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Electrodisintegration of the Deuteron. I. Connection between the n-p-d
Vertex Function and the Deuteron Wave Function*
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Higher-order relativistic corrections to the Durand theory for the electrodisintegration of the deuteron
are considered, based on the Mandelstam representation for the transition matrix element. The analysis
concentrates on the kinematical region corresponding to the broad quasi-elastic peak in the cross section
aP~/dQ, deo', where eo' is the 6nal electron energy. The presence of anomalous thresholds and the close con-
nection between the nonrelativistic wave functions and the spectral functions in the anomalous region allow
the relativistic expression to be recast in terms of ostensibly nonrelativistic wave functions. The calculation
is facilitated by separating the neutron-proton-deuteron vertex function into angular momentum compo-
nents corresponding to momentum-space wave functions. The result clarifies the role of certain o6-mass-
shell eA'ects, particuarly those contributions which involve antiparticles in the intermediate state. The anti-
particle contributions are found to be small for q'&0.8 {BeVjc)'. The cross sections d'0./dQ. deo' and
d'o/dQ, deo'd(cos8) are presented in first Born approximation but the detailed inclusion of the effects of final-
state interactions on the cross sections is reserved for a subsequent paper.

I. INTRODUCTION

i 'HE theory of the electrodisintegration of the
deuteron has received a good deal of attention

in past years because of the importance of the process
for the determination of the electromagnetic form
factors of the neutron. ' The relativistic description of
the process, based on the initial papers of Durand. ,

''
allows a clear understanding of the main features of the
interaction. The theory uses dispersion relations to
display the leading relativistic corrections and to
assure that the dominant contributions to the cross
section are calculated exactly. Remaining corrections
from the effects of 6nal-state interactions are included

by developing a semirelativistic interaction Hamil-
tonian for use with nonrelativistic wave functions.

Specifically, thc one-photon-exchange approximation
is assumed, ' so that the basic problem reduces to the
calculation of the transition amplitude (ep ~ j„~d), where

j„is the operator describing the electromagnetic current
in the deuteron. ' On the basis of singularities found in
perturbation theory, this amplitude is expected to
satisfy a Mandelstam representation with anomalous
thresholds. ' The leading contribution to the transition
amplitude comes from the pole terms~ and to a lesser
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Research Foundation and in part by the U. S. Atomic Energy
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' A summary of experimental and theoretical vrork is given in
1Vucleon Strlctlre, edited by R. Hofstadter and L. I. SchiG
(Stanford University Press, Stanford, California, 1964). More
recent calculations are quoted in Refs. 16, 18, and 38. The present
experimental status is summarized in J. R. Dunning et a/. , Phys.
Rev. 141, 1286 (1966);E. B. Hughes et al. , i'. 146, 973 (1966};
Ref. 17.' L. Durand, III, Phys. Rev. 123, 1393 (1961).

3 L. Durand, III, Phys. Rev. 115, 1020 {1959).
4 R. L. Anderson et al. , Phys. Rev. Letters 17, 407 (1966).
~ In this paper, four-mornenta are denoted by their particle

labels, and the metric is such that a b= a.b—aobo.' R. Karplus, C. M. Sommer6eld, and E. H. Wichmann, Phys.
Rev. 111,1187 (1958).

& A rough estimate (Sec.VA of Ref. 2) gives 84% contribution
from the nucleon pole terms to the cross section at the quasi-
elastic peak.
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extent from the single dispersion integrals which appear
in the usual three variables: s= —(d+q)'= —(p+ri)',
1=—(rl n)'—, I= —(d—p)'. There are also double dts-
persion integrals in the three pairs of variables. The
pole terms are easily shown to correspond to contri-
butions from the asymptotic part of the deuteron wave
function. Ful thcrmorc, a close conncctlon cxlsts be-
tween contributions of the single dispersion integrals
in the anomalous region and the wave functions at
intermediate ranges. "Once the detailed connection
with thc wave functions ls known7 thc tI'aIlsltlon ampll"
tude can be recast in terms of nonrelativistic wave
functions provided the kinematic variables are inter-
preted correctly.

In this paper we explore several higher-order cor-
rections to the Durand theory which could be important
in view of the improved experimental accuracy avail-
able, and the extension of electrodisintegration experi-
ments to higher energies. One important problem is the
connection between the neutron-proton-deuteron vertex
function with one of the nucleons OG the mass shell and
the deuteron wave function. Several authors have
established the connection between the n-p-d vertex
function with all particles on the mass shell and the
asymptotic part of the deuteron wave function. s'0

Their results relate on-mass-shell form factors of the
I p dvertex -to-the wave-function normalization and
asymptotic D-to-S ratio. However, the connection
between the wave functions and the I-p-d vertex
function has been fully explored only recently. " "

' R. Blankenbecler and L. F. Cook, Jr., Phys. Rev. 119, 1745
(1960}.

'L. Bertocchi, C. Ceolin, and M. Tonin, Nuovo Cimento 18,
770 (1960).

'0R. Blankenbecler, M. L. Goldberger, and F. R. Halpern,
NncL Phys. 12, 629 (1959);B. Sskits and C. Goehel, Phys. Rev.
127, 1787 (1962)."L.Durand, III and Ian J. McGee, Bull. ,Am. Phys. Soc. 10,
62 {1965).

'~ Fr'anz Gross, Phys. Rev. 140, B410 (1965).
'~ M. Gourdin, M. Le Bellac, F.M. Renard, and J. Train Thanh

Van, Nnovo Citnento 57, 524 (1965).
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In the present paper w'e obtain a unique correspon-
dence between the vertex function and the wave
functions including the antiparticle contributions" from
such processes as p+d —+ e, in addition to the usual S
and D components of the deuteron wave function.
These results for the vertex function have been used
in the calculation of the transition amplitude to as-
certain the relative contribution of the antiparticle
states to the electrodisintegration. The calculation
shows that the largest antiparticle contributions to the
cross section appear in terms of order n q/m' (n, q are
spectator momentum and momentum transfer in the
lab frame, and m is the nucleon mass). Such terms are
quite small and can safely be dropped relative to the
leading terms.

The remaining corrections to the cross sections at the
quasi-elastic peak arise from small final-state inter-
actions between the outgoing nucleons. These cor-
rections are associated with the Mandelstam double
dispersion integrals, and would be calculated from first
principles in a full dispersion theoretic calculation.
Again, however, one can make use of the close connec-
tion between the nonrelativistic wave functions for the
neutron-proton system and the double spectral func-
tion. " Hence, to calculate the small final-state inter-
action corrections, we construct from the basic rela-
tivistic form, a semirelativistic interaction Hamiltonian .
correct to order m '(w'/c') for use with approximate
wave functions for the initial and final two-nucleon
system.

The fact that we are able to use wave functions in
the relativistic formalism simplifies the calculation
enormously. At the same time, it permits maximum
use of the accumulated knowledge of the nucleon-
nucleon interaction via the introduction of semiphe-
nomenological wave functions. Other dispersion-theo-
retic calculations of the electrodisintegr ation of
the deuteron have been made using different ap-
proaches. " " However, the calculations use various
approximation schemes for determining the spectral
functions. They are therefore less direct than the wave-
function approach which uses the known connection
between the relativistic spectral functions in the
anomalous region and nonrelativistic wave functions.

The interaction Hamiltonian obtained in this analysis
contains several interesting terms. In particular, it is

'4 A. Martin and R. Vinh Mau, Nuovo Cimento 20, 246 (1961);
A. Martin, ibid. 19, 344 (1961); V. de Alfaro and C. Rossetti,
ibid. 18, 783 (1960).

"B.Bosco, Phys. Rev. 123, 1072 (1961);Nuovo Cimento 23,
1028 (1962); B. Bosco and R. B. de Bar, ibid. 26, 604 (1962);
D. Braess, Z. Physik 184, 241 (1965)."B.Bosco, B.Grossetete, and P. Quarati, Phys. Rev. 141, 1441
(1965)."B.Grossetete, S. Jullian, and P. Lehmann, Phys. Rev. 141,
1425 (1965).

' M. Gourdin, M. Le Bellac, F. M. Renard, and J.Tran Thanh
Van, Phys. Letters 18, 73 (1965)."F. M. Renard, J. Tran Thanh Van, and M. Le Bellac, Nuovo
Cimento 38, 565 (1965); ibid. 38, 1688 (1965).

found that a few higher-order terms arise from small
spin-rotation corrections for the nucleons in the
deuteron. The origin of these terms is demonstrated by
constructing a simple model for the deuteron out of two
free-nucleon states. The resulting "deuteron" wave
function is fully relativistic but unbound.

