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We study the interplay of commutators involving a conserved current, Feynman graphs, and dispersion
relations in an attempt to formulate general rules for when the invariants involved in the decomposition of
matrix elements of retarded products of currents obey unsubtracted dispersion relations. Qur main con-
clusions are two: (1) The assumption of unsubtracted dispersion relations is incorrect when one of the currents
is conserved and the other is the source of a strongly interacting particle on its mass shell. (2) When one
current is conserved and the other is the source of a system which interacts only weakly or electromag-
netically, the assumption may be correct to lowest order in the nonstrong interactions. These relations are,
however, on a much different and less firm footing than the sum rules using the hypothesis of partially
conserved axial-vector current (like that of Adler and Weisberger). In particular, assuming the unsubtracted
dispersion relations, we find that the result (e.g., the sum rules of Cabibbo and Radicati) has a structure
such that, o all orders in any field theory, the N*(w) intermediate-state graphs project to zero, that is, they
fail to contribute to the charge radius of the nucleon (pion), whereas, calculated dispersively, they do
contribute. We also show that the real part of amplitudes of type (2) has a fixed power behavior in energy.

I. INTRODUCTION

T is evident by now that the sum rules following
from current commutation relations! are very close
in spirit to the early Ward? and Ward-Takahashi®
identities.*~ That is to say, one studies the divergences
of retarded or time-ordered products of currents whose
divergences, and whose equal-time commutators with
other structures in the matrix element, are known. In
the case of partially conserved currents, of course, one
has extra (known) terms beyond those in the original
Ward identities.

It is well known that the Ward identities themselves
are in general powerless to give more than low-energy
theorems.” The reason for this is that, in general, a
Ward identity relates an (#-+1)-point function in-
volving a timelike vector meson to an (n)-point function
without that meson. Because timelike vector-meson
amplitudes are experimentally inaccessible, it is
essentially impossible to feed experimental data in at
the (n-+1)-point function level to calculate the (n)-
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point function. On the other hand, near zero vector-
meson four-momentum, there are sufficient analytic
relations between the physical (transverse) and the
timelike vector-meson scattering to allow the deri-
vation of low-energy theorems. Only at zero vector-
meson four-momentum can the (#)-point function be
determined from the transverse (z+1)-point function.
In this sense then, one can say that the implications of
equal-time current commutation relations, and the
knowledge of the divergences of these currents, are the
low-energy theorems. In order to give the Ward
identities teeth,“that is, to go further and derive sum
rules, one needs assume dispersion relations; in particu-
lar, unsubtracted dispersion relations (USDR) are
usually essential to derive any nontrivial sum rule at
all.® The USDR, if correct, establishes definite relations
between the timelike and the transverse vector-meson
scattering, enough so that scattering data at the
(n+1)-point level can be fed through to calculate the
(n)-point function with relative ease. Evidently, it is
crucial to know in which cases an assumption of USDR
is correct.

There is a feeling in the literature that these questions
are in general too difficult to answer, and that one may
as well assume USDR whenever needed. One of our
main points in this discussion is that, without any
detailed dynamics, one can already say a few things
about when it is correct to assume USDR, and when
it is wrong or suspicious. This is bound up with a careful

8 Many of these sum rules have been obtained by evaluating a
commutator in the |p|—« frame [S. Fubini and G. Furlan,
Physics (N.Y.) 1, 223 (1965)]. This corresponds to USDR for a
particular set of invariant amplitudes; while the |p|— tech-
nique sometimes makes derivations simpler, the dispersive ap-
proach allows us to see the relevance of the Ward identities and
will consequently be used throughout this paper.
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discussion of which Feynman graphs contribute to
which pieces in the Ward identities.

We should say at the outset that we consider the
USDR assumption in those sum rules using the hy-
pothesis of partially conserved axial-vector current
(PCAC) (e.g., the Adler-Weisberger relation®) to rest
on fairly reasonable grounds: (a) In these, one assumes
that USDR for the mass-shell (say) =N scattering
plus a smooth off-mass-shell continuation (PCAC)
implies USDR for zero-mass 7-N scattering. (b) More-
over, the Feynman graphical structure of, e.g., the
Adler-Weisberger relation, is obvious. (c) Finally, the
essential part of the sum rule (making g4/gv calculable
from 7-N scattering data) can be obtained from the
associated low-energy m-N scattering theorem!>—which
does not use USDR. We shall not have much to add to
the existing discussion of these points. Rather, we
shall concern ourselves almost exclusively with the
sharply contrasting situation of the more Ward-like
sum rules, namely those which involve a commutator
of a conserved current with some operator. In general,
we shall use the term “Ward identity” in the discussion
below in referring to any identity between an (n+41)-
point function and an (#)-point function, before any
assumption about dispersion relations is made. Our
conclusion is that these ‘‘conserved-current-commu-
tator” sum rules are on a different, and, we feel, weaker,
footing than those which, like Adler and Weisberger,
employ PCAC.

For conventience in the discussion of the sum rules
involving commutators of at least one conserved
current, we distinguish between two classes of identities:

(1) Those identities in which USDR is assumed for
the matrix element of a retarded product of a conserved
current with the source of a strongly interacting particle
on its mass shell. For example, in Sec. II, we shall discuss
USDR (and the resulting sum rule) for the structure

[t TG 1D 199, (0.0

where j,(x) is the electromagnetic current and Ji*
is the source of the pion. The four-momentum of the
pion g2 is taken on the mass shell. Taking ¢;, times an
assumed USDR for Eq. (1.1), one can derive a sum
rule relating pion photoproduction to the #VN form
factor, with the pion off its mass shell. A Feynman
graphical analysis of the different pieces in the Ward
identity shows that USDR for (1.1) is almost certainly
wrong. Moreover, it is wrong even if the theory
Reggeizes. Observe that, had the sum rule been correct,
it would have provided the means for determining an

9 W. Weisberger, Phys. Rev. Letters 14, 1047 (1965); S. Adler,
ibid. 14, 1051 (1965).

1Y, Tomozawa, Nuovo Cimento 46, 707 (1966) ; S. Weinberg,
Phys. Rev. Letters 17, 616 (1966); A. P. Balachandran, M.
Gundzik, and F. Nicodemi, Nuovo Cimento 44, 1257 (1966).
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off-mass-shell strong vertex in terms of a mass-shell
scattering process. Other sum rules like this could have
been cooked up to determine the off-mass-shell behavior
of every strongly interacting particle. This is the un-
physical sort of thing to which incorrect assumption of
USDR may lead. We conjecture in general that,
whenever a conserved-current commutation relation
and USDR (with no other assumption, such as, e.g.,
9,4 ,2=7%) allow the “measurement” of an off-shell
strong process, then the USDR assumption is incorrect.

