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We study the interplay of commutators involving a conserved current, Feynman graphs, and dispersion
relations in an attempt to formulate general rules for when the invariants involved in the decomposition of
matrix elements of retarded products of currents obey unsubtracted dispersion relations. Our main con-
clusions are two: (1)The assumption of unsubtracted dispersion relations is incorrect when one of the currents
is conserved and the other is the source of a strongly interacting particle on its mass shell. (2) When one
current is conserved and the other is the source of a system which interacts only weakly or electromag-
netically, the assumption may be correct to lowest order in the nonstrong interactions. These relations are,
however, on a much diGerent and less firm footing than the sum rules using the hypothesis of partially
conserved axial-vector current (like that of Adler and Weisberger). In particular, assuming the unsubtracted
dispersion relations, we find that the result (e.g., the sum rules of Cabibbo and Radicati) has a structure
such that, to all order's in any fl,eld theory, the N (au) intermediate-state graphs project to zero, that is, they
fail to contribute to the charge radius of the nucleon (pion), whereas, calculated dispersively, they do
contribute. We also show that the real part of amplitudes of type (2) has a fixed power behavior in energy.

I. I5'TRODUCTION point function. On the other hand, near zero vector-
meson four-momentum, there are sufhcient analytic
relations between the physical (transverse) and the
timelike vector-meson scattering to allow the deri-
vation of low-energy theorems. Only at zero vector-
meson four-momentum can the (rt)-point function be
determined from the transverse (st+1)-point function.
In this sense then, one can say that the implications of
equal-time current commutation relations, and the
knowledge of the divergences of these currents, are the
low-energy theorems. In order to give the Ward
identities teeth, '-that is, to go further and derive sum
rules, one needs assume dispersion relations; in particu-
lar, unsubtracted dispersion relations (USDR) are
usually essential to derive any nontrivial sum rule at
all. ' The USDR, if correct, establishes definite relations
between the timelike and the transverse vector-meson
scattering, enough so that scattering data at the
(n+1)-point level can be fed through to calculate the
(rt)-point function with relative ease. Evidently, it is
crucial to know in which cases an assumption of USDR
is correct.

There is a feeling in the literature that these questions
are in general too dificult to answer, and that one may
as well assume USDR whenever needed. One of our
main points in this discussion is that, without any
detailed dynamics, one can already say a few things
about when it is correct to assume USDR, and when
it is wrong or suspicious. This is bound up with a careful

' 'T is evident by now that the sum rules following
& - from current commutation relations' are very &lose
in spirit to the early Ward' and Ward-Takahashi'
identities. '—' That is to say, one studies the divergences
of retarded or time-ordered. products of currents whose
divergences, and whose equal-time commutators with
other structures in the matrix element, are known. In
the case of partially conserved currents, of course, one
has extra (known) terms beyond those in the original
Ward identities.

It is well known that the Ward identities themselves
are in general powerless to give more than low-energy
theorems. ~ The reason for this is that, in general, a
Ward identity relates an (st+1)-point function in-
volving a timetike sector meson to an (n)-point function
without that meson. Because timelike vector-meson
amplitudes are experimentally inaccessible, it is
essentially impossible to feed experimental data in at
the (st+1)-point function level to calculate the (tt)-

Many of.these sum rules. have been obtained by evaluating a
commutator in the ~p ~co frame PS. Fubini and G. Furlan,
Physics (N.Y.) 1, 225 1965)g. This corresponds to USDR for a
particular set of invariant amplitudes; while the ~p~~ao tech-
nique sometimes makes derivations simpler, the dispersive ap-
proach allows us to see the relevance of the Ward identities and
will consequently be used throughout this paper.
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discussion of which Feynman graphs contribute to
which pieces in the Ward identities.

We should say at the outset that we consider the
VSDR assumption in those sum rules using the hy-
pothesis of partially conserved axial-vector current
(PCAC) (e.g. , the Adler-Weisberger relation') to rest
on fairly reasonable grounds: (a) In these, one assumes
that USDR for the mass-shell (say) vr-N scattering
plus a smooth oR-mass-shell continuation (PCAC)
implies USDR for zero-mass m.-N scattering. (b) More-
over, the Feynman graphical structure of, e.g. , the
Adler-Weisberger relation, is obvious. (c) Finally, the
essential part of the sum rule (making g~/gv calculable
from 7r Nscat-tering data) can be obtained from the
associated low-energy m--E scattering theorem' —which
does not use USDR. We shall not have much to add to
the existing discussion of these points. Rather, we
shall concern ourselves almost exclusively with the
sharply contrasting situation of the more Ward-like
sum rules, namely those which involve a commutator
of a conserved current with some operator. In general,
we shall use the term "%ard identity" in the discussion
below in referring to any identity between an (n+1)-
point function and an (n)-point function, before any
assumption about dispersion relations is made. Our
conclusion is that these "conserved-current-commu-
tator" sum rules are on a different, and, we feel, weaker,
footing than those which, like Adler and Weisberger,
employ PCAC.

For conventience in the discussion of the sum rules
involving commutators of at least one conserved
current, we distinguish between two classes of identities:

(1) Those identities in which USDR is assumed for
the matrix element of a retarded product of a conserved
current with the source of a strongly interacting particle
on its mass shell. For example, in Sec. II, we shall discuss
USDR (and the resulting sum rule) for the structure

where j„(x) is the electromagnetic current and J,'
is the source of the pion. The four-momentum of the
pion q2 is taken on the mass shell. Taking q» times an
assumed USDR for Eq. (1.1), one can derive a sum
rule relating pion photoproduction to the md% form
factor, with the pion off its mass shell. A Feynman
graphical analysis of the different pieces in the Ward
identity shows that USDR for (1.1) is almost certainly
wrong. Moreover, it is wrong even if the theory
Reggeizes. Observe that, had the sum rule been correct,
it would have provided the means for determining an

~ W. Weisberger, Phys. Rev. Letters 14, 1047 (1965); S. Adler,
ibid. 14, 1051 (1965).

1o Y. Tomozawa, Nuovo Cimento 46, 707 (1966); S. Weinberg,
Phys. Rev. Letters 17, 616 (1966); A. P. Balachandran, M.
Gundzik, and F. Nicodemi, Nuovo Cimento 44, 1257 (1966).

off-mass-shell strong vertex in terms of a mass-shell

scattering process. Other sum rules like this could have
been cooked up to determine the off-mass-shell behavior
of every strongly interacting particle. This is the un-

physical sort of thing to which incorrect assumption of
USDR may lead. We conjecture in general that,
whenever a conserved-current commutation relation
and USDR (with no other assumption, such as, e.g.,
B„A„=~) allow the "measurement" of an off-shell

strong process, then the USDR assumption is incorrect.

