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of other channels in this latter type of calculation. In
other words, from the many solutions of (2.8) (2.9),
instead of restricting ourselves to the CDD-pole-free
type of solution, with its undesirable energy depend-
ence, we restrict ourselves to the type of form used to
analyze experiments, and attempt to 6x its parameters.
We Qnd that, if we insist on good solutions, the method
achieves this, successfully predicting both the magnitude
and energy dependence of the scattering width, and
also both radiative widths.

We finally note that although the method has been
chosen in such a way as to suppress the explicit appear-
ance of higher channels, including the SU(6) communi-
cating channels A*7l. and EZ, the approximate sym-
metry features of the experimental radiative widths
are accounted for in a semidynamical way. It is hoped
that the method may be used to throw some light on the

symmetry properties in cases where data are not, nor
are likely to be, so plentiful. In particular, it is hoped to
establish, from a study of the Ft*(1385), whether the
approximate SU(3) symmetry properties exhibited by
the (10) resonance pionic decay widths, " are also
exhibited by the pionic coupling constants

gpss

gy~ ', even though the kaon couplings"" appear to
violate SU(3).
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Phiiips has axiomatically defined sets of localized states which are Lorentz-invariant (while Newton-

Wigner sets of localized states are not) and has divided these sets into three classes. Philips's conjecture
concerning spin-zero localized states, namely, that the postulates de6ne the sets of localized states in a
unique way, is proved to be incorrect by finding a class-III set that satis6es Philips's postulates. Philips's

work is discussed and his calculations (spin-zero case) are repeated without using some (explicit and im-

plicit) unnecessary hypotheses. These calculations are also extended to the spin-q case, for which it is proved
that there are only class-III sets of localized states. The results are discussed. Incidentally, an explicit form

of the effects induced by a Lorentz transformation on representation space is found for both the spin-zero

and spin-$ cases.

I. INTRODUCTION

GENERAL invariance principles from which posi-~ tion operators for elementary systems could be
found have been proposed by Newton and Wigner'

(NW). They have chosen as postulates some properties
that seem naturally associated with the notion of local-
ization. These invariance principles actually lead to
localized states which are eigenstates of the position
observable.

However, the NW localization is not Lorentz-in-
variant s that is, if an elementary system (for example

*Present address: Belfer Graduate School of Science, Yeshiva
University, New York, New York.
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'T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400
(1949);hereafter NW.' This is true if the standard ideas about position are retained.
However, another formulation of localization exists where the NW
position operator is covariant but where position depends not only
on the point of localization bnt also on a timehke vector )see G. N.
Fleming, Phys. Rev. 137, 3188 (1965)g.

an elementary particle) is localized at the space-time
point x relative to an inertial frame of reference and if a
Lorentz transformation relates this frame with a new

one in such a way that the point x is invariant, then the
system is no longer localized in the new frame. This is
undesirable considering that Lorentz invariance is a
property naturally associated with the notion of local-
ization and also that NW localization is invariant under
spatial rotations, and it seems that there are no physical
reasons for privileging the subgroup of the spatial
rotations.

Philips' has proposed another set of postulates as
naturally associated with the notion of localization as
the NW postulates, which include the Lorentz-in-
variance condition.

Let us denote by S a set of states localized at
x= (t,x). Then Philips's postulates are:

(a) The set S, is a linear vector space which is

invariant under all homogeneous Lorentz transforma-

~ T, O. Philips, Phys. Rev. 136, B893 (1964).
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II. CONVENTIONS AND FORMULAS

We will use the same metric tensor, index conven-
tions, and Dirac's gamma matrices as those used in
Messiah's book. ' The "P representation" and the
Heisenberg picture will be used. Also, following Newton-
Wigner, we will describe the states of an elementary
system by means of wave functions f(p, $) of the
variable y and a discrete variable $, these functions
being defined on the positive mass shell. For spinless
systems /= 1 and it will be omitted, whereas for spin--,
systems $ can take the four values 1, 2, 3, and 4.

The invariant scalar product reads'

and

P*(p)p(p) for spin s=0 (1a)

(P, v)=Z

where as usual

P(y, t) V (y, t) f» spi»=2,
0

(ib)

P,=+ (P'+&')'~', P =
I pl, p= mass.

4 It seems that invariance under inversions can be omitted as a
postulate.' Philips considers eigendifferentials formed by the superposition
of states localized in a small region of space. See, however, remark
(C) of Sec. V.

'A. J. Ki,lnay and B. P. Toledo, Nuovo Cimento 48, 997
(1967); J. A. Gallardo, A. J. Kalnay, A. B. Stec, and B. P.
Toledo, ibid. 48, 1008 (1967); A. J. Ki,lnay, Bol. IMAF 2, 5'o. 5
(1966); J. A. Gallardo, A. J. Kalnay, A. B. Stec, and B. P.
Toledo, Nuovo Cimento 49, 393 (1967).' G. L. Trigg, Quotum Mechanics (D. Van Nostrand Company,
Inc. , New Vork, 1964).

