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The operator structure of the singular terms in the equal-time commutator of space and time components
of the electromagnetic current is investigated in perturbation theory by establishing a connection with
Feynman diagrams. It is made very plausible that the singular term is a c number. Some remarks are made
about the same problem in the electrodynamics of a spinless particle.

I. DTTRODUCTIOH

A S first pointed out by Schwinger, ' singular terms
must be expected in the vacuum expectation

values of equal-time commutators of space and time
components of the electromagnetic current and gave
an explicit proof of this for the case of the noninter-
acting Dirac 6eld. Johnson' demonstrated that this was
the case for interacting 6elds on the basis of Lorentz in-

variance and current conservation. Since current comrnu-
tators have been applied widely with considerable success
during the last two years, it is of more than academic inter-
est to examine the structure of the singular (or Schwin ger)
terms.

In order to investigate whether the Schwinger term
is an operator or a c number, we evaluate some o6'-

diagonal matrix elements of current commutators in
perturbation theory in quantum electrodynamics. In
the latter case, the Schwinger term would have no
physically observable effects. In the Appendix we discuss
the electrodynamics of a spinless particle which is
harder to interpret and of less interest than the spin--,'
theory because the current is not analogous to a quark
current.

Q. FORMALISM

We can calculate the equal-time commutator by
writing the current dered by QA„=j„in terms of
renormalized Heisenberg fields and employing the
equal-time commutation rules in a straightforward
manner. The current is j„(x)= (Zr/Zs)eight„&P and this
gives immediately

Lj„(x,o), jo(0))=0.

Therefore, we de6ne the matrix element of the Schwinger
term as (n & &

I Lj„(x,o), jo (0)) I p &+&) computed from the
Feynman amplitude.

We can establish a connection between the matrix
element (n& &ILj„(x,o), je(0))lp&+&) and the I"eynman
amplitude for the process p —+ n+y+y in the following
two diferent ways. '

*Work supported in part by the U. S. Atomic Energy Com-
mission. Prepared under Contract AT(11-1)-68 for the San.
Francisco Operations Once, U. S, Atomic Energy Commission.' J. Schwinger, Phys. Rev. Letters 3, 296 (1959).

2 K. Johnson, Nucl. Phys. 25, 431 (1961).
s See, e.g., J. D. Blorken, Phys. Rev. 148, 1467 (1966).

The S-matrix element is

(n; kr, er, ks, es&
—

&

I
p&+&) = 1—s(2sr)'i&'(p +k&1k —

pt&)

er"e—"(II2E 2E )"' d4x ebs'p:61"62'~pv p

X( '-'I T'I:A.(x) j„(O))I p'+'&

and we break up OR„„accordingto OR„„—=OR„„&r&+OR„,&~&,

where

OR & &= —(II2E 2E )'t' d'xe"2'

x(.&-&l rl j,(x)j„(0)]lp&&),

OR„„&&= —(112Ea2Ee)'t' d'x e '~s'*

X(n& &I [A„(x,o)+i&osA„(x,o), j„(0))IP&+&).

Now let k2 remain 6xed as eu2 ~ ~ and use the identity

j' (x) —ecrrsoj (x 0)e irrsp—
=j,(x,o)+ixoLH, j„(x,o))

to perform the integration over xo in 5K„„(~&.A series of
decreasing integral powers of co2 results with the leading
term (1/&os)X„„,

X„.= —i(II2E 2E )'t' d'xe '~s'*

x( ' 'll j.(,0), j.(o))lp'"&.

Inverting the Fourier transform, we And

( ' 'ILj, (*0),j.(0)]IP"')

Z d'k2
e' '*X„„(ks,p, pt&). (2)

(112E,2Ee) 't' (2sr) '

x (;u„''I j.(0) I
p&+»

(2&o ) 1/2

We define the Feynman amplitude 5E by

OR= —isro(2~s112E-2Ee)"'(n; ~s, ss' '
I j.(0) I

p'+')
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gpB0„—Ap„+kl'B;,=0,
Xp„——

qpA 0„+klieg;„.OR„.'r&= —(1128 2Ee) "2 de e '"4'*

The other relation between the coInmutator and the This yields, of course,
amplitude is based on current conservation. By trans-
lational invariance

Therefore,

kj "5K„„~~~

(112E 2E )"'
CoInparing this to the three equations above, we see
that k~&5tt', „„(~)=Xo„and this resolves both of our ap-
parent dBBculties at the same time.