(2) The second class of id.entities is that in which

USDR is assumed for the retarded product of a
conserved current with a current which is the source of
a system which interacts only weakly or electromagnetically.
This is the subject of Sec. III. Analysis of such struc-
tures have led to a series of relations between Compton
scattering and electromagnetic form factors. " For
example, the relevant matrix element in the d,erivation
of Cabibbo-Radicati —like relations is

e""" " 'd'*d'*'(P~l 2'(j'(*),j''(*'))
I P~) (1 2)

where j„' is the ith component of the isotopic-spin
current. A Feynman-graphical analysis of the various
pieces in these Ward identities shows that, because

neither current is the source of a strongly interacting

system, the arguments used to destroy sum rules of

type (1) above do not apply to first order in the nots

strong in/eractions. On the other hand, the graphical
analysis shows that the USDR assumption is causing
some very strange things to happen in the sum rule.
For example, Cabibbo and Radicati find that the S*
intermediate state (or the ar intermediate state when

the external states are taken as pions) contributes
sizeably to the Compton-scattering side of the relation,
and hence to the charge rad, ius. The graphical analysis
shows that no Feynman graph with an N* intermediate
state (to all orders in any field theory) can contribute to

the Cornpton scatter&kg side of the W-ard identity; i.e., the
entire set of graphs is projected, to zero by the q»
operation which relates (1.2) to the form factors.
Another way of saying this is that the Ward identity
accepts information in general only '.about timelike
photon Compton scattering, and the Ã* graphs do not
contribute to this. The argument is valid also for the
resonant part of a composite E*.The same surprising
analysis can be carried through for the set of all one
co-meson intermediate-state graphs in the case of
external pions. In fact, it is shown that the only single-

particle states whose graphs can sure& e the q» are those

"N. Cabibbo and L. Radicati, Phys. Letters 19, 697 (1966)j
R. Dashen and M. Gell-Mann, in Proceedings of the Conference
on Symmetries of Strong Interactions, Coral Gables, 1966 (un-
published); J. D. Bjorken, Phys. Rev. 148, 1467 (1966); I.
Muzinich, ibid. 151, 1206 (1966); C. Bouchiat and P. Meyer
(unpublished); M. Gourdin, Nuovo Cimento 47, 145 (1967); S.
Okubo (unpublished); F. Buccella, G. Veneziano, and R. Gatto,
Nuovo Cimento 42A, 1019 (1966).
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Voith the isosptrt of the external state (rtucleoI or pioN iN
the ttoo cases).

What is happening is that the USDR assumption (if
correct) is requiring a relation between the resonant
and nonresonant parts of (say) the 33 wave such
that, although the Ward identity projects the resonant
pRlt to zero uslilg the lmRglnary pRrt of the resonance
effectively introduces the nonresonant part (which can
coIltl'llillte). Ill a situation like tllls, OIle s cllstolilaly
graphical intuition is useless. We feel that one of two
conclusions shouM be drawn from these observations:
(1) Either such strange goings-on should be regarded as
throwing doubt in general on sum rules derived using
conserved. -current commutation relations and USDR,
or (2) if such extraordinary antigraphical tricks turn
out to give agreement with experiment, " then other
problems, in which graphical and pological intuition
has evidently ground to a balt, should be tackled with
these methods —with the hope that a bit of this "magic"
will succeed where straightforward methods have not.

Toward deciding between these two views, we also
point out in Sec. III that USDR in these Cabibbo-
Radicati —like cases certainly receives no support from
Adler-Weisberger —type arguments: USDR on the p-
meson mass shell plus any simple continuation to zero
meson-mass fails to yield the sum rules. We shall also
note that, contrary to the Adler-Weisberger case, thereis,
in this case, No toay to calculate the charge radar' from
Comptoe scatteririg without having to make the USDJt.
assumpttou that is,—through the corresponding low-
energy theorem. The relevant theorem, recently derived
by Beg,13 applies to the structure (1.2), which is not
measurable in Compton scattering. In fact it is neces-
sary to perform a series of first- and second, -order weak-
interaction experiments to determine its value. "

Finally, in an Appendix, we include a derivation of
the original Takahashi identity which corrects compen-
sating errors of two factors of Z~ in the original treat-
inent. ' The derivation is an interesting exercise in the
kind of intuition emphasized in this paper, namely, the
relations between processes involving timelike and
transverse vector mesons.

iI. OmE CURREm IS SOURCE OS STROmGLY
QTTTERACTIHG PARTICLE

A. Derivation of a Sum Rule

In this section, we shall first proceed formally, by
deriving a sum rule in the "usual manner, " and then
criticize the derivation. Consider the time-ordered.
product

d's e "'(Pml T(~-'(0),i.(s) & I Pi} (2 1)

we have the "Ward identity"

(2.4)

Equation (2.4) by itself is essentially empty so we
proceed to assume USBR. It is convenient to find
suitable invariants first. Let Ii„' be defined by

T„'= u(p2)esp„'u(pt).
(jV1E2)1/&

(2 5)

We then multiply T„' by q qu(p~) on the left, u(pi) on
the right, and take the trace. The averaged T„', which
we call T

Trh&(P1)V&.'/1(P2)} (2 6)
(gram)1/2

can then be written as

where
+Q„Aj (v,t)+A„Aj (v, t), (2.'/)

&=2(~t+~r) Q=2(k+v) ~=2(k —v)

v=8 Q, and t= —O'. If we assume the A's obey
fixed-t unsubtracted dispersion relations in v and that
the integral over the v discontinuity in A (A v) converges,
we may write the limit of A as

1 "A„'(v', t)dv' 1
+ A.'dv', (2.8)

for A'=Ai, u, a'. However as k I'= (Q+6) I'=Q I'= v,

it follows that"

~

~

E1E2q 1/2 ]
k„Tj'=—— A 1„'(v' t)dv'. (2.9)

where the initial and 6nal states are nucleons of mo-
mentum pi and p2, J-'(0) is the source of the pion field
with isotopic spin i, and j„ the source of the electro-
magnetic 6eld. The latter's isovector component is
related to the isotopic-spin current j„'by

(2.2)

We assume four-momentum conservation, pi+k =pe+ad,
where q is the pion's four-momentum, and also that
all particles are on the mass shell, namely p12= p22=3P,
q2=p2, and k2=0.

Postulating the equal-time commutation relation

~(»)Lio(s),~.'(0)j=i«"'~'(s)~.'(0), (23)

"F.Gilman and H. Schnitzer, Phys. Rev. 150, 1362 (1966}.
"M. A. Beg, Phys. Rev. Letters 17, 333 I,'1966).

4 S. Adler, Phys. Rev. 143, 1144 (1966).
"Equation (2.7) couM actually be derived for arbitrary v (see

Ref. 5). This limit merely makes the calculation easier.
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If we de6ne the pion-nucleon form factor F,(t),

&p, l
Z. (0) I p )= N(p, )~,N(p, )F. (1), (2.10)

(g E )t/s

(a) st

Relating the discontinuity of A to the discontinuity of
the Chew-Goldberger-Low-Nambu" invariants (CGLN)
[which we call a", b", c', and d", where r denotes a
particular isospin invariant (see Ref. 16)j, using cross-

ing symmetry, and calculating explicitly the nucleon
pole contribution, Eq. (2.11) becomes

e(t&.+(1)——', (1+g')gxv. }= — (1—u')

vo

(u—(v', 1)+lb—(v', 1)jdv'. (2.12)

The t—IJ,
' comes from a k q factor appearing in the

invariants.

