= —e'/m, the
Thomson limit, and 42r fs'(0) = —(e'/4m') (1—K)'."

Assuming fr(P)/P —+ 0 as P ~~ and using the
crossing relation and the optical theorem Eq. (B3), one
then obtains the exact sum rule

n2r2 (1—K)' dp
0+ 0

which has also been independently obtained by Hosoda
and Yamamoto. " This would seem to imply that the
normal moment for a spin-1 system is p=e/m.

'6 F. Low, Phys. Rev. 110, 974 (1958).' S. L. Adler and Y. Dothan, Phys. Rev. 151, 1267 (1966)."T. D. Lee and C. N. Yang, Phys. Rev. 128, 885 (1962)."R.Karplus, C. Sommerfield, and E. Wichmann, Phys. Rev.
114, 376 (1959).' This result has also been obtained by L. I. Lapidus and
Chou Kuang-Chao, Zh. Eksperim. i Teor. Fiz. 39, 1286 (1960)
)English trsnsl. : Soviet Phys. —JETP 12, 898 (1961l].

"M. Hosoda and K. Yamamoto, Osaka University Report,

Crossing symmetry implies fs(p)= —fs (—p). Since

f~(p) are coherent amplitudes, the optical theorem
implies

&mfs(p) = (p/4~) 23~-(p) —~+(p)j (B3)

Next we must establish a low-energy theorem for the
forward amplitude. Utilizing the methods of Low,"
Adler and Dothan, and the gauge-invariant electro-
magnetic vertex for a spin=1 charged particle of Lee
and Yang, ' one can rigorously establish a low-energy
theorem for spin-1 particles. Even for a bound-state
system no anomalous singularities from "box" diagrams
arise with the photons on their mass shell, " and one
finds

An obvious application for both the spin--', and spin-1
sum rules are nuclear systems with these spins. If one
applies Eq. (BS) to the deuteron for which 1—Ke

=0.287, the threshold of the integral corresponding to
the deuteron-binding energy, one expects the dominant
contribution to be low-energy photodisintegration into
tsp. There is a low-energy theorem for the amplitude for
photodisintegration of the deuteron" to which one can
appeal. Here one finds that in Born approximation the
Ei transitions do not contribute at all to f7+.—0:and the
dominant 3f1 transitions contribute according to
o+—o = —3o2,2~2rt, where o2,&~ srt is the total photo-
disintegration cross section for Mi transitions. The sum
rule is consequently badly violated for the deuteron
from the dominant low-energy contribution. From this
point of view moreover it is difIicult to see how even the
simple additivity of the esp magnetic moments produce
the deuteron moment as they must exactly with the
neglect of the small D-wave probability.

We conjecture that the amplitude fs(P)/P requires at
least one subtraction for weakly bound composite
systems, and we must subtract out the free-particle
contribution to the amplitude in order to obtain a
meaningful sum rule.

Irrespective of the issue of subtractions, the low-

energy theorem Eq. (B4) provides an unambiguous
definition of the anomalous moment and can be ex-

perimentally tested using the techniques of low-energy
nuclear physics. Unfortunately the large Rayleigh
scattering p' makes this extremely difficult, obscuring
the scattering proportional to p.

1966 (unpublished). They have found using current algebra that
for general spin the sum rule

p, Z ~ dP +4 '~(ssl ——— = —L~'(P) —~ (Plh
S 5$ 0 P

obtains where p = total magnetic moment/e, s= total spin of the
system, Z=atomic number, (s3)=expectation value of the third
component of the target spin. The author would like to thank
Professor Hosoda and Professor Yamamoto for helpful discussions.

3' B. Sakita and C. Goebel, Phys. Rev. 127, 1787 (1962).