A. Messiah, Mt8cunique Quantize (Dunod Cie. , Paris, 1960).

tions (continuous and inversions') that leave invariant
the point x of localization.

(b) The eigendifferentials formed by the superposi-
tion of localized states are normalizable to unity. '

(c) The set S, contains no subset which satislms the
preceding conditions (irreducibility) .

The orthogonality of states localized at different
points, which is one of Newton and Wigner's postulates,
is lost in this Lorentz-invariant localization. We are
therefore faced with a choice between orthogonality and
Lorentz invariance, but while there is no physical reason
for giving up the covariance, the lack of orthogonality
can be justified if the particle has a structure. '

The physical significance of the postulates is clear.
We only want to emphasize that the construction of
eigendiGerentials~ is the most realistic way to approach
the actual state of experimental affairs in the sense that
the position operator has a continuous spectrum of
eigenvalues and an experiment to measure position
values can only single out a portion of the range.
Besides, any eigendi8erential can be made to come
arbitrarily close to a true solution of the eigenvalue
equation (which may not belong to the Hilbert space)
by taking the region of integration small enough.

and

M„,/i =p„8/8p" P.8/—8pl'+ ,'y„y„ -for spin s=-', .
(2)

As in Ref. 3, since any homogeneous Lorentz trans-
formation may be written as the product of two rota-
tions and a pure Lorentz transformation (Lorentz
acceleration) along, e.g., the third axis, it will be
sufhcient to consider Lorentz accelerations along the
third axis, the generators of this transformation being

E,=M0,/i= p08/8p' for spin s=0
and

E3=Mop/I= P08/Bp —~pp'y3 fol spin s= g,

where in polar coordinates

(3a)

P08/Bp'= Po(cos88/8P —sin8P '8/88) . (3b)

q, q will stand for a state which is localized in
the origin of coordinates, and whose specification is
completed with the (eventually existent) quantum
number(s) X. We shall call y,&, the state obtained from
the former by a spatial translation. As it is well known,

QX) =~ ' go) (4)

III. CLASSES OF LOCALIZED STATES

The space So can be spanned by an angular-mo-
mentum eigenfunction basis. Let us indicate the total,
orbital, and spin angular momentum by j, l, and s,
respectively; the symbols J, J' and I., I' stand for the
maximum and minimum values taken on by j and 1,
respectively.

The classification into classes established by Philips
for the spin-zero case is then obviously generalized for
every spin in the following way:

Class I groups all sets of states for which a finite J
exists; it can be said that for these sets a finite I. exists
owing to the relation between I. and J.

Class II groups all sets of states for which 1'&s (or,
equivalently, a nonvanishing 1.' exists).

Class III groups all sets of states which do not belong
to the other two classes.

IV. SUMMARY OF PHILIPS'S RESULTS

Philips considers elementary systems of nonvanishing
mass and spin. He uses a basis consisting of functions

v -'(y) =f~(P)I'-'(8, v ) (5)

to span the set So of states localized at the origin. One of
these functions (which we indicate by y, a) is chosen
and the functions (E~)"q," (n=0, 1, ~ ) are formed,

' V. Bargmann and E. P. Wigner, P«~. Nat. Acad. Sci. (U. S.)
B4, 211 (1948).

The generators of the homogeneous continuous
Lorentz transformation are'

M„„/i =p„8/Bp" P,8/—Bpl' for spin s=0
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so that linear manifolds are built up by means of their centered, at x and z/x are not orthogonal:
combinations.

In order to ffnd the functions (Ez) "y s's, the following
formula, deduced from Eq. (3b), is used:

(e,x)

X„'=[(l'—m')/(4P —1)J". (6b)

Then, classification into classes of the linear manifolds
follows immediately from the form of the functions.

Now, the eigendifferentials centered at point x are
constructed and the manifolds which do not satisfy the
postulate of normalizability are disregarded. The ex-
pression for the eigendifferentials reads

( 3 )1/2
dx Px~ )

(4zrez) eis .} (7)

where 22 ~ is a state localized at x' [Eq. (4) is used but no
additional quantum number } is assumedj and S(e,x)
stands for a sphere of radius e centered at x. It follows
that

&2I' 'fz(P) =& 'Po[fz'+(1+1)f/P 'jI' ' '
++ 1+1p (f & ff p 1) I/' 1+1 (6s)

where
dy'&1(mI x' —y'I)/mI x' —y'I ~

(vi) There is no self-adjoint position operator (see
Ref. 6, especially the fourth article).