B. Analysis of Sum Rule

Having d,erived the sum rule, let us now see why it is

wrong, more precisely, why it is incorrect to assume

A&, &,3 obey unsubtracted dispersion relations. This will

be clear from a d.iscussion of which Feynman graphs
contribute to which pieces of the "Ward identity" as
given in Eq. (2.4). Let us begin with the expression for
the pion photoproduction scattering amplitude,

S r d4~4yl-I s(l-I s+.ps)

g
—'b lc ' g+'b Q ' g

X(p, ~
Tfw'(y), &„(*)}

~pt), (2.13)
(4kpqp)'"

and let the d'Alembertians operate on the time ordering.
As always, this divid. es the S matrix into a current-
current (really source-source) term plus an equal-time
term which is only a function of momentum transfer
squared. Explicitly,

and perform the same averaging over spins, we 6nd
from Eqs. (2.4) and (2.9) that, e.g., in the case of pr+

emission
t 00

ie F.+(t) = —— A r„+(v',t)dv'. (2.11)
2M' m

(b)

Fro. 1. (a) Graphs that contribute to equal-time term f„
(b), (c) Contributions to current-current term T„.

Note that

k„f„'(t)=ice"&(t 11,') (Ps—l rr'(0)
~ Pr)

=pe~"&p
I ~.'(0)

I pr).

Comparing Eqs. (2.16) and (2.4), we see that k„T„'
= —k„f„'which, of course, is just the statement that the
S matrix is gauge-invariant, k„S„'=0.Diagrammatic-
ally, one can see in a varity of ways that e„f„is the sum

of all graphs for which the electromagnetic current and
the pion source join (into a pion) before going on into
the "guts" of the process; the corresponding graphs are
displayed in Fig. 1(a). e„T„is easily seen to consist of
all other graphs in S, namely, those for which an inter-
action occurs before the electromagnetic current joins
the pion source. Their representation, in Figs. 1(b)
and (c), emphasizes that the current-current term
contains all the graphs which have discontinuities in v

(or equivalently in s and I). As stated earlier f„(t) is
independent of v and therefore does not vanish as
v ~00 ~

The reason now why T„' cannot satisfy an un-

subtracted dispersion relation in v for fixed t is that it
contains many graphs whose large-v behavior is at
least as singular as that of e„f„Examp.les of such

graphs are the vertex corrections of Fig. 2(a). Without

b &'& (pr+k —ps —q)
p„S„'= i (2pr)'—

(4kpqp) '"
X e„PT„'(v,1)+f„'(t)j, (2.14)

with f„'(t), the equal-time term, being given by

f '(&) = re(2q„k„)e"'(ps—
~

pr'(0)
~ p,). (2.15)

"G. F. Chew, M. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1345 (1957).

FzG. 2. (a) Graphs in
T„, as singular as those
in f„. (b) Graphs in T„
which, when added to
f„,would give Reggeiza-
tion.

tiii!iiiiil

(a)

(b)
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a cancellation between these and other graphs in e„T„,
there will be no way for T„—+ 0, the necessary condition
for USDR. We are used to talking about subtraction
constants being unnecessary if a Geld theory is Reg-
geized in a graph summation, but we emphasize that
the required cancellation would have nothing to do with

Regge behavior of the amplitude; it would in fact con-
tradict a Regge behavior for the S matrix. "To see this,
assume we have a theory in which the pion Reggeizes;
this would come about by having a whole set of graphs
in e„T„, such as those of Fig. 2(b), combining with
the graphs of e„f„ to give the whole S matrix a (v~~")

Regge behavior. Because f„goes like a constant at
large v, this would certainly require T„ to have a sub-

traction. As we shall see in detail in Sec. III, our in-

ability to extract sum-rule-type information from the
"Ward identity, " (i.e;, to use USDR) is directly trace-
able to the fact that one of our currents in the retarded
product to be dispersed. with the source of a strongly
interacting particle (the pion) on. its mass shell.

Note that if the USDR assumption had, been corr|.'ct,
the sum rule (2.12) would, have allowed the unam-

biguous determination of the (pion off-mass shell)

pion-nucleon form factor in terms of an on-the-mass-
she11 pion photoproduction amplitude. Similar combina-
tions of conserved-current commutation relations and
USDR could have been arranged to allow the determi-
nation of any strongly interacting particle oG-mass-

shell behavior purely in terms of on-mass-shell quanti-
ties. This Qies in the face of our experimental sensi-

bilities so badly that we feel it worth conjecturing, that
[unless a strong field-theoretical assumption relating
weak or electromagnetic currents to strong interacting
particles is made (e.g. , B„A„—= ir )"jwhenever a sum

rule allows the determination of os mass shell -stron-g

particle behavior from on mass shell am-plitu-des, the USDR
assumption is incorrect

III. BOTH CURRENTS ARE THE SOURCES OF
WEAKLY (OR ELECTROMAGNETICALLY)

INTERACTING SYSTEMS

and v=P Q, t= —A'. Expressing T„„'&'as

(4EiE2)'"T„=P„P„Ai'&(v, t qiiq pP)+ Q„P„Ai'&

+A„P„A,'~+P„d,„Ajr+, (3.2)

we easily see that

qi„T„„"= ie"—(p2~ j„"(0)
~
pi)= ie""—P„F i(t) (3.3a)

III1A i r(v, t,qi, qP)dv . (3.3b)

In obtaining Eq. (3.3), the equal-time commutation
relation

b(so)Ljo'(s), j''(0)]=i "'j."(o)~"'(s) (3.4)

has been used, and a USDR has been taken for each
invariant. The relation following from Eq. (3.3),
namely,

7I 0

ImA "i(v', t, q,i2iqi)dv'=i e""F ~(t), (3.5)

has been discussed in great detail in Ref. 5. In particu-
lar, it was shown there how the derivative of Eq. (3.5)
with respect to t, qy', ol qg at t=q~' ——q2' ——0 leads to the
relation between the charge radius of the pion and, the
integral over scattering from pions of isovector photons
derived by several authors":

1 "dv'
&?=0

2' cx „& v

+or=i~ (5(4)or=i"j,—(3.6)

where Oq~ is the isovector-photon —pion total cross
section in the I-isospin channel, and vo is the threshold
value of v.

where, to simplify the kinematics, we shall take the
initial and final states to be one-pion states. We dehne,
as in Sec. II,

P.= :(p.+-p.)., Q.= :(q.+-q.)., A.= ', (q -q.)-. ,

A. Derivation and Preliminary Discussion of
a Sample Sum Rule

I et us now turn our attention to the matrix elements
of the retarded product of two isotopic-spin currents
(for a dispersive approach to other commutators see
Ref. 19):

T '&—i d4s e 'ii *(p,
~

T—{g .(s) g~~(0))
~ pi) ~ (3 1)

"See E. J. Squires, Complex Angllur Momentum and Particle
Physics (W. A. Benjamin, Inc. , New York, 1963) for a bibliog-
raphy of I&egge poles."M. Gell-Mann and M. Levy, Nuovo Cimento 16, 560 (1960).