(2) The second class of identities is that in which
USDR is assumed for the retarded product of a
conserved current with a current which is the source of
a system which interacts only weakly or electromagnetically.
This is the subject of Sec. III. Analysis of such struc-
tures have led to a series of relations between Compton
scattering and electromagnetic form factors. For
example, the relevant matrix element in the derivation
of Cabibbo-Radicati-like relations is

/ eitar = —ar D) digdbel (po| T{ 7,7 (2),5,/(@)} | p1), (1.2)

where j,° is the ¢th component of the isotopic-spin
current. A Feynman-graphical analysis of the various
pieces in these Ward identities shows that, because
neither current is the source of a strongly interacting
system, the arguments used to destroy sum rules of

* type (1) above do not apply to first order in the non-

strong interactions. On the other hand, the graphical
analysis shows that the USDR assumption is causing
some very strange things to happen in the sum rule.
For example, Cabibbo and Radicati find that the N*
intermediate state (or the w intermediate state when
the external states are taken as pions) contributes
sizeably to the Compton-scattering side of the relation,
and hence to the charge radius. The graphical analysis
shows that no Feynman graph with an N* intermediate
state (to all orders in any field theory) can contribute to
the Compton-scattering side of the Ward identity; i.e., the
entire set of graphs is projected to zero by the g,
operation which relates (1.2) to the form factors.
Another way of saying this is that the Ward identity
accepts information in general only 'about timelike
photon Compton scattering, and the N* graphs do not
contribute to this. The argument is valid also for the
resonant part of a composite N*. The same surprising
analysis can be carried through for the set of all one
w-meson intermediate-state graphs in the case of
external pions. In fact, it is shown that the only single-
particle states whose graphs can survive the g, are those

11 N. Cabibbo and L. Radicati, Phys. Letters 19, 697 (1966);
R. Dashen and M. Gell-Mann, in Proceedings of the Conference
on Symmetries of Strong Interactions, Coral Gables, 1966 (un-
published); J. D. Bjorken, Phys. Rev. 148, 1467 (1966); I.
Mugzinich, sbid. 151, 1206 (1966); C. Bouchiat and P. Meyer
(unpublished) ; M. Gourdin, Nuovo Cimento 47, 145 (1967); S.
Okubo (unpublished) ; F. Buccella, G. Veneziano, and R. Gatto,
Nuovo Cimento 424, 1019 (1966).
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with the isospin of the external state (nucleon or pion in
the two cases).

What is happening is that the USDR assumption (if
correct) is requiring a relation between the resonant
and nonresonant parts of (say) the 33 wave—such
that, although the Ward identity projects the resonant
part to zero, using the imaginary part of the resonance
effectively introduces the nonresonant part (which can
contribute). In a situation like this, one’s customary
graphical intuition is useless. We feel that one of two
conclusions should be drawn from these observations:
(1) Either such strange goings-on should be regarded as
throwing doubt in general on sum rules derived using
conserved-current commutation relations and USDR,
or (2) if such extraordinary antigraphical tricks turn
out to give agreement with experiment,? then other
problems, in which graphical and pological intuition
has evidently ground to a halt, should be tackled with
these methods—with the hope that a bit of this ‘“magic”
will succeed where straightforward methods have not,

Toward deciding between these two views, we also
point out in Sec. IIT that USDR in these Cabibbo-
Radicati-like cases certainly receives no support from
Adler-Weisberger-type arguments: USDR on the p-
meson mass shell plus any simple continuation to zero
meson-mass fails to yield the sum rules. We shall also
note that, contrary to the Adler-Weisberger case, there is,
in this case, no way fo calculate the charge radii from
Compton scattering without having to make the USDR
assumption—that is, through the corresponding low-
energy theorem. The relevant theorem, recently derived
by Bég,® applies to the structure (1.2), which is not
measurable in Compton scattering. In fact it is neces-
sary to perform a series of first- and second-order weak-
interaction experiments to determine its value.

Finally, in an Appendix, we include a derivation of
the original Takahashi identity which corrects compen-
sating errors of two factors of Z; in the original treat-
ment.? The derivation is an interesting exercise in the
kind of intuition emphasized in this paper, namely, the
relations between processes involving timelike and
transverse vector mesons.

II. ONE CURRENT IS SOURCE OF STRONGLY
INTERACTING PARTICLE

A. Derivation of a Sum Rule

In this section, we shall first proceed formally, by
deriving a sum rule in the “usual manner,” and then
criticize the derivation. Consider the time-ordered
product

T,,i= —’ifd% e‘ik'z(le T{J,,’(O),]”(Z)} I P1> ) (21)

12 F, Gilman and H. Schnitzer, Phys. Rev. 150 1362 (1966).
13 M. A. Bég, Phys. Rev. Letters 17, 333 (19 )
uS, Adler, Phys Rev 143, 1144 (1966)
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where the initial and final states are nucleons of mo-
mentum p; and ps, J#*(0) is the source of the pion field
with isotopic spin 7, and j, the source of the electro-
magnetic field. The latter’s isovector component is
related to the isotopic-spin current j,* by
Ju'=ejd (2.2)
We assume four-momentum conservation, p1+k=ps+q,
where ¢ is the pion’s four-momentum, and also that
all particles are on the mass shell, namely p?= p>= M2,
¢*=pu?, and £2=0.
Postulating the equal-time commutation relation

8(20)[jo(2),7+°(0) J=1ee*8* (2)J7(0), ~ (2.3)
we have the “Ward identity”
kuTyi= —1iee(ps| T+9(0) | p1). (24)

Equation (2.4) by itself is essentially empty so we
proceed to assume USDR. It is convenient to find
suitable invariants first. Let F,? be defined by

Ty= i(p2)ysE w'u(p1). (2.5)

—
(BB
We then multiply 7T,¢ by vsu(p2) on the left, #(p1) on

the right, and take the trace. The averaged 7%, which
we call 7,¢,

_ M
Tyi=————Tr{ysA(p)vsF'A(p2)},

(2.6)
(E1E2)1I2
can then be written as
E1EN\? .
( > T“i= P,,A 1’(V,l)
M2
+QI£A 2i(v’t)+A#A 3i(”7t) ) (2°7)

where
=3(P1+Py), Q=3(k+q), A=3(k—0),

y=P-Q, and t=—A% If we assume the A’s obey
fixed-# unsubtracted dispersion relations in » and that
the integral over the » discontinuity in 4 (4») converges,
we may write the limit of 4 as

1 2 A, )dv 1 -~
Ai=_/ _ - 4,54, (2.8)

T V—y 7%

for A*=A1, 3" However as k- P= (Q+A)-P=Q-P=y,
it follows that!s

FyEa\ 12 . 1 =
( > kau'=—‘—] AL dy.  (2.9)
M? T w

16 Equation (2.7) could actually be derived for arbitrary » (see
Ref. 5). This limit merely makes the calculation easier.
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If we define the pion-nucleon form factor F.(f),

M
(pa| T27(0) | pr)= W(ﬁz)%u(ﬁﬂff‘ (1), (2.10)

1E2)1 2

and perform the same averaging over spins, we find
from Egs. (2.4) and (2.9) that, e.g., in the case of =™
emission

t 00

te—F, (f)=—— AtG ndy' . 2.11

S O=— [ e 01
Relating the discontinuity of 4 to the discontinuity of
the Chew-Goldberger-Low-Nambu'¢ invariants (CGLN)
[which we call a7, b7, ¢’, and d7, where r denotes a
particular isospin invariant (see Ref. 16)], using cross-
ing symmetry, and calculating explicitly the nucleon
pole contribution, Eq. (2.11) becomes

42
e{tF (1) =3 (t+uDgnprt) = ——(1—1?)
™

X ] i La( O+t () 1dv. (2.12)

The ¢—u? comes from a k-q factor appearing in the
invariants.