In Sec. II we discuss the form of the Mandelstam
representation for the transition amplitude. This dis-
cussion provides the motivation for the wave-function
decomposition of the e-p-d vertex function containing
an off-mass-shell nucleon given in Sec. IIB.An effective
interaction, correct to order m ', is developed in Sec.
III for calculation of the small final-state interaction
corrections using approximate wave functions in the
initial and final state. In Sec. IV, we yresent the usual
unpolarized cross sections d'a/dQ, deo'd(cos8) and
d'o/dQ, deo' for the scattering of an electron into an
element of solid angle dQ, and energy interval deo'

about the final energy eo'. The former cross section
involves the detection of the proton in coincidence with
the final electron. The origin and magnitude of indi-
vidual terms is discussed and compared with previous
results. However, the calculation of the effects of
final-state interactions and the azimuthal dependence
of the cross section are reserved for a subsequent paper.
Results of the calculatioo are summarized in Sec. V.
Appendix I contains the general connection between
the angular momentum components of wave functions
and the e-p-d vertex function invariants described in
Sec. II. Appendix II indicates the algebraic details of
the effective interaction expansion to order m ' using
free-nucleon electromagnetic currents. In Appendix
III, a model "deuteron" wave function is constructed
from free-nucleon wave functions. The model demon-
strates validity of the interaction expansion in Appendix
II, and indicates the origin of a small spin-rotation
correction for the nucleons's spin in a moving deuteron.

II. DISPERSION RELATIONS FOR
THE TRANSITION AMPLITUDE

A. Introduction

%e will be concerned primarily with the electro-
disintegration of the deuteron near the peak region of
the inelastic continuum. The peak occurs near final
electron energies corresponding to elastic electron-
nucleon scattering. It results essentially from the quasi-
elastic scattering off the individual nucleons in the
deuteron but is broadened by the Fermi momentum
of the nucleons in the bound state. Because the nucleons
are, on the average, rather far apart for the peak. con-
dition, the analysis depends mainly on the long-range
structure of the deuteron rather than its lesser-known
short-range structure. In addition, one expects fewer
uncertainties due to meson-exchange effects. The
nucleon pole terms, Fig. 1 and to a lesser extent the
single dispersion integrals in t and I account for the
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FIG. 1. Diagrams

corresponding to the
single-particle pole
terms in the Mandel-
stam representation
for the transition
amplitude(ap ( j„(dl.

pole, t=nP is

J,'=N(p)r, "(q,lt)L —jp (d—I)+~j
XF „(eP)N'(e), (1)

where the truncated electromagnetic vertex function
for the on-mass-shell proton at the pole is

Kp

F„"(q,m) = ie—y„Ft„(q')+ Fe„o„„q„
2m

""

(c)

main contribution to the peak cross sections, while
the s-channel contributions a6ect only transitions to
the Anal 'S~ and 3Dj states of the nucleons'0 Accord-
ingly, we consider in detail the t-channel scattering;
the analysis of the u channel is essentially the same.

In the t channel, the one-particle singularities of the
matrix element {npl j„ld) arise in perturbation theory
from diagrams which separate into two parts by cutting
a single proton line. Figure 2 gives some sample graphs
of this type, each containing a single proton as the
intermediate state. Figures 2(a), 2(b) and 3 represent
o6-mass-shell corrections to the electromagnetic vertex
function i'„&, Fig. 2(c) is a correction to the e-p-d
vertex function I' pq(f), and Fig. 2(d) is one of the
diagrams contributing to the complete proton propa-
gator Sg'(if n) Th—e tot. al contribution from all such
graphs may be expressed as the product of three factors:
the I-p-d vertex function with the off-mass-shell proton,
the complete proton propagator, and the electromag-
netic vertex function for the oG-mass-shell proton.

The leading terms from this set of graphs will of
course bc thc pole terms where all quantltlcs al c
evaluated on the mass shell. The residue at the proton

FIG. 2. Diagrams containing a single nucleon in the intermediate
state vrhich contribute to the absorptive part of the single dis-
persion relations in t. Dashed lines represent pions.

'0 Since the deuteron pole afkcts only transitions to 6nal 3Sj
and 3Dj states of the two nucleons, Durand (Ref. 2) has included
these contributions in anal-state interaction e8ects.

This pole term contribution involving free-nucleon form
factors can be calculated exactly. It is expressible in
terms of the on-mass-shell form factors of the I-p-if
vertex function which in turn are directly related to the
asymptotic properties of the nonrelativistic deuteron
wave function.

The full expression for the single-particle graphs is

{+P~ jy ~ &)singie proton

=8(p)&„"(q,d—N)S 'I' „~(f)N'(e)
=a(P)l', (q, Z—N)S, (elf, ld)
=u(P)&,&(q, d—N)(e~gp~d).

The vertex function l'p&(q, d tt) re—duces to the snnpie
form Eq. (2) only at the pole. Si, Si' are the free and
interacting propagators, respectively, and (ri~ f, ~if) ts
the full I-p-d vertex with the off-mass-shell proton. "
fp represents the proton 6eld operator, hence {e

~ p„~ d)
is just the momentum-space representation of the
proton in the deuteron. Equations (3) are equivalent
forms for the transition amplitude with no approxi-
mation, except for the absence of the double dispersion
relation contributions, which are discussed separately
below.

The free propagator has only a pole at t= m' and the
vertex function I'~& is analytic in the t-plane cut from
the normal threshold at f= (m+p)' to f= ~ (p is the
pion mass). On the other hand, the n-p-d vertex function

{e~f ~d) has an anomalous threshold beginning at
f,=nP+2p, (iu+2n), where n is related to the deuteron
binding energy e, n=(me)'12. Hence the transition
amplitude is analytic in the cut t plane from the
anomalous threshold at to to t= ~, and we may write
for it a once-subtracted dispersion relation. If, however,
we restrict the calculation to include only on-mass-shell
behavior of the electromagnetic vertex function, we
obtain an immediate factorization of the dispersion
relation for the transition amplitude. That is, the
electromagnetic vertex function, which depends in this
approximation only on q and not on 3, appears as an
overall factor multiplying both the pole term and the
single dispersion integral, As a consequence, the calcu-
lation of the single-particle contributions to the tran-
sition amplitude requires only the evaluation of the

"The vertex functions in Kq. (3) are discussed in more detail
by Durand (Ref. 2, Sec. IV). For present purposes, it sufBccs to
know merely thc general character of the Mandclstam repre-
sentation for (Np (j„(d)
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dispersion relation for the wave function, (el/i, l d). It
is known, however, that a close connection exists
between the nonrelativistic deuteron wave function
and the spectral function of the single dispersion
integrals for the u-p-d vertex in the anomalous region. ' 's

This is the motivation for our analysis in Sec. IIb of
the I-p-d vertex function in terms of angular momentum
components of momentum-space wave functions. The
possibility of using wave functions in the relativistic
formalism oGers enormous simpli6cation since, as will
be seen, no dispersion integrals need actually be
calculated.

The double dispersion integrals in the Mandelstam
representation for the transition amplitude describe the
effects of final-state interaction (FSI) between the
nucleons and the contributions from meson exchange
currents, Fig. 3 (b). The latter corrections have not been
explored in detail but are expected to be small near the
quasi-elastic peak. An example of the FSI correction
is shown in Fig. 3(a). The contributions from such a
diagram can be written for the s and t channel as

rt(s', t')ds'dd

(s' —s) (t' —t)

where rt(s', t') represents the double spectral function.
It is easily verified that the diagram in Fig. 3(a) has a
normal threshold in s at s=4m', and an anomalous
threshold in t at ts=nP+2u(ti+2n).

If now one neglects oG-mass-shell behavior at the
electromagnetic vertex, a factorization again occurs in
the dispersion relation, since the electromagnetic vertex
function can be extracted from the integral over $ and
s. Moreover, the resulting double dispersion integral
has the form characteristic of the nonrelativistic wave
functions for the initial and 6nal two-nucleon state.
This is more evident if the denominator is recast in
terms of momentum variables in the center-of-mass
frame of the outgoing nucleons.

The new dispersion variables o' and p" are associated
with the deuteron wave function and the 6nal neutron-
proton wave function, respectively. The result is practi-
cally identical to the form given in the nonrelativistic
analysis of Martin eI, ul. '4 who showed that for a dis-
persion integral of this type, there is an equality between
the nonrelativistic wave functions and the double
spectral functions in the anomalous region. For the
correspondence with wave functions here, we note that
p is the relativistic nucleon inomentum and qs is essen-

tially zero at the quasi-elastic peak, hence
I q I

s=qs.