' S. Fubini, G. Furlan, and C. Rossetti, Nuovo Cimento 40A,
1171 (1965); W. Weisber ger, Phys. Rev. 143, 1302 (1966);
V. Alessandrini, M. A. Bdg, and L, S, Brown, ibid. 144, 1137
(19ti6),

Preliminary Graphical Interpretation of the Sum Rule

Let us now see how the assumption of unsubtracted
dispersion relations for the A s involved in Eq. (3.2)
is diBerent from the analogous assumption for the scalar
amplitudes of Sec. II. To make the comparison clearer,
let j„'be the electromagnetic current apart from a factor
e (the additional isoscalar current contained therein

commutes with all components of the isotopic-spin
currents and causes no complications) and let j„&'(0)~
j„+(0).The key to the argument is that j„+ is not the
source of a strongly interacting particle as was J, but
rather couples to a charged. lepton pair through the
vector current. The latter have no strong interactions so
that to first order in the weak and electromagnetic
interactions there are no graphs contained in T&p
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analogous to those of Figs. 2(a) and 2(b), and therefore
it is not inconsistent that the A s obtained by de-
composing T„„'&obey unsubtracted dispersion relations.
We emphasize that we do not pretend to prove that these
A's do obey unsubtracted dispersion relations, merely
that assuming they do is not at the moment patently
inconsistent.

To clarify these points, it is helpful to notice how

T„„is related to the (physical) S matrix for the process

y+v-+ -+ v'+e++ v,

which we denote by

S=eGv(27r)'8&" (q&+P& q2
—P2)M.

Gp is the Fermi coupling constant, and M is given by

FIG. 3. (a) Current-
current contribution to
amplitude for y+7r+ ~

+1++ . (b) Equal-
time contribution to
amplitude for y+m+ -+
7f'+l++s. (c) Current-
current contribution to
amplitude for y+7i-+ ~
7f'+l++v in the absence
of strong interactions.

(b)

&.m+

Pl

(a)

yV+
p

(3.7)

where e„ is the photon's polarization and V„ is the
lepton-pair's current. As always, M can be divided into
a source-source term and an equal-time term

IvI= e„V,[T„„+f„„j. (3.8)

qj„T„„=O, (3.9)

and it is very simple to verify that V„q»f„„does in fact
equal minus V.q»1». [Moreover, since V„q»f„,
= V.P„F (t), (3.9) is exactly the i =3, j=+ case of the
sum rule (3.3a).) The graphical structure of the two
pieces is almost exactly that found in the sum rule of
Sec. II, except that now, to lowest order in weak and
electromagnetic interactions, no graphs exist connecting
one of the lepton lines and the strong-interaction
"blob" of Fig. 3(a). These were the graphs that forced
a subtraction on T„, the analog of T„„, in Sec. II.
The reason of course was that there the outgoing system
was composed of a nucleon and a pion, and here it is
composed of a nucleon plus a lepton pair. Thus, relative
to this first simple criterion, there is no obvious in-
consistency in taking USDR for the invariants of
T„.. It is worth emphasizing: The fact that the vector
currents couple to systems that only interact weakly (or
electromagnetically) has shielded the A dier" Cabibbo-
Radicati type sum rul-es from the criticism we were able
to make of the sum rules in Sec. II.

What about the situation relative to Reggeism?
One can see easily that the gauge invariance of the 5-
matrix T [Eq. (3.9)j, or the equivalent (for qP =q22=0)
relation

Q„(P„P„A +P,Q„A )=P.F(t), (3.10)

The graphs that contribute to T„„and f„„are shown
in Figs. 3 (a) and 3 (b) .As in Sec. II, the current-current
term T„„contains all those graphs for which something
happens before the currents join—i.e., all, those graphs
with discontinuities in s or e. M is of course gauge-'
invariant,

and the USDR assumption for the invariants, requires
that the high-v behavior of Aq be

F(t)
(3.11)

Ag
y-+00

(3.12)

Thus one learns that the strong interactions have a dual
function in the sum rule: When turned on they (a)
change the large v coeKcient of A ~ from the "hard core"
value of 1 to F(t), and (b) create an imaginary part for
Az (above the pion mass). In that the imaginary part
has no "hard core" (is purely strong) one feels that it
can be taken as Reggeized. Thus, for these sum rules it
seems coesistemt mith Reggeology to have u Reggeised
imaginary part, but non Reggeised r-eal parts for both T
amd T. This situation should be contrasted with the case
of Sec. II, in which, there being no "hard core" (all
graphs vanish if strong interactions are turned off), S
should Reggeize and T„must not,

to cancel the large-v behavior of the equal-time term.
Thus A~ cannot be Reggeized in the usual sense (at
least not its real part). This also means that the S
matrix itself cannot Reggeize in the usual sense. [The
T term contributes A~ (F(t)/v) to the P„P„invariant
of T, and the equal-time term is powerless to subtract
this off.] The reason for this non-Regge behavior is
that T„„(or T„„) contains a "hard core" of weak
interactions, i.e., does not vanish when the strong
interactions are imagined to be turned oG. In this limit,
only the purely weak Born term [Fig. 3(c)j contri-
bution to T„„survives. With only this graph left, Aj
would have the (purely real) large-v behavior



S. Detailed Graphical Analysis of the Sum Rule

In this section, we want to see what becomes of
certain subsets of Feynman graphs contributing to the
4-point ("Compton" scattering) side of the sum rule.
To get our feet on the ground and to illustrate the
techniques we will employ in more interesting cases, let
us first consider the Born (pion pole) term. These are
shown in Fig. 4(a). The external wiggly lines should be
thought of for isospin index 3 as oG-shell photons and
for 1 and 2 as lepton-antilepton pairs. Note that seagull
graphs (if such exist) are not found in the current-
current term. (Just as in ordinary Compton scattering,
these are always part of the equal-time term of the 5
matrix. ) Omitting the photon polarization vector and/or
the lepton current, these graphs have the form

&'v™~"'(2pi+qi) (Pi+ p2+qi),
(pl+pl) Ii

I=i representation of the isospin generators. Just as
we saw in Sec. II, these two terms are the negative of
qi„ times the graphs of Fig. 4(b). (The first of the
figures in 4(b) represents the graph in which the two
currents meet before going on to interact with the
pions. ) As far as the antisymmetric structure is con-
cerned, the Grst term on the right-hand side of Kq.
(3.14) is indeed exactly, to lowest order in all inter-
actions, e""Ii "(t)I'„,that is, Fig. 4(c). In other words,
to lowest order, it is the sum of the two terms of
Fig. 4(a), with the isospin structure taken in opposite
order, that reproduces the commutator structure.