In order to apply our formalism, we must study
reactions with two photons in the 6nal state. Processes
w'h1ch can be obtained from these by crossing naturally
would give no new information. The simplest cases to
consider to lowest order are pair annihilation and
photon-photon scattering. The latter would be expected
to give a nonzero result for virtually any operator
Schwinger term.

&'* e'"'*&~' '
l l:j.(0),jo(-x, 0)71&'+'&

X& I-&ITCj,(0)j„(—*)7IPI+&). k OR I»= —~2B + (ZB —~ +k'B )
+ (geAo, +kl'A;„).

III. RESULTS

&ol Cj„(x,o), j,(O)7IP,e; I-,e&=0.

For electron-positron annihilation, Eqs. {1),(2), and
Inverting the Fourier transform and using current
conscrvatlon 1n thc fo1Dl ky "BRpgr =Oq wh1ch lmPllcs
k~I'5K„„(~&= —k~~5tt;„„(~&,we obtain

el'2 *kl~oR„„P(kp,p.,pe). (3)
(112~-2&e)"' (2~)'

Ill llslllg Eq. (2) ol' Eq. (3), ORp, 18 wl'lttell down from
the Feynman 1ulcs and its asymptotic foI'In ls conlputcd
in the limit ~2-+ ~ with k~ 6xed. 5K„„("&is at most a
linear polynomial in ~2 and is easily isolated as the part
of 5R„„whichdoes not tend to zero in this limit.

Equation (3) may puzzle the reader for two reasons.
First, it is not obvious that it agrees with Eq. (2) and
second, the right-hand side appears to depend on co2,

which the left-hand side clearly must not. Since 5','„„'"~
must have the form

OR"'"&(k2 p. pe) =~"{k2 p- pe)+»B"(k2 p- pe)

For Delbrucil, scattering, Eq. (1) gives &k2, 02,'k4, 04I

XCj„(x0),jp(0)7IO)=0 and Eq. (3) is much mo«
convenient than Eq. (2) f'or comparison with the
result expected from the Feynman amplitude. In spite
of the fact that OR„„&„(kl,kp, kp, k4) converges, regulators
must be used to enforce gauge invariance. 5 This amounts
to using the amplitude

OR„.&,.(kl, kp, kp, k4)
—=OR„„&„(kl,kp, kp, ki) —OR„„&,.(0,0,0,0) .

Now 111 colllplltlllg OR0gy~ {kl,k2)kp, k4)~ we map se't

k3= k4=0. Since'

OR„„&„(kl,k2, 0,0)=OR„„l„(0,0,0,0)

wc obtain immediately

OR„„),.l~& (kl, kp, kp, k4) =OR„„&,.(0,0,0,0) .

we have as ~2 —+ co, k2 6xed,

ORpp~ G&2Bpp+App+0&2 XI+0(002 ).

Now, using kl ——pe
—p —k2—=q

—k2 we can expand
k~I'5'',

„„

in powers of ~2 ' to obtain4

0= kl ORpy= pt&2 Bpv+p&2(ijpBpu ~pe+ kl Bi~)

+ ($0~0 X0 +kl ~i )+0(402 ) ~

4 Roman indices refer to space components only.

Therefore, OR„„l,l '{kl,kp, kp, k4) =0 and again we get no
Schwinger term.

IV. C05CLUDING REMARKS

If wc are prepared to ignore the fact that the introduc-
tion of regulators is a purely formal device whose
CBect on the current is unclear, we can postulate with
conMence that the Schwinger term is a c number.