This close connection as well as the smallness of FSI
sects is a compelling reason to include such corrections
in a semirelativistic approximation. %e do this in Sec.
III by developing an effective interaction Hamiltonian
for use with approximate wave functions for the initial
and 6nal state.

FIG. 3. 7~ical diagrams which
are not single-particle reducible,
and contribute to the Mandelstam
double spectral functions for
(npI j„~d). These represent (a) a
correction for 6nal-state inter-
actions, and (b) a meson-current
term.

(a)

I'$
y, a(t)sv t+I(t) u'(u) . (6)

Here $„ is the complex polarization. vector describing
the deuteron spin, & d=o, and u'(e) =

I u(e)Cjr, where
C=y2y4 is the charge-conjugation matrix. "F, 6, H,
and I are form factors depending on the momentum-
transfer variable t= —(d—e)s, and satisfy dispersion
relations with anomalous thresholds:

(ms —t) " ImF(t')dt'
F(t) =F(m')—

„(t,'—t) (t' —ms)

(ms —t) " ImG(t')dt'
G(t) =G(ms)— „(t'—t) (t' —m')

1 "ImH (t')dt'
H(t) =-

x g,

I "ImI(t')dt'
I(t)=-

"Equation (6) corresponds to Eq, (2.23) of Ref. 8 rvith extra
factors of m ' inserted so that the form factors are all dimension-
less."Spinors are normalized as u(p)y„u(p) = 2tp„, 8(p)u—(p) =2m,
vrhere N(p) =u~(p)y4. %e use the standard representation for the
Dirac matrices, g= —iPC, y4=P.

B. Angular Momentum Classi6cation of the
n-p-1 Vertex Function

Blankenbecler and Cook~ showed that the I p d--
vertex function is expressible in terms of four form
factors when one of the nucleons is off the mass shell.
For an oA-mass-shell proton, the vertex function has
the form"

e P Py (d n)+m—j
(ulf. ld)= F(t)sv (+G(t) +-

2
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At t=m', only the terms F(ns') and G(nt') survive in
the n-p-d vertex function Eq. (6). These constants are
expressible in terms of the deuteron binding energy,
the asymptotic D-to-S ratio, ' "and the e6ective range
for n-p scattering. The results are given in Kq. (24).

For the case of scalar particles, the connection
between the n-p-d vertex function and the deuteron
wave function has been studied by Blankenbecler and
Cook. ,

' and Bertocchi et al.' These authors observe that
a deuteron wave function corresponding to a sum of
Vukawa potentials may be written in the form

" ~(p"), & " n(p")
u(p) =X — dp"= — dp", (8)

o p"+p' rr'+p' )' p"+p'

where o (p")=h(p" rr') —rt(p"—)8(p" X') "—p .is the
center-of-mass momentum of the nucleons and X is

equal to p,+n, where tt is the minimum decay constant
which appears in the potential. The wave-function nor-
malization X is given in terms of the deuteron effective
range r, by

S'= 2n/(1 —nr. ) .
The analytic structure of the function (n'+p')u(p)

is identical to that of the leading vertex form factor,
F(t) This is r. eadily seen by changing to the variables
t=ns' —2(p'+rr'), t'=ns'+2(p" —n'). Then the spectral
weight functions t)(t) and ImF(t) are related as

t) (t) = ImF (t)LtrF (nss) (t—m')] '. (10)

In fact Blankenbecler and Cook. showed that the
relativistic weight function e. ' ImF(t)/(t —tn'), which
arises from the exchange of a single pion between the
nucleons, is practically identical to that which would be
obtained in a nonrelativistic calculation of rr(t) using a
Yukawa potential.

The connection between the form factors F, G, H, I
in Eq. (6) and wave functions is more complicated
when the spins of all particles are included. As noted
in Eq. (3), the convenient starting point for the analysis
is the matrix element (n~P„~d):

iy (d
———n)+nt-

I'„„g(t)u'(n). (11)
m2 —t

This matrix element is just the momentum-space wave
function for the proton in the deuteron. Initial attempts
by Gross" and by Gourdin et cl."to extract the deuteron
wave function from the vertex function led to ambiguous
results because of the neglect of antiparticle contri-
butions. "More recently, Gross" developed a consistent

"The q&ectral weight function is subject to the subsidiary con-
dition J'e o(p")dp"=0, to insure the correct indicial behavior
of the wave function.

"The problem centers on the fact that all four invariants of
the n-p-d vertex contribute to the wave function consisting of
only two angular-momentum components. It is tempting therefore
to neglect the H and I invariants in Eq. (6) in making such a
comparison since these do not appear at all for the on-mass-shell
case. Durand (Ref. 2) and later Gross (Ref. 26), noted the drastic
error in such an omission by showing that F (t) and H(t) (m' —t)

scheme for writing a relativistic deuteron wave function
based on a one-channel coupling approximation. His
technique lead to the observation that the propagator
can be viewed as the superposition of physical nucleon
and antinucleon states. The positive energy contri-
butions, or nucleon states, are then identihed with the
deuteron wave function.

The approach in this paper parallels the recent work.
of Gross" but extends the calculation to include the
identification of antiparticle contributions as well. For
example, the vertex with the deuteron and neutron on
the mass shell describes both the process p+n+-+ d
and ji+d ~ n." Specifically, we assume the wave
functions for describing the vertex d~ n+p, ttaeu«ron,
and the vertex n+-+ ji+d, P„,„t„,„, are defined by the
relation'" '

1
(n

~
it'n

~
d) = Lu(d n)pdeuteron+e(n d)&neutron], (12)

2 p

where u(p), e(p) are Dirac spinors for the proton and
antiproton. The overall factor 2ps' is included for
phase space. Since we are conserving three-momentum
but not energy in this separation, po is given by
nts+(n —d)'." Each process is characterized by two

/4rrtt are comparable in magnitude when the nucleons are slightly
oft' the mass shell.

'0 Franz Gross, Phys. Rev. 136, 8140 (1964).
'7 lan J. McGee, Ph. D. thesis, Yale University, 1965 (unpub-

lished)."An alternative scheme was used initially (Ref. 27, Appendix),
to separate the particle and antiparticle components which
amounted to writing the propagator in terms of oft-mass-shell
spinors. Although the electromagnetic form factors then appear
as free form factors, the method is less appealing because one must
deal with expressions for virtual nucleons and antinucleons,
whereas we wish ultimately to use nonrelativistic wave functions
as input.

"Some insight into the particular form of the separation, Eq.
(12), may be gained by noting how the usual Feynman result for
the disintegration of the deuteron by a virtual photon, y+d —+

n+p, can be viewed as a superposition of time-ordered graphs
involving exchanges of nucleons and antinucleons. Assuming the
reaction is mediated by virtual proton exchange, for example, we
can separate the covariant result for the amplitude into two
identifiable parts:

(aPli. ld&=N(P)&. "(q, d n), t
—(&If Id&

N(y)F„&(q, d —n)N(d —n)N(d —n)

intermedi ate spin s Po — ~0+qO
—~

+s(y)r„(q, d —tt)s(n —d)s(n —d)
( If Id)

do+qo —~
F —&0+po +qo ~ —~0+po +po

The terms are recognized as contributions from time-ordered
graphs involving the exchange of a physical proton and anti-
proton, calculated in second-order perturbation theory. The total
energies of the intermediate states are A' and 8". The two ex-
pressions would be exact if the arguments of the electromagnetic
vertex function were replaced by their appropriate off-mass-shell
values; q' becomes q'+(eP —t)p'/2m for proton exchange, and q'
becomes q' —4mP0 for antiproton exchange. However the approxi-
mation for the particle exchange term is excellent as it stands
since t is close to m'. lt is a questionable approximation for the
antiparticle exchange term, but since the energy denominator is
so much larger for this contribution, one could safely ignore its
contribution.
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angular-momentum functions giving a total of four
functions which can be related unambiguously to the
four form factors of the 22-P-d vertex function. The
particle contributions are relativistic generalizations
of the familiar S- and D-state wave functions in mo-
mentum space. The antiparticle components can be
shown to be j=-,'P-state wave functions for pd spins
of -', and -', ."