The situation is not so simple in the case of the higher-
order graphs with one-pion pole terms. This entire set
of graphs is shown in I'ig. 5. The study of these graphs
is best begun in coordinate space, where the Ward
identity takes the form

+~""~'"'(2pi—e). . .(Pi+P~—e)'
(Pi—Vi)' —h

'
(3.13)

Thus their contribution to the three-point-side function
of the Ward identity (3.3a) is

vi.~"=L&',&'j' (P—i+Pi).+L~' ~'3+'™vi

where the three matrices (i = 1, 2, 3) (P')~"=e' "are the

= »~"'S'(z y) &—P« ~
Ij "(y) I Pi, l& (3 15&

Parenthetically, note that if the pions had been o6 their
mass shell, there would have been two more (3-point
function) terms, corresponding to the folding together
of j„'(x) with each of the pions. Analytically, the one-

pion pole graph's contribution to the current-current
term is

&P~~IT'(j (y)j'(~)) lpi~&= d'&'«'L(P~~I2'(j. (y)~ («')) IoK~»'(«' —«)j '&oI2'(~ («)j:(~))Ipil&

+(P,~l T(j,*'(~)~ («')}lo&L~»'(«' —«)j '&oI 2'(~ («)j'b)) I pi, l&j, (316)

where ir is the pion field. Taking the derivative of (3.16) with respect to x„, assuming the commutation relation
(2.3), and going over to momentum space, we obtain

e.(P2 ~
I 2'(j'(v2) j'(e)}I pi, l)—=2~"'(P2,~

I
2'( j'(vi)~'(v +v )) I o&

~l ~»'(@+A)j '+2~""(oI2'(~'(P2 —8)j''(8) }IPi f&(~»'(Pm —Yi)) ' (3 17)

The structures on the right are 3-point functions, but they each have one pion o6-mass shell. Thus, they cannot
contribute to the sum rule in this form. Evidently, other T„„graphs contribute 3-point functions which add to
these, bringing the sum into the form F (t). The failure of all the pion-pole graphs to go over directly into pieces
of F(t) should not be surprising: One knows that Ward identities relate all (m+1)-point function graphs of a
given order in the coupling to all the (ii)-point function graphs of that same order —and that there is no necessary
connection between aH graphs of a given type (to all orders) at the (e+1)-point level and graphs at the (ii)-point
level. Probably one would need to add all the other graphs of the theory to the pion-pole graphs in order to get
(at arbitrary qi, q2) some part of F (/). On the other hand, as qi„, qi„~o, it is clear from Eq. (3.17) that no other
graphs are needed to get P (/). That is to say, at qi„=qi„——0, the pion-pole graphs saturate the sum rule. This
corresponds to the trivial case of the matrix element between one-pion states of the commutator of two isospin
generators (integrated fourth components of currents) which is of course saturated by a one-pion intermediate
state.

A more interesting set of graphs is that set which contains the one o~-meson pole (see Fig. 6). This pole has been
found to contribute signi6cantly to the Cabibbo-Radicati sum rule. Analytically, the one-~ graphs can be written
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1Q coordinate spRcc

&P, I2'{j'(*)j'b)}IP,»=— d"d"'L&P., l~{j,b)-'("&}lo&LD, .("- )j- «In-. ()j.(*)}IP„»

+&Ps,ml2 {j'(&)~~ (s')}lo&LD~ ~'(s' —s)X'&oI 2'{~~(s)j.'(y)} I pr, l&j, (3.18)

where D),.), (s —s) is the o& propagator and o&), (s) is the &0 field. Bcc&JNse &d is &r&s iso(opic sc&r$gr, i.e.,

f'&(xo so—)fj o'(x) &0g(s)j=0, (3.19)

these graphs fail to contribute to the sum rule; that is, (3.18) is divergenceless in x. Physically, this had to happen,
for, 1f thc one-e intermediate-state grRphs had surv1vcd thc gy» they would have implied thc plcscncc of absurd
graphs at the 3-point function level, like those shown in Fig. 7. (A &r changing to an o& like this is a violation of
total isospin conservation. ) It bears emphasizing then that altholgh C&Jb&7&bo awd Radk&sti (and gibes) f&rid with
USDR that she &0 coesribgtio&s is sizeable, the sgm of u/I Fcynmae graphs with a one-o& Asfcrmediatc state cannot con
tribute to /he sun& rule.

IQ thc erst place, 1t 1s cas1ly scen that thc same consideration applies relative to thc g~ jnterlnedjate state
(when the external states of the sum rule are nucleons): The sum of all E* intermediate-state Feynman graphs is,
1Q coord1Qatc space)

air&i;& , )i'b)&I»;, )=f&" &'"&&i,sir&i*&~)s""'&")&Io)L~'.."'"&"-~)j-'&OIr&s."&)i:&*)&It;&

+&PI,PI2'{j:(~)~""'(")}lo&L&'"."'"(»'—s)j '«I TP'."(s)j'b)}IPr o&l, (3 2o)

where S„I„"~',5," are the E* propagator and 6eld
respectively, and IP&,&r& (say) is a nucleon with isospin
index e. The x divergence of the Ã~ graphs is then
proportional to structures like (where L j,.». means
equal-time commutator)

&OI Ljo'(~) ~."(s)j..~. IPr, ~&

=~"'( —*)(&)"""&ol~""()IP ) (3 21)

where the matrices V'; are the 4&4 representation of the

isospin generators. Because the matrix element on the
right of Eq. (3.21) vanishes by total isospin conser-
vation, we learn that (in apparent contradiction to
Cabibbo and Radicati) none of the 1Ve graphs survive
the qI„of the sum rule. Again, had they survived, it
would have implied the presence of three-point graphs
in which E changed abruptly to S~, violating total
isospin conservation. Notice that me have not used
sp1n conscrvRt1on here, or in the case of the ce graphs.
Spin conservation has nothing to do with, e.g., the
vanishing of Fq. (3.21); that is, an off-mass shell E*
has a spin-2 component, so thRt, Rs fRr Rs sp1Q ls

l' P+q

I' IG. 5. Direct and
crossed pion pole term
with full vertices.

pi'

FIG. 6. Direct and
crossed graphs with an
co pole.

Pp ~~+

PAV~
Pp P) '&

Pl N

FIG. 4. (a) Direct and crossed pion pole terms. (b) I owest-order
contributions to f„,. (c) Pion form factor to lowest order.

FIG. 7. A set of 3-point function graphs
which does not exist.



1552 BARDAKCI, HALPERN, AND SEGRE

FIG. 8. Lowest-order
direct and crossed
graph co-pole contri-
butions.