B. Analysis of Sum Rule

Having derived the sum rule, let us now see why it is
wrong, more precisely, why it is incorrect to assume
A1,2,3 obey unsubtracted dispersion relations. This will
be clear from a discussion of which Feynman graphs
contribute to which pieces of the “Ward identity” as
given in Eq. (2.4). Let us begin with the expression for
the pion photoproduction scattering amplitude,

e“S”i=_/d4xd4ny2(Dy2+#2)
g—ik-atiqy

X (pa] T(w (), ()} | pr)———

(Srogo)t” (2.13)

and let the d’Alembertians operate on the time ordering.
As always, this divides the S matrix into a current-
current (really source-source) term plus an equal-time
term which is only a function of momentum transfer
squared. Explicitly,

8@ (p1tk—p2—q)

€uSyi=—1(2m)*

(4kogo)'"*
Xel[Tir)+ 1], (2.14)
with f,%(¢), the equal-time term, being given by
Jui()=1e(2qu— k) €5 pa| w(0) [ p1).  (2.15)

16 G, F. Chew, M. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1345 (1957).
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(b)

F16. 1. (a) Graphs that contribute to equal-time term f,.
(b), (c) Contributions to current-current term T.

Note that

Feufui (§) =deei(1—p) (pa| 7(0) | p1)
=1ie®ii(ps| J+7(0) | p1). (2.16)

Comparing Eqgs. (2.16) and (2.4), we see that kT,
= —k,f.* which, of course, is just the statement that the
S matrix is gauge-invariant, £,S,’=0. Diagrammatic-
ally, one can see in a varity of ways that €, f, is the sum
of all graphs for which the electromagnetic current and
the pion source join (into a pion) before going on into
the “guts” of the process; the corresponding graphs are
displayed in Fig. 1(a). €, is easily seen to consist of
all other graphs in S, namely, those for which an inter-
action occurs before the electromagnetic current joins
the pion source. Their representation, in Figs. 1(b)
and (c), emphasizes that the current-current term
contains all the graphs which have discontinuities in »
(or equivalently in s and #). As stated earlier f,.(f) is
independent of » and therefore does not vanish as
y—00,

The reason now why 7% cannot satisfy an un-
subtracted dispersion relation in » for fixed ¢ is that it
contains many graphs whose large-» behavior is at
least as singular as that of e,f,. Examples of such
graphs are the vertex corrections of Fig. 2(a). Without

\‘S
‘(1:\::::\1\ b2
R g W (a)
{
Fi6. 2. (a) Graphs in k
T,, as singular as those
in f,. (b) Graphs in T,
which, when added to
£y would give Reggeiza-
tion.
X P2
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a cancellation between these and other graphs in €,T,
there will be no way for T, — 0, the necessary condition
for USDR. We are used to talking about subtraction
constants being unnecessary if a field theory is Reg-
geized in a graph summation, but we emphasize that
the required cancellation would have nothing to do with
Regge behavior of the amplitude; it would in fact con-
tradict a Regge behavior for the S matrix.!” To see this,
assume we have a theory in which the pion Reggeizes;
this would come about by having a whole set of graphs
in €7, such as those of Fig. 2(b), combining with
the graphs of €,f, to give the whole S matrix a (v*®)
Regge behavior. Because f, goes like a constant at
large v, this would certainly require T', to have a sub-
traction. As we shall see in detail in Sec. III, our in-
ability to extract sum-rule-type information from the
“Ward identity,” (i.e., to use USDR) is directly trace-
able to the fact that one of our currents in the retarded
product to be dispersed with the source of a strongly
interacting particle (the pion) on its mass shell.

Note that if the USDR assumption had been correct,
the sum rule (2.12) would have allowed the unam-
biguous determination of the (pion off-mass shell)
pion-nucleon form factor in terms of an on-the-mass-
shell pion photoproduction amplitude. Similar combina-
tions of conserved-current commutation relations and
USDR could have been arranged to allow the determi-
nation of any strongly interacting particle off-mass-
shell behavior purely in terms of on-mass-shell quanti-
ties. This flies in the face of our experimental sensi-
bilities so badly that we feel it worth conjecturing, that
[unless a strong field-theoretical assumption relating
weak or electromagnetic currents to strong interacting
particles is made (e.g., 9,4 ,°=7%)'8] whenever a sum
rule allows the determination of off-mass-shell strong
particle behavior from on-mass-shell amplitudes, the USDR
assumption is incorrect.

III. BOTH CURRENTS ARE THE SOURCES OF
WEAKLY (OR ELECTROMAGNETICALLY)
INTERACTING SYSTEMS

A. Derivation and Preliminary Discussion of
a Sample Sum Rule

Let us now turn our attention to the matrix elements
of the retarded product of two isotopic-spin currents
(for a dispersive approach to other commutators see
Ref. 19):

Twii=i / dz e 0| TG, (2),5,7(0)} | 1), (3.1)

17 See E. J. Squires, Complex Angular Momentum and Particle
Physics (W. A. Benjamin, Inc., New York, 1963) for a bibliog-
raphy of Regge poles.

18 M. Gell-Mann and M. Lévy, Nuovo Cimento 16, 560 (1960).

19 S, Fubini, G. Furlan, and C. Rossetti, Nuovo Cimento 40A,
1171 (1965); W. Weisberger, Phys. Rev. 143, 1302 (1966);
%9%;55andrini’ M. A. Bég, and L, S, Brown, ibid. 144, 1137
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where, to simplify the kinematics, we shall take the
initial and final states to be one-pion states. We define,
as in Sec. II,

Pn=%(P1+P2)u7 Qu=%(1]1+92)m An’“%(?l_qﬁ)n;
and y=P-(Q, t=—A2. Expressing T, as
(AELEo)'2T 1= PP, A 17 (v,t,q:2q )+ QuPrA ¥

+AP A+ PA A, (3.2)
we easily see that
quuT uii= — 1€ ®(py| 1,%(0) | p1y= —i€'*P,F.*(1) (3.3a)
1 +o0
= ——P,,/ ImA 1”(V',t,(]12,Q22)dV’ .

™

(3.3b)

In obtaining Eq. (3.3), the equal-time commutation
relation

8(20)[7o’(2),7,7(0)]=ie'*j,# (0)6W (z)  (3.4)

has been used, and a USDR has been taken for each
invariant. The relation following from Eq. (3.3),
namely,

0

2
Z / Timd (s g2, g)dv' =i PF (1), (3.5)
0

™

has been discussed in great detail in Ref. 5. In particu-
lar, it was shown there how the derivative of Eq. (3.5)
with respect to ¢, ¢i2, or g%, at t=¢g:>=¢g-?=0 leads to the
relation between the charge radius of the pion and the
integral over scattering from pions of isovector photons
derived by several authors®:

0 V'
—{or=" ()
v V )
401" —(5/4)01-2"], (3.6)
where o;¥ is the isovector-photon-pion total cross

section in the I-isospin channel, and v, is the threshold
value of ».