The wave functions are separated farther into
angular-momentum components by reducing the spinors
to two-component form and identifying the associated
spin combinations in the appropriate rest frame. For
example, the momentum-space deuteron wave function
has the form

function can be expressed as two j=-,' P-state angular-
momentum components for pd spins of —,

' and -,'. That is,

4neutron [Pl/2 tpt/2+ Pl/2 +1/2] &

where the doublet and quartet functions 'P'j/2,

are the analogs of 'St, D1 of Eq. (13) and (Pt/2, (pt/2

are the associated spin functions. They are identi6able
from the available spin-function combinations in the
neutron rest frame using a Clebsch-Gordan decom-
position into combinations of normalized, doublet and
quartet spin states. The result is

M
'+»2= (42r) '" x—&0" —(v'0) 6 —d'

dp

0'deuteron(12) —S1 gl+ D1 +1~ (13)

The expressions 'S~, 'Dj are Fourier transforms of the
S- and D-state wave functions, and '3~, 'X)~ are the
related spin functions for the states. In the nonrela-
tivistic limit, 'S~ and 'D~ correspond to the usual
angular-momentum components of the deuteron, u(p)
and w(p). These have the form, "cf. Eq. (8),

+ (Qst)itr d-X( io,X„,

Jjf
'/P1/ = (4 ) '" x-1-t —(V'-')—( d

dp

(18)

(p")dp"
2t(P) =X

0 P +P
"~d(P")dP"

2//(p) = —pic)'

0 P +P

(14)

'gr ——(42r)
—'"X ttr ((trr;/42)X„,

'X),= (42r) '/'X„t[-,'tr—y( P ,'tr Qio—2X—, (16)

where p is the asymptotic D-to-S ratio. The spin func-
tions 38&, 3X)& can be determined by a comparison with
the usual expressions for spin-angle functions in co-
ordinate space, or by a direct Clebsch-Gordan decom-
position of the available spin-function combinations in
the deuteron rest frame. For the deuteron, they are

+(Qs)itr d-X( ia2X„,

where X ),~ is the two-component spinor for the anti-
proton with helicity —)tn. In obtaining Eq. (18) in the
neutron rest frame, we have erst re-expressed the
deuteron polarization vector $„ in terms of rest
vectors. "

The reduction of the product of the 22 P dver-te-x
function and propagator into angular-momentum
components is now straightforward. Using Eqs. (12)—
(18), we obtain the following results:

0S1= (2220 —M') (22r) {[2220+m]ssF

+[n,ps —m'] (2/3m) G+[1+(220—m)/3m]
X (2np —M)H), (19)

'D1 (2np M) '(4—2r——) "0(no m-)—
X jF (1+go/m)G —(2220——M)/(2m)H j, (20)

"This identification appears naturally when the off-mass-
shell effects are viewed as contributions from particle and anti-
particle positive-energy states. Alternatively these terms can be
viewed as arising from the E states of the full deuteron wave
matrix when written as p=p('51)+p('D1)+y~ijt ('E1)+ygf('E1).
See J. Tran Thanh Van, Ann. Phys. (Paris) 9, 139 (1964).

"The spectral weights o„ou in Eqs. (14), and (15) are subject
to the subsidiary conditions

«Pt/2 cf[ 1 dp/M (p0+m—)—/M]—F- —
+[(po+m)/M]G+[ 1+ (dp M

+p p+ m)/2m dp/M]H-
+[dp(pp+m)+d']/(2mM)I), (22),(~)fr=0,

0

og(s)smCk=0, m= —2, 0, 2.
0

These conditions guarantee that the wave functions are finite at
the origin and have the correct indicial behavior.

"The deuteron polarization vector P„ is connected to the rest-
frame vector ("by the relation

fe=M, &3=2'+(rfo/~ t)6" dd, 5" dl)if'3, —
where M is the deuteron mass,

where X„,X are two component spinors for the neutron
and proton.

The corresponding spin-operator combinations for
the antiparticle contribution are less well known. The 'P1/2= (c&&)(l 2+do/M+ (po+m)/M]F
spins and parities involved indicate the neutron wave —[(pp+m)/M]G+[ —1+(dp+p, )/m

M/2+ do/M]—H (do (po+ m) —d']/—
(2mM)I), (21)
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where

(d,+p,—m) 3(ps+a)
p = (m'+d')'"

where the normalization factor S is defined by Eq. (9).
The components in Eqs. (19) and (20) are normalized
in this way. The analogous normalization of the anti-
particle components does not need such careful con-
sideration since we ignore ultimately the small contri-
bution from the antiparticle states in the electro-
disintegration.

"It is not obvious that the wave functions which are derived
from semiphenomenological potentials using the Schrodinger
equation correspond to the relativistic wave functions in any
sense. However, the Blankenbecler and Cook result (Ref. 8)
indicates that the spectral weights of relativistic wave functions
which are dominated in the low-energy limit by the exchange of
a single pion are identical to nonrelativistic wave functions ob-
tained from the Schrodinger equation using a one-boson-exchange
potential. One-boson-exchange potentials exist which reproduce
the nucleon-nucleon scattering data very well up to several
hundred MeV. Hence one can conclude that relativistic wave
functions and semiphenomenological wave functions based on the
Schrodinger equation are equivalent at low energies.

'4 These relations agree with those quoted by the authors in
Ref. 10, but differ slightly from those of Gross LEq. (3.26), Ref.
26/.

The expressions 'S~, 'D~ are expressed entirely in terms
of the variable no= ', M-+ (m' —t)/2M, the neutron
energy in the deuteron rest frame. The corresponding
neutron wave-function components 'P~~/2, 'P 3~2 are
expressed in terms of the deuteron energy in the neutron
rest frame, de= (M'+m' t)/2—m Rqs.. (19)—(22) are
easily generalized to an arbitrary frame. The general
forms are listed in Appendix I. If only terms through
order n'/ms are retained in Eqs. (19) and (20), the
results agree with those given by Gross."

We have yet to discuss the question of normalization
for these relativistic angular-momentum states. The
question can be settled for the '5& and 'D& components
by requiring that these relativistic "wave functions"
reduce to the nonrelativistic ones at low energies. "
More directly, the normalization can be determined
by using the I-p-d vertex function to calculate the
deuteron pole term in low-energy neutron-proton
scattering and comparing the result with that obtained
by extrapolating the effective range formula,

p cotb= —n+-,'r, (u'+ p'), (23)

to the pole at p=in In Eq.. (23), 8 is the eigenphase
shift and n, r, are as defined earlier.

Such a calculation shows that F(m') and G(mrs) are
given by'4

(1+p/K2) 8rr)'"
F(m') =1V

(1+p')"' m )
(24)

3ms X grr) '"
G(eP) = p

v2n (1+p')'Is m)

The knowledge of the components of the n p d-ve-rtex

function gives us directly information on the form of the
dispersion relations for the transition amplitude. This
is especially true for conditions under which the ex-
traction of the electromagnetic vertex function from
the dispersion relations is a good approximation. We
consider now the kinematical situation at the quasi-
elastic peak where the on-mass-shell behavior at the
electromagnetic vertex is most closely approximated. "
In the c.m. frame of the nucleons, the pole term de-
nominator has the form

m' —1= 2t u'+ (p—so)'—'Vo'3, (25)

where y is the proton momentum, and q= e—e' is the
electron three-momentum transfer in this system. The
timelike component of the momentum transfer is

go= (u'+ p' —-'q')/E E=p'+m' (26)

'5 Durand argues (in Sec. IVb of Ref. 2), that a rough estimate
of the diBerence between the free-nucleon form factors and those
for a nucleon of'f the mass shell is on the order of c/p~1. 6'P& at
the quasi-elastic peak for inelastic scattering.

The peak in the inelastic cross section occurs for the
kinematic condition ~p~ =-, ~q~, where gs is essentially
zero. The expression Lm' —t] ' is consequently strongly
peaked for p j=1 and the direction of the scattered
proton is limited to a narrow cone about the direction
of q. The corresponding kinematic situation for the
neutron pole term is obviously p j=—1, hence there
is essentially no interference between processes in which
the electron scatters from one nucleon, and those in
which it scatters from the other.

The pole-term expressions for the transition amplitude
at the quasi-elastic peak are therefore expressible di-

rectly in terms of the asymptotic part of the deuteron
wave function. In addition, the results in this limit are
essentially identical to the nonrelativistic results, except
that ~tl~'=q', and p is the relativistic momentum of
the nucleons. The inclusion of the single dispersion
integrals introduces corrections from the intermediate
structure of the deuteron and off-mass-shell effects in
the nucleons and the propagator. However, it is easy
to show (see below) that if we assume smooth (on-mass-
shell) behavior of the electromagnetic vertex function,
then the resulting dispersion relation for the transition
amplitude factors, leaving simply the dispersion
integrals for the relativistic "wave functions. " The
proximity of the anomalous threshold of these integrals
to the physical region gives yet a further simplification
of (ep~ j„~d) using the results of Blankenbecler and
Cook. ' The form of the spectral weight function in the
anomalous region is determined by the behavior of the
wave function at intermediate distance and since the
long-range structure is given exactly by the pole term
result, one can immediately adopt the phenomenological
theory of the deuteron as far as the calculation of the
functions sSt(t) and 'Dt(f) is concerned.
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Assuming the on-mass-shell behavior of the electro-
magnetic vertex function, we can write the transition
amplitude as

where

Ju" J-"
(~pl i.ld&=, +, (27)

Kp

~."=~(p) v,F»(V')+ F»(C'), .C.
2m

XI —i y(d —n)+mjl' „e(t)N'(e). (28)

The neutron residue term J„&has a similar form. The
n p dve-rt-ex function in Eq. (28) is expressed in terms
of the relativistic angular-momentum functions. For
purposes of orientation we first write down the expres-
sion for J~& in the laboratory frame to allow a direct
comparison with the familiar Rosenbluth cross™section
form for scattering of free nucleons. The standard, terms
are easily recognized and the smallness of the anti-
pa, rticle contribution is more apparent in this frame.
The result to order m ' is given by

J„~=x„tpS,Q s+'D,Q~~+'F, (,Q~4

+'Fg(2Q„'&]io 2x. , (29)

where the functions 0„' are combinations of spin func-
tions and nucleon form factors which appear in the two-
component reduction of (28).