2t
T„„—P„P,

V Vte

2 vcr

(3.26)

where the imaginary parts are calculated from (3.24).
Then

@r(x) &pvhaMpWxv ~~$ (3.22)

where e„„~.is completely antisymmetric, co„, P' are the
co and m. fields, respectively, and

Wy„'(x) —=GB),V„(x), i = 1, 2
—=eP),„(x), i =3 (3.23)

[V,(x) and F„,(x) are the leptonic current and the
electromagnetic field tensor, respectively. j Note that
because co and x have diferent masses, etc., the photon
must couple through F„„—otherwise the electro-
magnetic current would not be conserved. Because of
the form of (3.3a), only that part of the graph propor-
tional to P„can contribute. One finds for these pieces
)omitting g,„',V„(x), e„j,when qi'=q2'=0,

concerned. , the nucleon could go directly to an M*.
Note in fact that a similar analysis of the Adler-
%eisberger relation would involve:axial-vector currents
and the commutator analogous to Eq. (3.21) would in
general have nonvanishing matrix elements.

We can be somewhat more explicit about what is
happening to these pole terms by looking directly at,
e.g., the lowest-order I pole, as shown in Fig. 8. This
graph can be written using the effective Lagrangian
density (summed over i)

and Q„T„„WO.In fact we have

(3.27)

The crossed Born term shown in Fig. 8(b) is separately
transverse, and the same discussion can be carried
through for it.

The 5-matrix theorist would say at this point that
the USDR assumption is perhaps not so bad because,
after all, one cannot necessarily trust the "bare"
Feynman-Born graph to give the correct off-mass-shell
behavior of the or, and certainly the USDR assumption
only changes that. On the other hand, we have shown
that one cannot hope that the higher-order corrections
to the &v will converge to (3.24)—because to all orders
the co pole projects to zero. Moreover, our arguments,
being based as Grmly as they are on isospin invariance,
evidently do not depend on the co being elementary,
merely on its being a tightly enough localized state that
a resonance approximation is a good one.

Historically, one tried to fix the subtractions in a
dispersion relation in order to reproduce a Geld theory
to all orders. In particular, if given the full Geld-
theoretic pole term with a/1 its o6-mass-shell corrections,
the 5-matrix theorist would have chosen the sub-
tractions in his dispersion relation so that his pole term
reproduced this. If the assumption of USDR, as applied
to the charge-radii sum rules is correct, and we cannot
prove it is not, we are then witnessing a departure from
this point of view.

2t
Ag=

V V(g.

—2v

1 +" ImA2(i')di'
+Q &.— + . (325)

As should be the case, this graph is "transverse, " i.e.,
Q„T„„=O.The important thing to notice is that, for
the Born term it is not correct to assume a USDR for
both A& and A2,' the invariant A2 explicitly needs one
subtraction. Suppose we forget we ever knew this and
proceed formally by assuming USDR in the manner of
the derivation of Eq. (3.3b). That is, suppose we assume,
instead of (3.24), the form

1 +"ImAi(v')di'
T„„—P„P„—

V V
/

Many-Particle Intermediate-State Contribltions

If it turned out that g» projected the entire T=O
wave (in the case of pion external states) to zero, the
USDR assumption would be totally in contradiction to
Geld theory —or any future theory, most probably. In
fact however, as we shall see, the multi-particle states
do continue to contribute in the T=O wave; only the
part that can be approximated by a pole, as just seen,
is projected to zero. The USDR assumption (if correct)
would imply a relation between the resonant and the
nonresonant parts of the T=O wave, so that feeding in
the co imaginary part would be just a shorthand for
feeding in the nonresonant part of the T=O wave.

Instead of looking at the T=O wave of the 3-pion
intermediate state, let us look at a much simpler model
with all the same features. Suppose the external states
are taken to be scalar "pions" of isospin 1 and even
G-parity. Just as in the previous discussion, one can
show that a T=O-resonance fails to survive the.appli-
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this section is that the situation with these conserved-
current sum rules is very different. In fact, the Cabibbo-
Radicati relations receive no support whatever from a
USDR assumption for mass-shell p-X scattering plus
a smooth continuation.

The reason for this is, as we saw in part A of this
section, that the charge-radius —type sum rules depended
critically on the essentially weak "hard core" present
in the transition amplitude. That is, because of this
"hard core, " the current-current part of the amplitude
went asymptotically like v ' for all values of f. It
therefore seems evident that although

(qP —mv') (q22 —mv')

XT„„'&(v,t,qP, q2') =R„„'&'(v,i) (3.33)

is proportional to the p-~ scattering amplitude (see
Refs. 5 and 20 for a discussion of this limit), there will be
no smooth off-mass shell extrapolation which will allow

us to obtain the Cabibbo-Radicati sum rules. The
reason is, of course, that any "smooth" continuation
in q&' and q&2 would not alter the presumably strong-
interaction behavior of the amplitude at large v. For
instance, with Regge asymptotic behavior for E„„'&,
any smooth off-shell extrapolation would behave as
v "), and not v '. That is to say, a smooth continuation
will not pick up the (weak) hard core that is missing
on the mass shell.

One can see just this sort of thing happening in

various simple models of smooth off-shell continuation.
K.g., consider (i not summed)

T„„"(v,t,qg', q2') (0
~
T{j„'(q&)j„'(qz)}~

0)
X(0~ T{j,'(q~) j (q2)} ~0)&„,"(v,~). (3.34)

This 1„„'&will never give the Cabibbo-Radicati relations
because it is transverse, i.e., q~„'1„„'&=0.Other simple

attempts have similar difficulties. The point is that, to
obtain the sum rules, one would have to rig up a compli-

cated, certainly not smooth, continuation that would

introduce in some way the essential weak hard core.
The procedure of trying to define the matrix element

of two vector currents by coming off the p mass shell

is really very different from that followed in the Adler-

Weisberger relation. What actually occurs in this latter
case is that the double divergence of the analogue of
T„„",this time with two s,xial-vector currents (call it
5'„„'&), is evaluated, giving an equal-time term and a
term involving the retarded product of two axial-

vector current divergences, which we calP' 3l;,".

q,„q25„„'&(v, t,q, ',q2') = G'& (i')+'cV" (v, t,qg', q2'), '(3.35)

where as usual, the equal-time term is a function only
of t. This is very similar in form to, say, our Eq. (3.3a),

",V. de Alfaro, S. Fubini, G. Furlan, and C. Rossetti, Phys.
Letters 21, 576 (1966)."This is the isospin antisymmetric part.

except, of course, because the isospin current is con-
served, we never have the analog of 3f'&'. On the other
hand it is M'& for which USDR on the mass shell and a
smooth continuation is assumed. The point is that
this term does not have a weak hard core. (If the strong
interactions were turned off, cV" would vanish. ) Thus
one can hope that a smooth off-shell extrapolation will

pick up the essential features of the off-shell amplitude.
The analogy to what is done in the derivation of the
Cabibbo-Radicati sum rules would be to assume USDR
for X„„'&on an axial-vector meson mass shell, and then
continue off. For exactly the reasons discussed above,
namely that S„„"has u hard core, this procedure will

fail to give the correct large-v behavior of the off-shell
S'„„".The rule we are proposing is then this: It is per
mitted to use u smooth off m-as-s shell-coetieuatioe for
structures which ha~e mo weak hard core. In the Adler-
Weisberger relation, one does just this; in the Cabibbo-
Radicati relations, one has no terms that are free of
hard cores.