(rat)y=—+
2%

Preliminary Graphical Interpretation of the Sum Rule

Let us now see how the assumption of unsubtracted
dispersion relations for the 4’s involved in Eq. (3.2)
is different from the analogous assumption for the scalar
amplitudes of Sec. II. To make the comparison clearer,
let 7, be the electromagnetic current apart from a factor
¢ (the additional isoscalar current contained therein
commutes with all components of the isotopic-spin
currents and causes no complications) and let 7,7(0) —
7,7(0). The key to the argument is that j,* is not the
source of a strongly interacting particle as was J,, but
rather couples to a charged lepton pair through the
vector current. The latter have no strong interactions so
that to first order in the weak and electromagnetic
interactions there are no graphs contained in 77,%
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analogous to those of Figs. 2(a) and 2(b), and therefore
it is not inconsistent that the A’s obtained by de-
composing 7',," obey unsubtracted dispersion relations.
We emphasize that we do not pretend to prove that these
A’s do obey unsubtracted dispersion relations, merely
that assuming they do is not at the moment patently
inconsistent.

To clarify these points, it is helpful to notice how
T, is related to the (physical) .S matrix for the process

y+at— al+tet+tv,
which we denote by
=eGr(2m)%® (q1tp1—qa—p2)M .
Gr is the Fermi coupling constant, and M is given by

M=¢V, T, 3.7

where ¢, is the photon’s polarization and V, is the
lepton-pair’s current. As always, M can be divided into
a source-source term and an equal-time term

M= Gva[Tpv+fpy] . (38)
The graphs that contribute to 7', and f,, are shown
in Figs. 3(a) and 3(b). As in Sec. II, the current-current
term 7', contains all those graphs for which something
happens before the currents join—i.e., all those graphs
with discontinuities in s or u. M is of course gauge-"
invariant,

quT'w=0, (39)
and it is very simple to verify that V,g1,fu» does in fact
equal minus V,g1,7,,. [Moreover, since V,quufur
=V,P,F.(), (3.9) is exactly the i=3, j=- case of the
sum rule (3.3a).] The graphical structure of the two
pieces is almost exactly that found in the sum rule of
Sec. II, except that now, to lowest order in weak and
electromagnetic interactions, no graphs exist connecting
one of the lepton lines and the strong-interaction
“blob” of Fig. 3(a). These were the graphs that forced
a subtraction on T, the analog of 7, in Sec. II.
The reason of course was that there the outgoing system
was composed of a nucleon and a pion, and here it is
composed of a nucleon plus a lepton pair. Thus, relative
to this first simple criterion, there is no obvious in-
con51stency in taking USDR for the invariants of
T, It is worth emphasizing: The fact that the vector
currents couple to systems that only interact weakly (or
electromagnetically) has shielded the Adler™-Cabibbo-
Radicati-type sum rules from the criticism we were able
to make of the sum rules in Sec. I1.

What about the situation relative to Reggeism?
One can see easily that the gauge invariance of the S-
matrix T [Eq. (3.9)], or the equivalent (for g:*=q2=0)
relation

QM(P#PllA 1+Pva.A 2)=P$‘F(t) y (3.10)
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G2 -y p,.
» e
"™ @
N
Fic. 3. (a) Current-
current contribution to
amplitude for y+»+— A\ P,
+1*+». (b) Equal- e
time contribution to () I %
amplitude for y+7+— .
m+I+t+». (c) Current- N ot
current contribution to 1 P

amplitude for y+#+—
w94+I*+» in the absence
of strong interactions.

©

and the USDR assumption for the invariants, requires
that the high-» behavior of 4, be

F)

1Y
V—WOV

(3.11)

to cancel the large-» behavior of the equal-time term.
Thus A4, cannot be Reggeized in the usual sense (at
least not its real part). This also means that the .S
matrix itself cannot Reggeize in the usual sense. [The
T term contributes 4;~ (F(#)/») to the P,P, invariant
of T, and the equal-time term is powerless to subtract
this off -] The reason for this non-Regge behavior is
that T,, (or T,,) contains a “hard core” of weak
interactions, i.e., does not vanish when the strong
interactions are imagined to be turned off. In this limit,
only the purely weak Born term [Fig. 3(c)] contri-
bution to 7', survives. With only this graph left, 4,
would have the (purely real) large-» behavior

1
Ay~ —.

Hwy

(3.12)

Thus one learns that the strong interactions have a dual
function in the sum rule: When turned on they (a)
change the large v coefficient of 4; from the “hard core”
value of 1 to F(#), and (b) create an imaginary part for
A (above the pion mass). In that the imaginary part
has no “hard core” (is purely strong) one feels that it
can be taken as Reggeized. Thus, for these sum rules it
seems consistent with Reggeology to have a Reggeized
imaginary part, but non-Reggeized real parts for both T
and T This situation should be contrasted with the case
of Sec. II, in which, there being no “hard core” (all
graphs vanish if strong interactions are turned off), .S
should Reggeize and 7', must not.
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B. Detailed Graphical Analysis of the Sum Rule

In this section, we want to see what becomes of
certain subsets of Feynman graphs contributing to the
4-point (“Compton” scattering) side of the sum rule.
To get our feet on the ground and to illustrate the
techniques we will employ in more interesting cases, let
us first consider the Born (pion pole) term. These are
shown in Fig. 4(a). The external wiggly lines should be
thought of for isospin index 3 as off-shell photons and
for 1 and 2 as lepton-antilepton pairs. Note that seagull
graphs (if such exist) are not found in the current-
current term. (Just as in ordinary Compton scattering,
these are always part of the equal-time term of the S
matrix.) Omitting the photon polarization vector and/or
the lepton current, these graphs have the form

HALPERN, AND SEGRE

158

I=1 representation of the isospin generators. Just as
we saw in Sec. IT, these two terms are the negative of
g1 times the graphs of Fig. 4(b). (The first of the
figures in 4(b) represents the graph in which the two
currents meet before going on to interact with the
pions.) As far as the antisymmetric structure is con-
cerned, the first term on the right-hand side of Eq.
(3.14) is indeed exactly, to lowest order in all inter-
actions, €"*F_*(f)P,, that is, Fig. 4(c). In other words,
to lowest order, it is the sum of the two terms of
Fig. 4(a), with the isospin structure taken in opposite
order, that reproduces the commutator structure.

The situation is not so simple in the case of the higher-
order graphs with one-pion pole terms. This entire set
of graphs is shown in Fig. 5. The study of these graphs

is best begun in coordinate space, where the Ward

o identity takes the form
Hmelt (21t qr) y

—(p1+ y
(P1+91)2—M2(P1 prta)

d
—pamI T 100} | 254)
et (2 gn)s (Prt-p2=gu)s- ’ = 2ie#9 (w— ) pam| 5+ (3) | pud)-

g—1)2— 2 (3.15)
(po—qu)*—w (3.13)

Parenthetically, note that if the pions had been off their
mass shell, there would have been two more (3-point
function) terms, corresponding to the folding together
of 7, (x) with each of the pions. Analytically, the one-
pion pole graph’s contribution to the current-current
term is

Thus their contribution to the three-point-side function
of the Ward identity (3.3a) is

ql#TI"‘g[ﬁ>ﬁj tm (P1+P2) vt [ﬁ)ﬂ]+lmq1” ) (3 14)

where the three matrices (=1, 2, 3) (#)™"= ¢"* are the

(pom TGN | =2 [ [ Lo m| T )3 (0T (=9 T 01 T @30} D)

+(poym| T{ i (@) ()} |0)[Are (&' —2) 10| T{x*(2) 7,/ (y)} | p1)],  (3.16)

where = is the pion field. Taking the derivative of (3.16) with respect to x,, assuming the commutation relation
(2.3), and going over to momentum space, we obtain

quu(pa,m| T{5,7(g2) 1u*(q)} | pr.0)=22€V Y po,m | T{ 5, (g2)w¥ (q1+42)} |0
X[Arz (q1tg2) T2V 0| T{xV (p2—q1) 1, (g2)} | p,1) (Ar e (p2—qu)) .