Qo' F,„(1——+ /q8 m)e g (q'/4—m')a, F»e g

+(1/2m') (Fi +ii„F»)n qe (+ (1/4m')

X (3F»+2~,F»)(n ge q —( qs n
—ig qXn),

Q'= i(q/2m)F—»ir g+ (1/2m) (F»+~„F»)
X(~Xq)ir (,

Q02"= (1/2m')(F»+K~F»)(n qe (—g qe n

+g qe q+iq nX$),
Q»= (Fi„/2m)( —in —eXn)e g.

(30)

Similar forms are obtained for the coefFicients of 'D~
and 4P~/2. Here n represents the laboratory momentum
of the neutron or more generally of the spectator
nucleon.

If the n-dependent terms are neglected, the inter-
action current for the 'Si (and 'Di) states reduces to
that given by Durand, "and gives directly the Rosen-
bluth cross section. '~ The surviving terms in 00' of Eq.
(30) correspond to the interaction of the effective proton
charge with the electron field.

I
The (q'/m') terms are

relativistic corrections to the charge as noted by several
authors. '"] The n-dependent terms in Q' are easily

3' Reference 2, Eqs. (64.1) and (64.2)."M. Rosenbluth, Phys. Rev. 79, 615 (1950)."K. Holzl, G. Sailer, and P. Urban, Phys. Letters 16, 120
(1964); P. Breitenlohner, K. Holzl, and P. Kocevar, ibQ'. l9, 54
(1965).

recognized as the convection current and magnetic
moment interaction, respectively. The largest contri-
bution of the n-dependent terms (including anti-
particle contributions) to the cross section will be down

by a factor (n q)/4m' relative to the leading term.
Since the cross section d'0/(dQ, deo') involves the inte-
gration over all spectator nucleon directions, contri-
butions from such terms will be further diminished to
magnitudes of order n'/4m'=T, p„/m. The average
laboratory kinetic energy of the spectator nucleon,
T,p„ is less than 10 MeV for q' up to 0.8 (BeV/c)', and
T,p„/m(0. 005 in this region. We may consequently
neglect n-dependent terms in the integrated cross
section do'/dQ, deo'." The single-nucleon contributions
can be given therefore essentially by the Rosenbluth
cross-section forms. However the factors F(m'), G(m')
are to be replaced by the more complicated functions
F(t), G(t), H(t), I(t) in the particular combinations
corresponding to the angular-momentum functions,
&S,(t) and 3D, (t).

III. EFFECTIVE HAMILTONIAN FOR CALCU-
LATIOÃ OF FINAL-STATE INTERACTION

CORRECTIONS

The double dispersion integrals of the transition
amplitude give rise to final-state interaction effects,
(and small meson-exchange corrections which are
ignored in this paper). Again assuming on-mass-shell
behavior at the electromagnetic vertex, we are able to
use the results of Martin et ul." to observe the near
equality at the quasi-elastic peak between the double

spectral function in the anomalous region and the non-

relativistic initial- and final-state wave functions.
Furthermore we showed in Sec. II that simultaneous
contributions from both nucleons are kinematically
inhibited at the quasi-elastic peak. Hence FSI cor-
rections are minimal at the peak and can be reliably
included in the calculation using a semirelativistic
Hamiltonian with approximate wave functions for the
initial and final state.

The natural frame in which to make the evaluation
is the center-of-mass system of the outgoing nucleons.
Here effects of FSI can be introduced naturally in a
partial-wave series. On the basis of arguments in Sec.
II, we ignore all antiparticle contributions and recast
the results for the trans'ition amplitude, Eq. (27), in

this frame. The result to order m ' is

(~p I i.I d) =x'Q."(i~,/a2)x„~si(t)
+x,tQ„-(i~,/V2)x„~S, (~), (31)

"The above argument does not hold, of course, for polarized
cross sections where these contributions would in principle
manifest themselves. However, conditions most favorable for
their detection (large q' and nucleon momenta away from the
quasi-elastic peak), would be most complicated to analyze theo-
retically and involve extremely small cross sections.
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where

Qst' = —2mi( LF»—(qs/4m )it ems~ jrr„p+ (1/4m )
X (Fis+2ttr F»)(iqX ) p ((—Xtrt, )

(pXq)j+(1/4ms)iy qX)F»}, (32)

Qt'= 2m(o„Xq(F»+sQ»)/(2m)
+i(2p —q)F»/(2m) }tr„g. (33)

The arguments t, I are replaced by their appropriate
values in this frame. Similar terms are obtained for
the neutron term 0„",with neutron form factors re-
placing the proton form factors and neutron momentum
—p, replacing p. The D-state contribution is essentially
identical to the S-state form except for the usual spin-
function replacement, cf. Eq. (16).

The higher-order terms in tbis expression for the
e6ective interaction are evidently small at the quasi-
elastic peak, )p~ =Pq~. The convection current term
in Eq. (33) involves the vector (2p —q)/2m and further-
more does not interfere with the leading term in the
unpolarized cross sections d'o/dQ, des' and d'o/
dQ, deo'dQ~; hence its maximum contribution to the
cross section is of order (y —-', q)'/m'. In Qst', the terms

((Xtr) (yXq), iqX) y are also small because the
momentum p is predominantly along the direction. of
q at the peak. The m ' terms can be associated with the
triplet and singlet combinations of the outgoing
nucleons, respectively. "

We are interested in using coordinate-space wave
functions for the initial and final state. Accordingly it
is desirable to recast this effective interaction in a form
suitable for use with wave functions. More directly,
we can observe that the effective interaction Eq. (31)
is the same to order m ' as that obtained using a sum
of free-nucleon currents, with the exception of the final

singlet term in 002'. This term would be absent in any
case in cross sections correct to order m ', since it does
not interfere with the leading interaction terms.
Specifically, we can show the following correspondence
to order m '.

where the notation [ ]„around the initial m-p state is
to indicate that the integration over the relative co-
ordinates must be performed. This connection depends

on the factorization of the electromagnetic vertex
function from the dispersion relation for the transition
amplitude as stated earlier. It yields an effective inter-
action in coordinate space which to order m 2 agrees
with the momentum-space I p dv-ert-ex reduction, Eq.
(31).The result, demonstrated in Appendix II, is

Jp= Q (Fi;—(—Fi~+2s;Fs~) (q'/Sm')

+ (Fig/2ms) 8 B~+"(1/4m')

X (Fi;+2s;Fs;)tr;.qX fi;}, (35)

J= P (—(Fi;/2m) (q—2i7l;)

X (Fi;+it;Fs,)o,Xq}

The derivatives 8; act only on the coordinate of particle
i in the wave functions. The result depends on the
replacement of the deuteron wave function by a product
of free-nucleon wave functions, integrated over their
relative coordinates. The validity of this replacement is
demonstrated in Appendix III where we construct a
model "deuteron" wave function out of free-nucleon
wave functions. The resulting wave function is fully
relativistic but unbound. It also shows the origin of
the omitted singlet term in the above reduction as due
to a spin-rotation correction for the nucleon s spin in
the moving deuteron.

IV. CROSS SECTIONS NEGLECTING FINAL-
STATE INTERACTIONS

In this section, we use the previous results to present
the cross sections for electr odisintegr ation, d'o/
d(cos8)des'dQ„and d'o/(dQ, des'), including the main
D-state contributions but neglecting the sects of FSI
between the outgoing nucleons. Estimates are given
for the magnitude of the higher-order corrections which

suggest that several are insignificant even when FSI
are included. The contributions arising from interference
between electrons scattered off the proton and those
scattered off the neutron are explored using a realistic
wave-function model. Their contribution is shown to
vary considerably away from the quasi-elastic peak.