As a final example of a type of sum rule in which the
distinction between a strongly interacting particle being
on the mass shell or not is crucial, we would like to
consider a class of sum rules examined by Fubini,
Furlan, and Rossetti" and more recently by Gasioro-
wicz."These sum rules, which relate nucleon electro-
magnetic form factors to off-mass-shell pion photo-
production amplitudes, are obtained by considering
the matrix element

M„'= i d'—s e '"'(p2~ T{j„(s),m'(0)}
~ p&), (3.36)

where q2'&p'. The assumption of USDR for this
structure appears, u priori, more similar to Sec. II than
to the case we have just discussed. However, these
relations really fall with the Adler —Cabibbo-Radicati
relations, as we see by considering the structure e„FM„
where I' is the vertex for off-mass-shell x-decay
m. ~ g+v. M„ is an off-pion-mass-shell function, in-

cluding the pion propagator, so graphically FM„ is as
depicted in Fig. 10(a), i.e., it corresponds to the source-
source term of

ql

FrG. 10. (a) Current-current contribution to y+N ~ l+v+N
with lepton current coupled to strong interaction "blob" through
a pion pole. (b) Equal-time contribution to p+N —+l+v+N
with lepton current coupled to strong interaction "blob" through
a pion pole.

"S. Gasiorowicz, Phys. Rev. 146, 1071 (1966); see also M.
Nauenberg, Ref. 6.
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with a one-pion pole between the strong-interaction
blob and the lepton pair. It therefore falls into the
category of sum rules we have just been discussing, the
only difference being that we insist on having a one-

pion pole between the lepton current and the strong-
interaction "blob." As was previously the case, the
equal-time term of the S matrix contains those graphs in
which the photon is absorbed by the electron, as in
Fig. 10(b). Here we are assuming USDR for the entire
oQ-mass-shell amplitude for photoproduction, whereas
in Sec. II, we needed to assume USDR for a part of the
on-mass-shell amplitude to derive the sum rule. The
two assumptions are clearly very different.

IV. CONCLUSION

We have discussed at great length the question of the
validity of the VSDR assumption as applied to the
matrix elements of the retarded commutator of two
currents, one of which was conserved. In principle of
course, one could attempt to measure these matrix
elements, by performing second-order weak-interaction
experiments (by this we mean to include also one weak
and one electromagnetic interaction) such as depicted
in Figs. 3(a) and 3(b). Even then one would have to
perform a complicated series of experiments to extract
the contribution of the weak vector current from the
total transition amplitude which includes (1) the
unwanted equal-time term shown in Figs. 3(b) and (2)
the contribution of the lepton-pair's coupling through
both a vector and an axial-vector current (For a complete
discussion, involving an analysis of the kinematics, see
Ref. 14). In particular then, contrary to the Adler-
Weisberger case, one cannot reasonably hope to avoid
the USDR assumption in these cases through the
relevant low-energy theorem" (for the current-current
part).

A relation "testable" by experiment is therefore
only obtainable at the moment, making use of the USDR
assumption. Sum rules, such as e.g.,

In concluding, we would like to emphasize that we
have neither proven nor disproven the use of the USDR
as applied to the matrix elements of the retarded
commutator of two isospin currents. We have shown,
however, that the contribution of intermediate resonant
states to the scattering amplitude may be different if
calculated using USDR or Feynlnan graphs, and that
this applies to the standard low-energy theorems as well.
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APPENDIX: THE WARD-TAKAHASHI IDENTITY

It appears to the authors that a mistake of two factors
of Z3, the photon wave-function renormalization, was
made in the original derivation of the Takahashi
identity. Taking care of these Z3's, so as to obtain the
usual identities (known to be true from perturbation
theory) seems an amusing exercise in the relation
between transverse and timelike vector-meson scatter-
ing amplitudes, which in a sense is the subject of this

papel.
The diQiculty is this: If one intends to identify the

zero-momentum-transfer limit of the matrix element
of the current with the renormalized charge eg, then the
correct current to use is the source of the renormalized
photon Geld,

(A1)

where fr/ is the (Z2) unrenormalizecl Heisenberg elec-
tron field. The correct commutation relation of this
physical current with the electron field is then

/i~ —/i„) 2 2 dv'
2(r') =

l
+ [201/2 0'2/2 ], (3.37)

2N' ) 2rn2 „, v'
[lt (x),j,(x')], =—5&2&(x—x')P(x).

Z3
(A2)

(where r' is the nucleon's electric form-factor charge
radius and o.q~2 and o 3/Q are total isovector —photon-
photoproduction cross sections) are not, strictly speak-

ing, testable by experiment, as there is only one photon,
so o.

&~2 and o3~2 cannot be separately determined in

Compton scattering. Another way of saying this is that
only the isovector component of the photon contributes
tv our sum rule, and its contribution to Compton
scattering cannot be separated by experiment from
that of the isoscalar photon, as they both have I3=0.
In practice, however, sufhcient familiarity has been
acquired over recent years with isobar models and the
like to allow us a fairly conGdent analysis of sum rules
such as the above.

Instead, Takahashi used (A2) without the Z2. If one is
not very careful, this leads (erroneously) to an extra
factor in the Gnal identity itself. A correct derivation
(with this extra Z2) goes as follows:

Consider the function

(0IT(j„(y)4' (x)P (x')}l0), (A3)

2~ Throughout the derivation, we shall be concerned with the
full details of the Z3 renormalizations and shall assume that all
Z& and Z2 renormalizations are done (namely, Z1 =Z2). In particu-
lar the proper vertex is meant to be completely Z1 renormalized.

where p/2(x) is the renormalized electron field. Taking
the divergence of (A3) with respect to y, using (A2) and
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going to momentum space, we obtain

k Sro'(P')r„r( ' (P',P)Srg'(P)

been used to write

II.."(i)= (g..—
k„k,

III*(k) .
kP i (AS)

=—LSra'(p') —Spa'(p)], (A4)
Z3 It is immediately clear from (A7) that

where F»(r) (p', p) is the renormolised improper vertex
defined by

(Ql T'( j,(y)W(*)f(z')) IQ)=e~ d'&d'P»'(& —
&)

kyar(r)" (P'P) =kpr(~) "(P'P) i (A9)

that is, only the timelike part of the improper vertex
survives in the Takahashi identity. This is obvious;
in fact, Eq. (A4) could have been written

)&F„a(')(P—y; y g)SPz—'(r) PP'). —(AS) kPSro (P )F»(r)(P P) I
pSp~ (P)

-gp"—k pk "/k'-
=—k'

kP —II*(k)
r„('& (p', p)