The structures on the right are 3-point functions, but they each have one pion off-mass shell. Thus, they cannot
contribute to the sum rule in this form. Evidently, other T, graphs contribute 3-point functions which add to
these, bringing the sum into the form F.(¢). The failure of all the pion-pole graphs to go over directly into pieces
of F(¢#) should not be surprising: One knows that Ward identities relate all (#-1)-point function graphs of a
given order in the coupling to all the (#)-point function graphs of that same order—and that there is no necessary
connection between all graphs of a given type (to all orders) at the (n-+1)-point level and graphs at the (#)-point
level. Probably one would need to add all the other graphs of the theory to the pion-pole graphs in order to get
(at arbitrary g, g2) some part of F,(£). On the other hand, as g1, g2u — 0, it is clear from Eq. (3.17) that no other
graphs are needed to get F.(f). That is to say, at gi,=¢2,=0, the pion-pole graphs saturate the sum rule. This
corresponds to the trivial case of the matrix element between one-pion states of the commutator of two isospin
generators (integrated fourth components of currents) which is of course saturated by a one-pion intermediate
state.

(3.17)

One w-meson Intermediate State

A more interesting set of graphs is that set which contains the one w-meson pole (see Fig. 6). This pole has been
found to contribute significantly to the Cabibbo-Radicati sum rule. Analytically, the one-w graphs can be written
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in coordinate space

(paym| T{ju ()50} | 1) / / d'2d*s'[(paym| T{, (y)en (&)} | O)[Dr' (5'—2) 70| T{eon (2) 7' (%)} | p1,0)

+{(pam | T{ju* (x)on (&)} |0)DAN' (' —=2) THO| T{wn(2) 5,7 (3)} | p1,1)],  (3.18)
where Dy (2'—3) is the w propagator and wy (3) is the w field. Because w is an isotopic scalar, i.e.,
8(xo—20)[fo* (x),0n(2) ]=0, (3.19)

these graphs fail to contribute to the sum rule; that is, (3.18) is divergenceless in x. Physically, this had to happen,
for, if the one-w intermediate-state graphs had survived the ¢y,, they would have implied the presence of absurd
graphs at the 3-point function level, like those shown in Fig. 7. (A = changing to an w like this is a violation of
total isospin conservation.) It bears emphasizing then that although Cabibbo and Radicati (and others) find with
USDR that the w contribution is sizeable, the sum of all Feynman graphs with a one-w intermediate state cannot con-
tribute to the sum rule.

In the first place, it is easily seen that the same consideration applies relative to the N* intermediate state
(when the external states of the sum rule are nucleons): The sum of all N* intermediate-state Feynman graphs is,
in coordinate space,

(P28 T3 (@) 7,9 (9)} | prya) / d% f 2 [(paB] T{5 () Se™ (&)} | ) D' ora™ (5" —2) THO| T{ S+ (2) 7 (%)} | p1,t)

+{(p2,8| T{ju'(®)So™ (2)} [0)[3)',»,"'”(2'—2)]‘1@( T{S:(2) 70} | pre)], (3.20)

where Dayn?'%, S,” are the N* propagator and field
respectively, and | p1,e) (say) is a nucleon with i 1505p1n
index a. The x divergence of the N* graphs is then
proportional to structures like (where [ Je:. means
equal-time commutator)

(O] Lo (#),80" () Je.v. | 1)
=0® (x—2)(72)""(0] S, (3) [ pre), (3.21)

where the matrices 7; are the 4 X4 representation of the

}&‘fa, ).

o
! | PFg, (a)

(b)

k

MWW
P2" Py \\

(c)
Y
U

Fic. 4. (a) Direct and crossed pion pole terms. (b) Lowest-order
contributions to fu. (c) Pion form factor to lowest order.

isospin generators. Because the matrix element on the
right of Eq. (3.21) vanishes by total isospin conser-
vation, we learn that (in apparent contradiction to
Cabibbo and Radicati) none of the N* graphs survive
the g1, of the sum rule. Again, had they survived, it
would have implied the presence of three-point graphs
in which N changed abruptly to N*, violating total
isospin conservation.- Notice that we have not used
spin conservation here, or in the case of the w graphs.
Spin conservation has nothing to do with, e.g., the
vanishing of Eq. (3.21); that is, an off-mass shell N*
has a spin-3 component, so that, as far as spin is

Frc. 5. Direct and
crossed pion pole term '
with full vertices.

Fic. 6. Direct and
crossed graphs with an
w pole.

)
F1c. 7. A set of 3-point function graphs i
which does not exist. H
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4 i v //;f
L\ ) F16. 8. Lowest-order
w direct and crossed
graph w-pole contri-
N ¥ . butions.
¥ TN .

concerned, the nucleon could go directly to an M*.
Note in fact that a similar analysis of the Adler-
Weisberger relation would involvé axial-vector currents
and the commutator analogous to Eq. (3.21) would in
general have nonvanishing matrix elements. -

We can be somewhat more explicit about what is
happening to these pole terms by looking directly at,
e.g., the lowest-order w pole, as shown in Fig. 8. This
graph can be written using the effective Lagrangian
density (summed over 7)

L1(%) = epmnow,W1,"0.9°, (3.22)

where €4, 1s completely antisymmetric, w,, ¢* are the
w and 7 fields, respectively, and

Waix)=Go\V,(x), i=1,2
=eF), (%), =3, (3.23)

[V.(x) and F,,(x) are the leptonic current and the
electromagnetic field tensor, respectively.] Note that
because w and 7 have different masses, etc., the photon
must couple through F,,—otherwise the electro-
magnetic current would not be conserved. Because of
the form of (3.3a), only that part of the graph propor-
tional to P, can contribute. One finds for these pieces
[omitting g,u.2 V,(x), €,], when ¢i2=¢22=0,

] Q)

T

X pl,l>e—“?"d4x « PP, A1+Q,P,As, (3.24)
pole
2t —2v
A 1= y A 2= .
V—Vw V—Vu

As should be the case, this graph is “transverse,” i.e.,
0,7 4»=0. The important thing to notice is that, for
the Born term it is zot¢ correct to assume a USDR for
both 4, and 4,; the invariant 4, explicitly needs one
subtraction. Suppose we forget we ever knew this and
proceed formally by assuming USDR in the manner of
the derivation of Eq. (3.3b). That is, suppose we assume,
instead of (3.24), the form

_ 1+ Tmd,(/)dy'
! [T
T J-w vV—v
1+ Imdo(s)dv'
+QuP,~ / ———F, (329)
T J - vV —v
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where the imaginary parts are calculated from (3.24).