Using the e-p-d vertex reduction of the transition
amplitude, Eq. (31), we obtain the following expression
for the coincidence cross section at the peak:

mP m
d'o/d (cose)des'dQ. = O'Mott ' (1+r) '(Az(p, q)+ r[1+-2 (1+r) tan'(W) ]A'(p, q) }, r = (qs/4rr'), (36)

2~ E

where aM«t is the Mott scattering cross section for an electron scattering of an external field. The angle 8 is the
electron scattering angle measured in the laboratory frame. F, p, q are variables defined in Sec. II and are mea-

sured in the c.m. system of the outgoing nucleons. The angle 8, also measured in this system, is defined by the

~ The singlet term involving ip qX(/nP does not contribute to the cross sections to 0(ttt ') since it does not interfere with the
leg, ding charge terms.
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relation cos8= p q. The angular distribution functions h.~, Ar are given by

A. (p,q)=[F „—,F „]'{['5(k,)7'+['D (k,)]'}—4 F,'['S (k„) '5 "(k„)7+[F — F ]'
X{[St(k„)7 +[Dt(k„)] }—4rFt„[St(k„) St"(k„)]+2[Fr„—r44+s„][Fr~—r44&ss]

X['S (k„) '5 (k„)+'D,(k ) 'Dt(k„)P (k k )7, (37)

~'(p q) = (F .+"F")'{L'5(k.)7'+['D (k.)7}+(gp'/q')F .'['5 '(k.)7+(F .+"F-)'{['5 (k-)]'
+[D1(kn)] }+(gp /q )Fts [51 (kt4)] + s (Fls+4cyFsp) (F144+4444Fs44){ 51(ky) 51(k44)

+'D& (k,) 'D, (k„)[3Ps(k„k,)+ Ps (k.

q)+Ps�

(k, .q) —I]}+-s&2(F&„+44,F») (Ft„+44„Fs„)
X['51(kn) Dl(ky)P (sk sq)+'Si(k, ) 'Dt(ks)Ps(ks q)], (38)

where the particular forms obtained are given by

&s= sq —p, k„=
I &~I = (p'+sq' pq cos—g)"' '

(39)
& =sq+p, k = I& I

= (p'+sq'+pq cose)'".

The arguments t, I of the angular-momentum functions
have been replaced by their values in the c.m. frame of
the outgoing nucleons 4' t =m' —2 (ns+k ') u= rrc'

—2(cr'+k '). The leading S- and D-state contributions
correspond to the exact results obtainable from the
pole terms of the single dispersions relations, and repro-
duce the Rosenbluth cross section for scattering off the
individual nucleons, cf. Eqs. (45) and (46). However,
the other, smaller contributions are only correct to
terms of order (q'/m').

We can go one step further in this relativistic calcu-'

lation by invoking the results of Blankenbecler and
Cook to approximate the angular-momentum functions,
'S&, 'D&. This is justi6ed only at the peak where one
has a well-dehned connection between the spectral
functions in the anomalous region and the nonrela-
tivistic wave functions. In this approximation, the
functions 'St, sDt are replaced by u(k;), 8(k;) defined
in Eqs. (14) and (15). In terms of the more familiar
coordinate space wave functions u(r), n (r), the func-
tions I, 8 are4'

'St(k, ) ~u(k, ) = j o(kr)u(r)rdr,

(40)

'Dt(k;) ~w(k;) = j s(k;r)w(r)rdr

Included also in the cross section, Eq. (36), are smaller
matrix elements which are multiplied by the momentum
factors k„' or k„'. When such terms are recast in terms
of coordinate space wave functions, the additional
momenta transform to give derivatives acting on the
wave functions, cf. Eq. (35). It is easy to show that

' Except for small relativistic corrections, k„and h are simply
the neutron and proton lab momenta, respectively.

4's(k~) and nr(k„) are identical to the expressions F(8), G(8)
[Eqs. (II.3) and (II.S) of Ref. 3j, introduced by Durand.

sSt'(k, ) -+ u'(k;) = (sin0/2k;) j t(k r)r'(d/dr)

X[u(r)/rjdr, (41)

'St" (k4) ~ u" (k,) = (1/q') js(k,r)r(d'/dr')

Xu(r)dr. (42)

Because of the smooth long-range behavior of the
deuteron wave function, these expressions containing
derivatives are sensitive mainly to the shorter, lesser
known region of the wave function. Hence, the use of
crude deuteron wave functions, or the neglect of FSI
eBects in evaluation of expressions of this type can be
misleading. However, the particular integrals in Eqs.
(41) and (42) are relatively small in any case. Because
of the curvature of the deuteron wave function, sig-
nificant contributions to u" (k,) come only from r &2 F,
whereas the bulk of the wave function lies outside this
range. Hence, the integral, u" (k;) is negligible compared
to the main integral u(k;) even if FSI effects are
included.

The expression u'(k, ) arises from the convection
current term in the interaction. It is not obviously a
negligible term especially away from the quasi-elastic
peak. 4' The apparent possibility for a significant con-
tribution is much smaller, however, since the inclusion
of FSI corrections to the matrix element Eq. (42)
reduces the final-state wave function considerably in

the sensitive short-range region.
Contributions from the last term in Eq. (33), the

so-called spin-orbit term~ in the interaction, have been
omitted completely in writing the cross section. This
term contributes only to m ' terms, and then only to
pure D-state and r4-p, S-D interference terms; hence
its contribution is negligible even including I'SI eGects.

4' However, a numerical calculation showed that I'(k;)/44(k;)
is very small (~.5/0) at the quasi-elastic peak for q'=1.0
(BeV/c)'

~ The presence of such terms has been noted previously LK
Holzl, G. Sailer, and P. Urban, Acta Phys. Austriaca 19, 168
(1964) and Ref. 37] but have always been neglected for reasons
stated in the text.
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I(~)= PM(p q)+Ma(p q)l (G +G )+NB s(p—q

X[2Fi Fte 2r—(Iris Fi„+xeFs„Fie)
+ (2r/3) Li+2 tarP (-',8)](Fi,+s,Fs,)
x(F,.+.~,.)j+ N —

(p,q)-:~2.Ll+2 t- (!8)i
X(F„+.,F .)(F .+..F .). (45)

G„, G„are convenient form-factor combinations which

appear in the Rosenbluth cross sections, "
G;=Fr,s+r (s,Fs;)'+2r(Ft;+s;Fsg)'

Xtans(-,'a), s=p, ~. (46)

jo '-

.05 .t 0 .I 5
q' (BeV/c)'

FIG. 4. Relative magnitudes of the 8-state s-p interference,
S-D n-p interference, and pure D-state terms, de6ned by Fqs.
(47) and (48), for the quasi-elastic peak condition P=sg. Final-
state interactions were neglected. Results were obtained using
the repulsive-core deuteron wave function of Ref. (49}.

Ke note 6nally that the Legendre polynomials ap-
pearing in Eq. (36) are easily expressed in terms of 8;
for example,

Ps(ke'q) =kg Lp Es(cos8)+eq —
pq cos8j ~

= l —3P'(sin'8)/2kes. (43)

Since the main terms in the angular distribution
functions are pure 5-state and pure D-state terms with
the same coeKcients, it is clear that the ratio method' 45

for determining neutron form factors is a cleaner tech-
nique than measurements in which the 6nal nucleons
are not observed. The complicated structure of the
deuteron and, to a lesser extent, the FSI corrections are
effectively cancelled with this method. '

By integrating the cross section Eq. (36) over all
directions of the outgoing nucleons, we obtain the cross
section d'a/dQ, des' in which only the final electron is
observed. The result is

(elp) ere

d'a./dQ+es' ——o Mo«~
~

—I(t'f),
E~/ z

(44)

where the angular distribution function I(r')), depending
on the final electron energy t,o' and electron scattering
angle r9, (both measured in the lab system) is given

"P.Stein e$ al. , Phys. Rev. Letters 9, 403 (1962); J. R. Dun-
ning ee al. , end 13, 631 (196.4).