By improper, we mean that this vertex contains not
only the proper vertex, but also k' times "the photon
propagator graphs. The improper vertex is renormalised
in that, when k'=0, I'„z'~), as seen by a physical
(transverse) photon, is equal to the renormalized proper
vertex at k'=0. Instead of

p F a' (k'=0)= p F '"'(k'=0) p k=Q, (A6a)

we shall prefer the equivalent notation

F»(1)(k'=0)
I
r=r„(~)(k'=0). (A6b)

The symbol
I r, meaning the part of a function "seen"

by a transverse photon, will be contrasted with
meaning that part seen by a timelike photon (in the
sense of (A6a), that is a probe with an p" parallel to
kp). Of course, (A6) is a consequence of the defmition

(AS) of F»(r) in terms of eg.
To learn more about this improper vertex, we study

the structure of its (Zp) unrenormalized form F„(r).
Graphically F„( ' is the sum of the series shown in

Fig. 11, where the blobs labelled by I, I' are the (Zp-

unrenormalized) improper and the proper vertex; the
II* blob is the photon's (proper) vacuum polarization
tensor. The pictorial form will serve as a reminder that
I'„& &, I"„' & are defined without external electron or
photon lines. Using the I'"eynman gauge for simplicity,
this sum is analytically

r„,-(p', p)=r, , (p', p)
k'k~- 1

+r, (»(p' p) g» — —11*(k)+ "
k' k'

1
I:S»'(p—') S»'(P)—3 (A10)

Z3

Note that we cannot use (A9) to write a relation like
(A10) for the proper vertex, because (A9) refers only to
the unrenormalized F& '. To see the relation between
the renormalized and unrenormalized improper vertex,
we use (A7) to obtain

I
recall that 1—II'*(0)=Zp ')

r„(r)(k =0) l,=z,r„(»(kP=Q),

r„(I)(kP —
Q) I p

—r (P) (k2 Q)

(A11a)

(A11b)

Thus we learn that, ir), order Io ggarar&tee (A6), we must
divide the unrenormalized quantities I'„~ through by
Zp to obtain the renormalized F»('& (p', p):

'"(p' p) = . '"(p'—p). (A12)

Using (A11b) and (A12), we obtain 6nally the crucial
relation

1
F»"'(p', P) I

o=—F."'(P',P),Z3" (A13)

which allows us to rewrite (A10) as the familiar Taka-
hashi identity

=Sr''(p') —S»'(p). (A14)

A final word about the physics involved here is in
order. Note that the charge of the universe Lobtained
from the current (A1)j

k~k"
+ F.( &(p', p). (A7)

k2

Q—= dx jp(x) (A15)

o facilitate the summation, current conservation has has the com~utation relation

+ PaaP + ~~ + LQ,~j=~
Z3

(A16)

FIG. 11. Relation between unrenormalized improper vertex
F„& ) and the proper vertex r„&~). This means that Q "sees" a charge eg/Zp in the state
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created by P acting on the vacuum: wheie

Qii( ) I0&=M( ) I o&
Z3

(A17) Qexp =
experimental volume

dx js(x) (A19)

On the other hand, this is not the measured charge in a ~ is m asured sa in some gnite box ne lectin
sa one-electron state(say) one-e ectron state

photons above some maximum wavelength, whereas
(A18) P I 0) contains arbitrary numbers of soft photons.
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Relation of Normal-Ordering Methods to Linked Diagrams*

J. H. MARBURGER
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The normal-ordering method of Heffner and Louisell is extended to apply to anticommuting operators
and systems with nonquadratic Hamiltonians. This extended method is shown to yield coupled ordinary
differential equations for quantities which are sums of all linked-diagram contributions having the same
external line con6guration.

1. IHTRODUCTIOÃ

1

~ONSIDERABI-E interest has been shown recently~ in methods of computation, sometimes called
normal-ordering techniques, ' ' in which the creation
operators of Bose excitations u, ~ are replaced by c
numbers o, ;~ and the annihilation operators a; by deriva-
tives ct/ctn, * The subsc. ript i refers to the state of the
excitation. We wish to point out that this procedure is
a specialization of the method of functional derivatives
in quantum 6eld theory, 4 and also that an explicit con-
nection may be established between the trial functions
involved in this method and linked-diagram theorems
familiar in many-body theory. ' lt is hoped that explicit
demonstration of these relationships will clarify and
broaden the scope of the new techniques.

Recognizing the kinship between the derivatives men-
tioned above and the functional derivatives of quantum
field theory, it is a simple matter to extend the normal-
ordering techniques of I.ouisell, Walker, and He8ner to
include anticommuting as well as commuting operators.
This extension, described in Sec. 2, makes use of "anti-
commuting c numbers" y,~, y; and their derivatives

*This work was partially supported under Joint Services
Electronics Program {U. S. Army, Navy and Air Force) under
Gran t No. AF-AFOSR-496-67.

W. H. Louisell, Eadiation and Noise in Quantum Electronics
(McGraw-Hill Book Company, Inc. , New York, 1964).' W. H. Louisell and L. R. Walker, Phys. Rev. 137, 3204 (1965).' H. Heffner and W. H. Louisell, J. Math. Phys. 6, 474 (1965).

4 See, for example, Yu. V. Novozhilov and A. V. Tulub, Method
of FNrtcteortals crt the Qttartttttn Theory of Feetds (Gordon and
Breach Science Publishers, Inc. , New York, 1961).' J. Hubbard, Proc. Roy. Soc. (London) A204, 539 (1957).

similar to those introduced by Schwinger for Fermi
6elds. ' 7

The work of Louisell, Walker, and Heffner has made
much use of a normal-ordered, exponential trial function
:expo: for the various operator quantities under in-
vestigation. Here G is a 6nite polynomial in 0,; and 0.;.
We have shown' that the time evolution and density
operators, U(t, t') and p(t, P), corresponding to systems
of Bose particles can have such a form only when the
corresponding Hamiltonian is at most quadratic in the
operators u;~ and a;. Similar results for systems of
fermions and for mixed systems will be published else-
where. Section 3 includes a discussion of the method
of Heffner and LouiselP for such systems.

For nonquadratic Hamiltonians this method may
still be applied formally. In this case G is an in6nite
series in 0,;, 0.;, y;, and p,'.

4e t situ e~ 88Qv ~84t'tt+

Here n*' is an abbreviation for II;n,*", a convention
used throughout this paper. Notice that e; and e, may
only equal 0 or 1 while s;, t;=0, 1, 2, ~ ~ ~ . It is the
principal aim of this paper to show that the coeKcients
G,t„„ofG in the trial function U(t, t') =:expG: are equal
to sums of linked-diagram contributions having the
same external-line conlguration. Thus the normal-
ordering method leads to a set of ordinary differential
equations for sums of linked-diagram contributions.

' g. Schwinger, Proc. Natl. Acad. Sci. 37, 452 (1951); B7, 455
(1951).

7 J. L. Anderson, Phys. Rev. 94, 703 (1954).
J. Marburger, J. Math. Phys. 7, 829 (1966).
J. Marburger, Ph.D. thesis, Stanford University, I?ivision of

Applied Physics, 1966 (unpublished).