Then

2t 2ve
QuPy ,

V—Vu

T,~P,P; (3.26)

V=7V

and Q,7,,70. In fact we have
- 2ty

QuT[w=Pv<‘ - )—_—ZIP,,. (3.27)

V—Vy V=V

2ty

The crossed Born term shown in Fig. 8(b) is separately
transverse, and the same discussion can be carried
through for it.

The S-matrix theorist would say at this point that
the USDR assumption is perhaps not so bad because,
after all, one cannot necessarily trust the ‘“bare”
Feynman-Born graph to give the correct off-mass-shell
behavior of the w, and certainly the USDR assumption
only changes that. On the other hand, we have shown
that one cannot hope that the higher-order corrections
to the w will converge to (3.24)—because to all orders
the w pole projects to zero. Moreover, our arguments,
being based as firmly as they are on isospin invariance,
evidently do not depend on the w being elementary,
merely on its being a tightly enough localized state that
a resonance approximation is a good one.

Historically, one tried to fix the subtractions in a
dispersion relation in order to reproduce a field theory
to all orders. In particular, if given the full field-
theoretic pole term with all its off-mass-shell corrections,
the S-matrix theorist would have chosen the sub-
tractions in his dispersion relation so that his pole term
reproduced this. If the assumption of USDR, as applied
to the charge-radii sum rules is correct, and we cannot
prove it is not, we are then witnessing a departure from
this point of view.

Many-Particle Intermediate-State Contributions

If it turned out that ¢;, projected the entire 7=0
wave (in the case of pion external states) to zero, the
USDR assumption would be totally in contradiction to
field theory—or any future theory, most probably. In
fact however, as we shall see, the multi-particle states
do continue to contribute in the 7=0 wave; only the
part that can be approximated by a pole, as just seen,
is projected to zero. The USDR assumption (if correct)
would imply a relation between the resonant and the
nonresonant parts of the 7=0 wave, so that feeding in
the » imaginary part would be just a shorthand for
feeding in the nonresonant part of the 7=0 wave.

Instead of looking at the 7'=0 wave of the 3-pion
intermediate state, let us look at a much simpler model
with all the same features. Suppose the external states
are taken to be scalar “pions” of isospin 1 and even
G-parity. Just as in the previous discussion, one can
show that a I'=0 resonance fails to survive the appli-
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cation of ¢1,. Now we are interested in seeing if the 7=0  Fig. 9, does survive the ¢1,. Analytically the sum of all
wave of the 2-“pion” intermediate state, shown in these graphs is

(parn TGN pudy [ [y Ja ] &5 (o | TG Ym0 (@)} | 0)

X[Are' (v =) I [Are (&' —2) TH0| T{x* (&) 7m“(9) ju'(*)} | p1,0), (3.28)

where = is the scalar pion field. The divergence of this sum with respect to #, after going to momentum space, is

/d4Q/d4Q<P2,m| T{j,(g)m*(—Q)m*(—Q)} | 0)[Arz' (Q)Arz (@) T
X[2€ (0] T{x* (Q—q0)7*(@)} | pr,1)+-2€% (0] T{m*(Q)r* (@—gq0)} | 1) ] (3-29)

Notice that this set of graphs contributes a “hash” to the three-point function. This time the result cannot even
be interpreted Feynman-graphically, as, in each of the two terms, one of the two pions appears to arrive at the
upper “blob” with more momentum than it took from the lower “blob” (although, of course, there is still over-all
momentum conservation).

Now we study the 7=0 wave in particular. This is obtained in Eq. (3.28) by setting 4=/ and summing over 4.
If we then take the divergence, we obtain, in momentum space,

3
qu X [ e -nadiadts (poym | T{AE) 5 @)} o)

§4/ a*Q / d*Q(peym| T{ 5,7 (g (—Q)m*(— @)} |0)[Arz' (Q)Arz (@) T
XLf(Q,Q—q1; p0)— f(Q—q1,Q; p0)], (3.30)

where we have introduced the definitions
O] T{x” (Q—g)m @)} | prh)= e (Q—g1, @; p1) (3.31a)
O] T{z* (@) @—g1)} | pr.1)= € f(Q, @—qs; p1). (3.31b)
Now, because Egs. (3.31) are explicitly antisymmetric in the isospin of the two pions, the function f must also be
antisymmetric in the first two arguments (Bose statistics). Thus Eq. (3.30) does not vanish, as promised. In the
same way, the =0 wave of the more complicated 3-pion intermediate state in the situation of interest (ordinary
pions) survives the projection.

One can go further and study the fate of the entire 7=0 wave of T, in the Ward identity—rather than worry
further about individual intermediate states. It follows immediately that

X d"”/ b= (py m | T{G,3() 1, (@)} | P
= (2m)*% (g2t pa—q1— p1) 2€(pa,m| 7,5 (0) | $1,8)#0. (3.32)

Before going on to look at what possible support the  C. Offi-Mass-Shell Extrapolations of Amplitudes
USDR assumption might have, it is worth generalizing
the conclusions of this section. If we repeated our
analysis on the graphs of all one-particle intermediate
states that contribute to 7, we would find in general
that only those resonances with the isospin of the external
state (pion or nucleon in the Cabibbo-Radicati cases)

As mentioned in the Introduction, the USDR in the
Adler-Weisberger relation leans on the assumption of
USDR for the mass-shell 7-N scattering amplitude,
plus a smooth off-mass-shell continuation. Our point in

survive the application of qi,—and contribute to F (7). Y
Thus, in e.g., the nucleon case, nonzero graphical ! sm
contributions may come from the higher resonances in Fi6. 9. Nonvanishing two-particle contri- R
the nucleon channel as well as resonances with /=3 bution to 7'=0wave.

but higher spin (including the resonances on the i U
nucleon Regge trajectory). 4% A
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this section is that the situation with these conserved-
current sum rules is very different. In fact, the Cabibbo-
Radicati relations receive no support whatever from a
USDR assumption for mass-shell p-N scattering plus
a smooth continuation.

The reason for this is, as we saw in part A of this
section, that the charge-radius-type sum rules depended
critically on the essentially weak “hard core” present
in the transition amplitude. That is, because of this
“hard core,” the current-current part of the amplitude
went asymptotically like »™' for all values of 7 It
therefore seems evident that although
wam L (GE=m) (g —mp)

XT",if(y,t’qlz’qf)=R“vij(y’t) (333)

is proportional to the p-r scattering amplitude (see
Refs. 5 and 20 for a discussion of this limit), there will be
no smooth off-mass shell extrapolation which will allow
us to obtain the Cabibbo-Radicati sum rules. The
reason is, of course, that any ‘“‘smooth” continuation
in ¢, and ¢.* would not alter the presumably strong-
interaction behavior of the amplitude at large ». For
instance, with Regge asymptotic behavior for R,,%,
any smooth off-shell extrapolation would behave as
»*®_and not »~L. That is to say, a smooth continuation
will not pick up the (weak) hard core that is missing
on the mass shell.

One can see just this sort of thing happening in
various simple models of smooth off-shell continuation.
E.g., consider (i not summed)

T (,,q12,92°)~ O] T{ 54" (q1) ju*(91)} | 0)
X 0| T{ 7,7(g2) 77 (g2) } | O) Ry, *(v,1) .