The functions M'(p, q) and Ns s(p, q) are defined as
usuaP:

1

M (P,q) =— PSi(k~) )'d (cos8),
—I

I
Ns 8(P,q) = 'Si(k-, ) 'Si(k )d(cos8),

2

and represent scattering from the 5-state part of the
deuteron alone. The remaining functions, MD(p, q) and
N8 n(P, q), are delned by

1

MD(P, q) =- LsDt(k„)i'd(cos8),
2

(48)
1

N (pq)= — — 'S (k )'D (k„)p (k„q)d( o 8),
2

and represent, respectively, the dominant scattering
from the D state of the deuteron alone, and the es-p

interference scattering between the 5 and D components
of the deuteron. Durand has given explicit expressions
for M(p q) Ns —8(p q) for a Hulthen deuteron" and
other authors have calculated them for a variety of
wave-function models. ' Their results show uniformly
that qsM(p, q) is practically independent of momentum
transfer for q'&0.04 (BeV/c)', while the neutron-

proton interference term Ns s(p, q) is much smaller

and decreases rapidly with q' (cf. Table I of Ref. ]6).
These results are easily extended and put on a more

systematic basis by exploiting the technique introduced

46 If one makes the crude assumption that q' is constant over
the whole of the quasi-elastic peak, it is easy to show that one
obtains the familiar impulse approximation result

do'
de,',=eM, «L1+ (2ee/oi) sin'(a/2)g-'(G„+G ),

dQsd 80
=dO'y/40g+do tt/ILoef.

The above result is obtained, including all the relativistic kine-
matic factors, by evaluating d'0-/de0'dQ, in the limit that the deu-
teron binding energy goes to zero. The result is basic to the area
method (Ref. 50} of determining neutron form factors.

47 Reference 2, Eqs. (28}, (29}."J.Nuttall and M. L. Whippman, Phys. Rev. 130, 2495 (1963);
D. Braess and G. Kramer, Z. Physik (to be published). See also
Refs. 16, 18, and 38.
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in the Appendix of Ref. 2. One expresses the relativistic
vertex functions 'S~, 'D~ in the usual dispersion relation
form, Eqs. (14) and (15). The Born term expressions,
Eqs. (47) and (48), can then be written completely in
terms of the spectral weight functions; for example

.05-

q' = .04(BeV/c)a

M(p, q) = o, (s)ds o,(s')ds'
(2pq) o

s"+(p s—q)' s'+ (p+sq)'
Xln (49)

s"+-(p+sq)' "-+-(p sq—)'

The dependence of such expressions on q' can be in-
vestigated without regard to the particular model used
for the deuteron wave function. Results are as follows:

For conditions corresponding to the quasi-elastic
peak, p=sq, both les s(p, q) and Jt/8 n(p, q) decrease
as q ', while q'M(p, q) and q'MD(p, q) are essentially
constant for q'&0.04 (BeV/c)' and 0.01 (BeV/c)',
respectively. The error in the latter relations decreases
as q

' for M (p,q) and as q
"for Mn (p,q) as q' increases.

By taking a particular form for the spectral weights,
the cross section can be investigated further. The
variation of the matrix elements is;displayed in Figs.
(4)—(6) using a realistic-model wave function. " The
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FIG. 6. Typical off-peak behavior of the S-D neutron-, proton
interference term neglecting final-state interactions. Solid curves
are values of 1V8 ~(p q)/M(p, q) as functions of p for q'=0.02,
0.04, and 0.08 (BeV/c)'. The curves are terminated for values of
p where the electrodisintegration cross section has decreased to
roughly half its peak value. Dashed line is It/s (P,g)/Ii/(P, q)
at p = &q, the corresponding points on the three solid curves- being
indicated by arrows. Results were calculated using the repulsive-
core deuteron wave function given in Ref. (49).
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FIG. 5. Typical oG-peak behavior of the S-state neutron-proton
interference term neglecting final-state interactions. Solid curves
are values of /Is s(p, q)/M(p, g) as functions oi p for g'=0.02,
0.04, and 0.08 (BeV/c)'. The curves are terminated for values of
p where the electrodisintegration cross section has decreased to
roughly half its peak value. Dashed line is lV~ ~(p, q)/M(p, q) at
P=~q. Results were calculated using the repulsive-core wave
function for the deuteron given in Ref. (49).

"lan ].McGee, Phys. Rev. 151, 772 (1966).

wave function has the form given by Eq. (14) and (15)
with the spectral weights o;(s), s=s, d, approximated
by a series of delta functions. Free parameters in the
wave function were adjusted to reproduce the static
properties of the deuteron and to give a reasonable fit
to numerical wave functions.

The magnitude of the I-p interference terms in Fig.
4 appears artificially large at these low momentum
transfers, i.e., q'(0.25 (BeV/c)s, because the small
multiplicative factors such as (qs/4m') and Ft„(qs)
which appear with them in the cross section have been
omitted. However, the e-p interference matrix elements
give negligible contribution to the quasi-elastic peak
as soon as q' is at all appreciable. On the other hand,
the pure D-state contribution, though small, maintains
a constant fraction ( 1.43%) of the dominant S-state
contribution.

The off-peak behavior of the interference terms,
shown in Figs. (5) and (6), is not uniform. As p in-
creases, the effects of the internucleon repulsion de-
presses the magnitude of the matrix elements, whereas
for p( —,'q, the e pinterference increases r-apidly, as
noted by Durand' when studying the threshold region
for deuteron breakup. The changes shown in Figs. (5)
and (6) should be taken only as indicative of the actual
behavior since effects of FSI, which have been omitted,
could alter their value appreciably. The results suggest,
however, that the I-p S-state interference contribution



should be included in analyzing experimental data using
the area method. "

V. SUMMARY AND CONCLUSIONS

In the dispersion relation treatment of the transition
amplitude (mph j„id), the leading contributions to the
quasi-elastic peak cross section arise from the nucleon
pole terms. These contributions are completely speci-
6ed by the asymptotic properties of the deuteron wave
function and the free-nucleon form factors from the
electromagnetic vertex. The single dispersion integrals
which correct the pole term result were obtained by
assuming the smooth on-mass-shell behavior at the
electromagnetic vertex, an approximation which is most
reliable at the quasi-elastic peak. As a consequence the
single-particle contributions to the transition amplitude
are expressible simply in terms of the dispersion relation
for the wave function (ei|P„id). This result motivated
the analysis in Sec. II of the ri, p dverte-x -function in
terms of angular-momentum components of momen-
tum-space wave functions. The antiparticle components
of the wave function (nip„id) were shown to contribute
negligibly to electrodisintegration matrix element for
q' less than 0.8 (BeV/c)'. The transition was therefore
rewritten in terms of the vertex functions 'Sj, 'Dy. The
dispersion integrals for these functions have anomalous
thresholds, and furthermore the spectral functions are
practically identical in the anomalous region to those
for the nonrelativistic deuteron wave function. By
interpreting the momentum variables properly, the
identi6cation gives an extremely convenient approxi-
mation to the single dispersion integrals.

A close connection is also known to exist between the
Mandelstam double spectral function in the anomalous

region and the wave functions for the two-nucleon

system in the initial and 6nal state. This connection,
and the smallness of FSI eGects, suggests that these
corrections can be computed in a semir elativistic
approximation. An effective Hamiltonian correct to
order m ' was developed for this purpose in Sec. III
and will be used in a subsequent paper.

Using the wave-function approach of Durand' there-

fore, we were able to reformulate the theory in terms of
ostensibly nonrelativistic wave functions and thereby
make use of information on the well-studied nucleon-

nucleon interaction. Bosco and others" " have pro-
posed an alternate procedure for calculation of the
electrodisintegr ation matrix elements. The method

applies dispersion relations to calculate the transition
amplitude, 6rst assuming 5 waves in the initial and
6nal state. One free parameter appears in the formu-
lation which is adjusted to the experimental data near
threshold for deuteron breakup. The 5-wave matrix
elements can then be determined at other energies, for
example, at the quasi-elastic peak. The method is then

5 K. B.Hughes, T.A. GriBy, R. IIofstadter, and M. R. Vearian,
Phys. Rev. 146, 973 (1966).

extended to higher angular momenta by an adjustment
of the corresponding E-wave parameter from the experi-
mental cross section somewhat above threshold and
so on. This sequential adjustment of free parameters
(which approximate integrals over cuts in the complex
plane) is not very advantageous when more than a few
partial waves are present.

Gourdin, I.e Bellac, Renard. , and. Tran Thanh Van" '9

have recently presented a dispersion relation approach
similar in principle to the Bosco treatxnent. In addition,
the neutron, proton, and d.euteron pole-term contri-
butions are put on an equal footing to display explicitly
the leading gauge-invariant terms. However, the
presence of form factors precludes a full treatment of
gauge invariance for the electrodisintegration. In a
comparison with the low-energy data from Orsay"
a~ound q'=0. 14 (BeV/c)', both Bosco e«al." and
Gourdin et el.'8 were able to obtain reasonable agree-
ment between theory and experiment by inserting FSI
corrections to the 6rst few partial waves.

At very large momentum transfers, the current
theories would require considerable modi6cation be-
cause of absorptive processes in the 6nal two-nucleon
state. '~ VVe suggest an upper limit on the applicability
of the present theory as q' 0.8 (BeV/c)'.