~ K. Johnson, Lectures on Particles and Field Theory (Prentice-
Hall, Inc. , Englewood Cliffs, New Jersey, 1964), Vol. 2, pp. 71, 'j2.
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Boulware' reached the same conclusion by a completely
diferent method.

We could also use Eq. (2) for Delbriick scattering,
but since it necessitates finding the next to dominant
terms of the amplitude, the calculation would be much
more tedious and its independence of regulators only
apparent because we must, in principle, regularize the
complete amplitude before finding its limiting behavior.
Pair annihilation to fourth order, besides being very
messy, has an infrared divergence which cancels out
only in the cross section and is not expected to do so
in the commutator. It is very unlikely, in any case,
that a Schwinger term which gives a null result in
photon-photon scattering would show up here.
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APPENDIX

In the electrodynamics of a spinless particle, the
current is

j„(x)= (Z&/Z 4) [ie(q B„p* p*8„—&p) 2s'& „p*w]—
and therefore

[j.(,0), j.(0)]=-2'~(z/z. ) [~ ( )(.*~'+.~,.*)
—&*(0)&(0)a;s'(x)].

We now define the matrix element of the Schwinger term
as &n& '

I [j,(x,o), jp(0)] IP'+&&, comPuted from Eq. (4)
subtracted from the same quantity calculated from
Kq. (2) or Kq. (3).

For pair annihilation Eqs. (2), (3), and (4) all give

&ol[j'(x,o), j (o)]lq,q&

= [2e'/(4~&0)'")][i~ (q+q)]'~'(x&. —

Photon-photon sca ttering is complicated by the
presence of seagull diagrams. Some of these are in-

dependent of k2 and would therefore have to be eval-
uated exactly if we used Eq. (3). The calculation using
Eq. (2) is considerably more tedious than the spin--,'
case and occasionally it is necessary, in order to avoid
spurious singularities, to break up the region of integra-
tion every Feynman parameters and to approximate
the integrand differently in the two regions. As an ex-

' D. G. Boulware, Phys. Rev. 151, 1024 (1966).

ample of this, we would write

1 1 z e I x

ds Cx dy+ ds dx dy,

where ( +44') y(x) =J(x). Thus,

&kp, k4I J I q)

—ie' ie4 (2—q —2kp —k4)ep (2q —ke)

(84p~ppp4) "' (q—k )'—4'

iep (2q ——2k4 —kp)e4 (2q —k4)
+2i g„„

(q—k4)' —p'

and 2„„is given by the divergent integral

A„„=
d g 1

(2') ' 24p, 2[q (kp+k4) —kp k4]

(2q —2kp —k4) „(2q—k 4)
„

X
2g 'k3

(2q —2k4 —kp) „(2q—k4).
+2gp~

2q k4

where 0&&((1.A typical expression obtained after in-

troducing Feynman parameters is

4P= + —z(1—z)kP —y(1—y)kpz —x(1—x)k4P
—2s(1—y)k, —k,—2s(1—x)k, —k4 —2y(1 —x)kp —k4.

In the first regron a'= —'s(1—s)4ppe, whereas in the
second region a'=p' —2y(1—x)kp. k4—z4ppp. If we take
k3 k4= 0 to save labor, we obtain

&kp, ep, k4, e4ILj (xo) jo(0)]lo)
= —(1/(44pp4p4)' ') (e /18m') [ep;e4p(94p3 pp4)

+ e44epp(94p4 4pp)]8 (x) .

We have not succeeded in comparing this with Eq.
(4) because evaluating the latter between the same
states diverges. Consider, for example,

(e /(44pp4p4) Ip) ep"e4"A =&kp, ep,
'

k4& e4
I p(0) y*(0)

I 0)
=P-&kp, ep' k4 e4I4 I&&&~I p*lo&.

To lowest order I44&= Iq) and (ql y*l0)= (1/(2ppe)'"),

&kp, k4I Jlq)
&kp, k41 p lq)=,

44' —(kp+k4 q)'—