This 7',% will never give the Cabibbo-Radicati relations
because it is transverse, i.e., 1,7 4*"=0. Other simple
attempts have similar difficulties. The point is that, to
obtain the sum rules, one would have to rig up a compli-
cated, certainly not smooth, continuation that would
introduce in some way the essential weak hard core.

The procedure of trying to define the matrix element
of two vector currents by coming off the p mass shell
is really very different from that followed in the Adler-
Weisberger relation. What actually occurs in this latter
case is that the double divergence of the analogue of
T,,%, this time with two axial-vector currents (call it
N,,%), is evaluated, giving an equal-time term and a
term involving the retarded product of two axial-
vector current divergences, which we call®* M;:

qquﬂﬁuvﬁ(’/:t)qlzyq?z) = Gij(t)—l—M“(”)t)qlz’qf) ) (335)

where as usual, the equal-time term is a function only
of ¢ This is very similar in form to, say, our Eq. (3.3a),

(3.34)

2 V. de Alfaro, S. Fubini, G. Furlan, and C. Rossetti, Phys.
Letters 21, 576 (1966).
2t This is the isospin antisymmetric part.
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except, of course, because the isospin current is con-
served, we never have the analog of /7%. On the other
hand it is 7% for which USDR on the mass shell and a
smooth continuation is assumed. The point is that
this term does not have a weak hard core. (If the strong
interactions were turned off, /7% would vanish.) Thus
one can hope that a smooth off-shell extrapolation will
pick up the essential features of the off-shell amplitude.
The analogy to what is done in the derivation of the
Cabibbo-Radicati sum rules would be to assume USDR
for N w7 on an axial-vector meson mass shell, and then
continue off. For exactly the reasons discussed above,
namely that N, kas a hard core, this procedure will
fail to give the correct large-» behavior of the off-shell
N ... The rule we are proposing is then this: It is per-
mitted to use a smooth-off-mass-shell continuation for
structures which have no weak hard core. In the Adler-
Weisberger relation, one does just this; in the Cabibbo-
Radicati relations, one has no terms that are free of
hard cores.

As a final example of a type of sum rule in which the
distinction between a strongly interacting particle being
on the mass shell or not is crucial, we would like to
consider a class of sum rules examined by Fubini,
Furlan, and Rossetti!® and more recently by Gasioro-
wicz.2 These sum rules, which relate nucleon electro-
magnetic form factors to off-mass-shell pion photo-
production amplitudes, are obtained by considering
the matrix element '

M, i= —i[d“z e= 2 (py| T{7u(2),7(0)} | p1), (3.36)

where ¢o?5%u?. The assumption of USDR for this
structure appears, @ priori, more similar to Sec. IT than
to the case we have just discussed. However, these
relations really fall with the Adler-Cabibbo-Radicati
relations, as we see by considering the structure e,I'M,
where T' is the vertex for off-mass-shell 7-decay
m— u+v. M, is an off-pion-mass-shell function, in-
cluding the pion propagator, so graphically I'M, is as
depicted in Fig. 10(a), i.e., it corresponds to the source-
source term of

Y+N— N+ptv

/lv .7
P2, P2
| ;\\ \\E N
q ¥
N
PI

Fic. 10. (a) Current-current contribution to y+N — I4+v+N
with lepton current coupled to strong interaction “blob” through
a pion pole. (b) Equal-time contribution to y+N — I4v+N
with lepton current coupled to strong interaction “blob” through
a pion pole.

22 S, Gasiorowicz, Phys. Rev. 146, 1071 (1966); see also M.
Nauenberg, Ref. 6.
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with a one-pion pole between the strong-interaction
blob and the lepton pair. It therefore falls into the
category of sum rules we have just been discussing, the
only difference being that we insist on having a one-
pion pole between the lepton current and the strong-
interaction “blob.” As was previously the case, the
equal-time term of the S matrix contains those graphs in
which the photon is absorbed by the electron, as in
Fig. 10(b). Here we are assuming USDR for the entire
off-mass-shell amplitude for photoproduction, whereas
in Sec. II, we needed to assume USDR for a part of the
on-mass-shell amplitude to derive the sum rule. The
two assumptions are clearly very different.

IV. CONCLUSION

We have discussed at great length the question of the
validity of the USDR assumption as applied to the
matrix elements of the retarded commutator of two
currents, one of which was conserved. In principle of
course, one could attempt to measure these matrix
elements, by performing second-order weak-interaction
experiments (by this we mean to include also one weak
and one electromagnetic interaction) such as depicted
in Figs. 3(a) and 3(b). Even then one would have to
perform a complicated series of experiments to extract
the contribution of the weak vector current from the
total transition amplitude which includes (1) the
unwanted equal-time term shown in Figs. 3(b) and (2)
the contribution of the lepton-pair’s coupling through
both avector and an axial-vector current (Foracomplete
discussion, involving an analysis of the kinematics, see
Ref. 14). In particular then, contrary to the Adler-
Weisberger case, one cannot reasonably hope to avoid
the USDR assumption in these cases through the
relevant low-energy theorem!® (for the current-current
part).

A relation ‘“‘testable” by experiment is therefore
only obtainable at the moment, making use of the USDR
assumption. Sum rules, such as e.g.,

Mp— Mn 2 2 ® av’
%(’2>=( ) +““/ [201/2Y =037 }—, (3.37)
M ma? J 4, v

(where 72 is the nucleon’s electric form-factor charge
radius and oy/2¥ and o3,2" are total isovector-photon-
photoproduction cross sections) are not, strictly speak-
ing, testable by experiment, as there is only one photon,
so g1z and 032 cannot be separately determined in
Compton scattering. Another way of saying this is that
only the isovector component of the photon contributes
to our sum rule, and its contribution to Compton
scattering cannot be separated by experiment from
that of the isoscalar photon, as they both have I3=0.
In practice, however, sufficient familiarity has been
acquired over recent years with isobar models and the
like to allow us a fairly confident analysis of sum rules
such as the above.
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In concluding, we would like to emphasize that we
have neither proven nor disproven the use of the USDR
as applied to the matrix elements of the retarded
commutator of two isospin currents. We have shown,
however, that the contribution of intermediate resonant
states to the scattering amplitude may be different if
calculated using USDR or Feynman graphs, and that
this applies to the standard low-energy theorems as well.
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APPENDIX: THE WARD-TAKAHASHI IDENTITY

It appears to the authors that a mistake of two factors
of Z3, the photon wave-function renormalization, was
made in the original derivation of the Takahashi
identity. Taking care of these Z3’s, so as to obtain the
usual identities (known to be true from perturbation
theory) seems an amusing exercise in the relation
between transverse and timelike vector-meson scatter-
ing amplitudes, which in a sense is the subject of this
paper.2

The difficulty is this: If one intends to identify the
zero-momentum-transfer limit of the matrix element
of the current with the renormalized charge ez, then the
correct current to use is the source of the renormalized
photon field,

J'n(x)=;—RDZUW,II/U:], (A1)

where ¢y is the (Z2) unrenormalized Heisenberg elec-
tron field. The correct commutation relation of this
physical current with the electron field is then

E¢(x>,jo<x')3e.t.=;a<3>(x—x'>¢<x). (A2)