(m2 —«) &D, («) =- 'dg(«),
3 4n(1+v)

(I2)

'sg(«) =F(«)[M(1+v)+m)
+G(«) [-,'M'(1+ v)' —nP)/m

+a(«) [2~+-'M(1+.)j(m' —«)/{2mM) (I3)

'd, («) = [M(1+v) —2nz](F(«) —G(«)[1+(1+v)

X (M/2~) j—a(«) (~&—«)/(2~M) }. {I4)
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APPENDIX I

The results of Eqs. (19)—{22) relating relativistic
angular-momentum functions to form factors of the
n-p-d vertex can be generalized to an arbitrary Lorentz
frame by rewriting the kinematic variables in terms of
invariants. For example in the deuteron rest frame, the
neutron energy No is given by -', M(1+v) where the
invariant v= (m' «)/M' h—as been introduced for con-
vemence. The states 'S|(«), 'Di(«) of Eqs. (19) and (20)
are normalized by the method discussed in Sec. IIB.
The results are:

2 2m%
(m' —«) 'Sg(«) =- 'sg(«),

3 2x(1+v)
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(m2 —t)
'sg(t) ='sg(m')—

~(t')dt'
(I5)„(t'—t) (t' —m')

The wave functions possess kinematic singularities
in t in their overall coeflicient; hence we have defined
the new functions sy(t) and dy(t), wlHch have no
kinematic singularities and can be expected to satisfy
dispersion relations in the variable t. For example,

's&(m') corresponds exactly to the asymptotic part of
the deuteron wave function with relativistic kinematics
included, and the spectral weight q(t') in the anomalous
region $'&to corresponds identically to that which
would be obtained in a nonrelativistic theory. s'0

The corresponding results for the antiparticle states

(I6)

(I&)
and a similar form for the D state. The mass-shell value where

4P / (t) =F(t)L—1—(1+ )(M/2m) bye—G(t)bye(t)gb 2—m/—M+(1+ )(M/2m)g(M/2m)
+I(t)(—1+ b(1+v) (M/2m)+ (1+v)'(M/2m)'j (M/2m) (IS)

'p / {t)= F(t)P—2+ (1+ ) (M/2m)+bj —G(t)b+e(t)L2b+ —4m/M+ (1+ ) (M/m)j(M/2m)
—1(t)L

—1+$(1+p) (M/2m)+ (1+p)'(M/2m)'j(M/2m), (I9)

b = (m+ Lmm —M2+ (1+v)'(M'/2m)' J")/M,
r, = 2mM3 p/4m/(3M) y'(1 2m/—(Mb)]"'$M'(1+ p) 4m—y 2mMb j '.

Again the kinematic singularities in the variable t occur only in the overall coe%cient c.

APPENDIX II
The free-nucleon electromagnetic current operators taken between single-nucleon states are restricted to the

general form

p', p are momentum operators which act on the initial and Anal wave functions, y'= i8, p—=i8 The v.ector and
scalar components of this current have the following form, to order m ':

(P I
jo'IP') = —2miX, 'LFg+ (Pg;/Sm') (q'+4y y') —(;F;/4m') q'+ (1/4m') (l g;+2;P;)te q)& p'jX„.

(P11'lf)=2 X. L-'&;(1+1')/2 +(~„+.;~„) Xq/2 j~.. . =p, . (112)

The interaction Hamiltonian density is obtained by multiplying this current by A„(x), where A„ is the usual
Mttller potential for the photon field generated by the scattered electron. We consider the sum of such a proton
and neutron current as giving rise to the interaction of the deuteron current in (np

~ j„~d) to order m '. By taking
the matrix element of this operator between two-nucleon states consisting of direct products of free-neutron and
proton spinors, we reproduce all the terms in the e-p-d vertex result, Eqs. (32) and. (33), except for the small
singlet term. The correspondence between the two forms of the result depends on the fact that the deuteron wave
function in (ep

~ j„~d) is adequately described by the product of two free-nucleon wave functions. Such a description
of the deuteron is expected to do quite well in this situation because the interaction to order m ' contains no terms
which depend on the deuteron's binding, that is the internucleon potential. "

APPENDIX IH

Io order to clarify the simple result for the eRective interaction using free-nucleon spinors, and to demonstrate
the origin of the small anomalous interaction term, we construct a "deuteron" wave function from two free-nucleon
wave packets. The resulting model wave function is fully relativistic but has zero binding energy.

The construction is confined to the deuteron 5 state but results are easily extended to include the D state as
well. Ke consider the direct product of a proton and neutron spinor multiplied by a spherically symmetric function
g(p) describing the momentum distribution of the nucleons in the "deuteron. "The nucleons move in opposite

~' In Appendix 1a of Ref. 3, Durand has considered the efkct of the two-nucleon potential V, on the deuteron wave function.
His estimate is consistent with the expectation that these sects will be smaller by roughly Vj2m than the sects of 6nal-state
interactions. However, the situation for elastic electron-deuteron scattering is more serious since the'scattering is quite sensitive to
the short-range structure of the deuteron. See F. Gross, Ref. j.2.
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directions (with momentum y say) in the "deuteron" rest frame. An angular-momentum state with J= 1 is easily
constructed. from the two-nucleon plane-wave state using the helicity formalism of Jacob and Wickss:

ps+ trt

~1m, ,}~s)=L=; j'» y(p)p'Zp dn n~, ~"(y, e, y—)s' ' rr„y/(ps+a)

~- y/(ps+~)

~. y~- y/(ps+~)'-

Exp,Rx )„. (III1)

The direct product of nucleon four-spinors has been written as a column matrix and the rotations E=RQ, 8,
—P), made to act on the two-component spinors directly. The effect of the rotation operators on the spinors in
(III.1) can be expressed in terms of two S'» rotation coeflicients. These can be combined with the original S'*
function to produce a single S function (a Ss function for the 5 state). When the intermediate sums on helicities
are performed, , one is left with the expression containing the spin-one spinor X~ ~ for the composite system:

(ps+trt)
~1 m J.=o S=1)=(4w)-'» y(P)PsdP df}

0 2m

rr, y/(po+ttt)

—~. y/(po+trt)

~. y~. .y/(ps+~)'-

This expression for the "deuteron" wave function in its rest frame is instructive. The function is spherically sym-
rnetric, has even parity, and triplet spin dependence. (This can be seen more clearly by performing the angular
integration. ) It is a wave packet for a relativistic two-particle system, which, unfortunately, spreads in time.

The deuteron moves with momentum —q in the center-of-mass frame of the outgoing nucleons. Thus, in order
to use the above wave function in calculating the electrodisintegration matrix element, one must first apply a
Lorentz, transformation" to the state. The resulting wave function for the moving "deuteron" has the following
form to order m—':

tttr3
~
1 Z' 0 1)= («)—r» y(p) psdpt I+ (yp-'tl)'/(4ttt') J»L1+ (y—-', tl)'/(4ms)]'»

0
$ Cy C~

1+ a&&y/(4~')

dQ e+' (y+sa)/2~

tr„(y—-'q)/2trt

—~, (y+ la) ~- (y—sa)/4~'.

( i~, )(—cits )x—, sr, (1113)

where f =tanh (q/ds). The wave function has a form similar to the initial state (a product of free-neutron and

proton spinor) considered in Appendix II. Suppose we look at the matrix element of the proton current operator
evaluated in the c.m. system of the 6nal nucleons. In the 6nal state, the neutron has momentum —p, and this
momentum is not altered in the Born approximation by the interaction of the proton with the electron. Hence
the initial momentum of the neutron in the (moving) deuteron is also —y, . This requires y to be equal to
—y, .+-,tl in Eq. (III.3) and eliminates the angular integration over p. In addition, the initial proton momentum

is speci6ed as p, —g, as expected. Therefore the above wave function used in the matrix element of the proton
current operator will reproduce the result indicated in Appendix II using a product of free-neutron and proton
spinors. The only difference of course is the extra term with the singlet. operator in the large component of the
spinor, ',i(rr„rr„-) tI)(—y/(4rrt'). Such a term has exactly the form required to reproduce the small singlet term
in the tt p dvertex e-xp-ansion Eq. (32) and detailed calculations con6rm that this is the case. The term results
from a spin-rotation eGect, i.e., a rotation of the nucleons s spin due to the motion of the deuteron, Et says that,
in a reference frame in which the deuteron is moving, small admixtures of the singlet spin state are present in
order to preserve the overall quantum numbers of the deuteron.

5' M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
L. Dursnd III, Lectures cw Tttccrettcal Physics 11nterscience Publishers, Inc. , New York, 1961},Vol. 4, p. 524.