Instead, Takahashi used (A2) without the Z;. If one is
not very careful, this leads (erroneously) to an extra
factor in the final identity itself. A correct derivation
(with this extra Z3) goes as follows:

Consider the function

O T{ju()r(x)Pr(x)}|0),

where Yz(x) is the renormalized electron field. Taking
the divergence of (A3) with respect to ¥, using (A2) and

(A3)

28 Throughout the derivation, we shall be concerned with the
full details of the Z3 renormalizations and shall assume that all
Z1 and Z, renormalizations are done (namely, Z;=Z,). In particu-
lar the proper vertex is meant to be completely Z; renormalized.
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going to momentum space, we obtain

keS e (P )Tur@ (p,0)Srr’ (p)
1
= Z[SFR' @) —Sre'(p)], (A4)

where T,z D (p',p) is the renormalized improper vertex
defined by

O TG W) | 0)=cn f et e (- )

XTur D (E—y; y—n)Sre’(i—').  (AS)
By improper, we mean that this vertex contains not
only the proper vertex, but also %#* times ‘the photon
propagator graphs. The improper vertex is renormalized
in that, when k=0, T',z‘D, as seen by a physical
(transverse) photon, is equal to the renormalized proper
vertex at k2=0. Instead of

e'Tur D (B2=0)= TP (k*=0), e k=0, (AGa)
we shall prefer the equivalent notation
Tz (F=0)| r=T,P (k*=0). (A6b)

The symbol | r, meaning the part of a function ‘“‘seen”
by a transverse photon, will be contrasted with |o
meaning that part seen by a timelike photon (in the
sense of (A6a), that is a probe with an e* parallel to
k#). Of course, (A6) is a consequence of the definition
(A5) of T,z in terms of ez. ® )

To learn more about this improper vertex, we study
the structure of its (Z3) unrenormalized form T',(D.
Graphically T,(» is the sum of the series shown in
Fig. 11, where the blobs labelled by I, P are the (Zs-
unrenormalized) improper and the proper vertex; the
II* blob is the photon’s (proper) vacuum polarization
tensor. The pictorial form will serve as a reminder that
I,D, T,® are defined without external electron or
photon lines. Using the Feynman gauge for simplicity,
this sum is analytically

Ty (p',0)=T " (P',0)
kel
AT oo e

k2
g— k)R ,
=
krRY
F TG, (AT

To facilitate the summation, current conservation has

D =B + @ + P@@ + oo

F1c. 11. Relation between unrenormalized improper vertex
I,® and the proper vertex I',(®,
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been used to write
Rk,
O ) LIS
It is immediately clear from (A7) that
kL # (s p) =k 2y (P,0) (A9)

that is, only the timelike part of the improper vertex
survives in the Takahashi identity. This is obvious;
in fact, Eq. (A4) could have been written

keSer’ (P )Tur® (p',0) | oS e’ ()

1
= z[SFR' (#)—Sre'(p)]. (A10)

Note that we cannot use (A9) to write a relation like
(A10) for the proper vertex, because (A9) refers only to
the unrenormalized I'?, To see the relation between
the renormalized and unrenormalized improper vertex,
we use (A7) to obtain [recall that 1—II'*(0)=Z5 ]

DD (#=0)|p=Zi0, M (2=0),  (Alla)
IO (#E=0)| =T, @#=0).  (Allb)

Thus we learn that, in order to guaraniee (A6), we must
divide the unrenormalized quantities I',‘? through by
Zj3 to obtain the renormalized T'yz D (p',p) :

L, D (P p)=ZsLue D (p,9).

Using (A11b) and (A12), we obtain finally the crucial
relation

(A12)

1
Tur®(,9)] o=ZFu<P>(p’,p) , (A13)
3

which allows us to rewrite (A10) as the familiar Taka-
hashi identity

kxS pr' ()T (#,0)S e’ (9)
=Srr' (p')—Sre'(p).
A final word about the physics involved here is in

order. Note that the charge of the universe [obtained
from the current (A1)]

(A14)

QE/dx Jo(x) (A15)
has the commutation relation
er
3

This means that Q ‘“‘sees” a charge er/Z; in the state
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created by ¢ acting on the vacuum:

Q¢<x>|o>=;—"¢<x>lo>. (A17)

FEYNMAN GRAPHS
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where

Qexr= / djo@  (A19)
experimental volume

On the other hand, this is not the measured charge in a
(say) one-electron state

<1|Qexpll>=ek’

Qexp is measured say in some finite box, neglecting
photons above some maximum wavelength, whereas

(A18) ¢|0) contains arbitrary numbers of soft photons.
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Relation of Normal-Ordering Methods to Linked Diagrams*
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The normal-ordering method of Heffner and Louisell is extended to apply to anticommuting operators
and systems with nonquadratic Hamiltonians. This extended method is shown to yield coupled ordinary
differential equations for quantities which are sums of all linked-diagram contributions having the same

external line configuration.

1. INTRODUCTION

ONSIDERABLE interest has been shown recently
in methods of computation, sometimes called
normal-ordering techniques,’ in which the creation
operators of Bose excitations a;! are replaced by ¢
numbers a;* and the annihilation operators a; by deriva-
tives d/da*. The subscript ¢ refers to the state of the
excitation. We wish to point out that this procedure is
a specialization of the method of functional derivatives
in quantum field theory,? and also that an explicit con-
nection may be established between the trial functions
involved in this method and linked-diagram theorems
familiar in many-body theory.® It is hoped that explicit
demonstration of these relationships will clarify and
broaden the scope of the new techniques.

Recognizing the kinship between the derivatives men-
tioned above and the functional derivatives of quantum
field theory, it is a simple matter to extend the normal-
ordering techniques of Louisell, Walker, and Heffner to
include anticommuting as well as commuting operators.
This extension, described in Sec. 2, makes use of “anti-
commuting ¢ numbers” v;* v; and their derivatives

*This work was partially supported under Joint Services
Electronics Program (U. S. Army, Navy and Air Force) under
Grant No. AF-AFOSR-496-67.
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similar to those introduced by Schwinger for Fermi
fields.87

The work of Louisell, Walker, and Heffner has made
much use of a normal-ordered exponential trial function
:1expG: for the various operator quantities under in-
vestigation. Here G is a finite polynomial in a;* and «;.
We have shown® that the time evolution and density
operators, U (tt') and p(#,8), corresponding to systems
of Bose particles can have such a form only when the
corresponding Hamiltonian is at most quadratic in the
operators a;' and @¢;. Similar results for systems of
fermions and for mixed systems will be published else-
where.® Section 3 includes a discussion of the method
of Heffner and Louisell® for such systems.

For nonquadratic Hamiltonians this method may
still be applied formally. In this case G is an infinite
series in /¥, a;, v5*, and v;:

G=Zstuv G“uva*eat,y*u,yv. (1)

Here o*¢ is an abbreviation for [J:a**, a convention
used throughout this paper. Notice that #; and v; may
only equal 0 or 1 while s;,#4=0,1,2, ---. It is the
principal aim of this paper to show that the coefficients
Gstu of G in the trial function U (4,') = :expG': are equal
to sums of linked-diagram contributions having the
same external-line configuration. Thus the normal-
ordering method leads to a set of ordinary differential
equations for sums of linked-diagram contributions.
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