~.1"= Z fz(p)I'-' (13)

V. GENERAL REMARKS

(A) Considering that Sp is not necessarily an irre-
ducible representation of the (3-dimensional) rotation
group, it cannot be assumed a priori that vectors of the
type Eq. (5) are always included in Sp. All that can be
said is that Sp is a (reducible) representation of the
rotation group and therefore, for the spin-0 case, any
vector 22, }, CS/} may be represented as

where

/ps =A (ep)9'»

$(z) =3z—'ji(z),

(ga) Analogously, if s=2 we can write

J j+1/2 1/2

(8b) (p, },
"= P P P ($, 2, m —m', m'~ j, m)

j=J' l=j—1/2 m'=1/2
and, jz(z) is a spherical Bessel function.

Philips's 6nal results are:
(i) If the manifold is to be a class-I set then it must

include a state of the form
where, as in Ref. 1,

&&f (p) I' 'V, (—14)

+ Phi liPs(1}) (2~)—2/2 (10)

(ii) In a similar way it is proved that there are no
class-II sets of localized states.

(iii) Philips conjectures that all class-III sets vio-
late (b) (Sec. I). He supports this assumption by
showing that this happens if the manifold is spanned by,
e.g. , the I.orentz transform of

}I/(y)=p e», m an integer, y)0. (11)

If it were true, Philips's conjecture would imply that his
postulates uniquely define this state [Eq. (10)j localized
at the origin [and then, by using Eq. (4), at every
pointj for the spin-zero case.

(iv) The state Eq. (10) is different from the Newton-
Wigner localized state:

q ~=P~F ~, J=0, 1, 2,

Then by using the postulate of normalization of the
eigendifferentials it is shown that J&0 is to be disre-
garded, so that there is only one set So, with the single
localized. state

3 )1/2
d& Px'X p

4zrc ) eis, s}
(15)

is an incomplete eigendifferential because the complete
eigendi6erential must include superposition of states in
a small range of the parameter ), that is,

I'- =&(p)z/- &(p)= (v"p.+/)v', v'p- =2 "
The brackets are Clebsch-Gord. an coeKcients.

(8) It follows from Philips's postulates that So is a
representation of the homogeneous Lorentz group. This
representation is unitary, relative to the scalar product
of Eq. (1).

(C) In the general case, the impossibility of specifying
the state of a particle by means of the position quantum
numbers alone should not be disregarded a priori; i.e.,
a set of indices, which we indicate by X [see Eq. (4)]
may have to be used in order to have a complete set
(x,X) of quantum numbers. (Actually, a &p,h function
which depends on a continuous index P will be intro-
duced in Sec. IX.) However, if X is (or includes) a
continuous variable, then Eq. (7), or more specifically

~ Nw(p) (2~)—3/2p 1/2 (12)

(v) Two eigendifferentials formed with Eq. (10)
22 h'= C(e, /}) dx Px~y.
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Then, even if class-III sets are such that the norm of
p, ' is infinite, as was assumed by Philips, this would, be
no reason to disregard them because, as we have stated,
the true eigendifferentials are given by Eq. (16).

(D) Tllc pllyslcal 1cqllll'clIlc11't of cqlllvalcllcc be-
tween all inertial frames refers to physically realizable
states which, if we deal with a continuous spectrum such
as position, are the eigcndi6erentials formed, by a
superposition of pure eigenstates. Then, instead of re-
quiring that So be invariant under all homogeneous
Lorcntz transformations (see Sec. I), the physical re-
quirement should be that the set of eigendiGerentials be
invariant und, er all homogeneous Lorentz transforma-
tions. However, to avoid, great mathematical com-

plexity, we shall use the original form of Philips's
postulates. His procedure is in this case similar to the
one used by NW for 3-dimensional rotations. Rigorous
treatment of the latter case (rotations) is given by
Wightmann. "

(K) Itcanbeproved. thatresult (vi) (Sec. IV) is not
an unsatisfactory consequence of the postulates. Actu-
ally, thc special pIopcI ties of position require thc usc of
nonorthodox operators, and, a binary position operator
is found. to exist. Philipss localization L(i), Sec. IVj
corresponds toalimiting case (see Ref. 6, especially the
fourth article) ~

VI. EXPLICIT FQRN OF THE EFFECTS INDUCED
BY A LORENTZ TRANSFORMATION ON
REPRESENTATION-SPACE FUNCTIONS

A. Syin-0 Case

Letus write q=q(y) such that

Wewilllater use thesymbol p'bymeansof which we
indicate

p'=Up")'+(p")'+(p")'3'". (22)

Using Eqs. (3a) and (20) and remembering that

e &" 8=cosh(2'X) —u8sinh(2'X),

we obtain

e"x8q(p)=)cosh(2'X) —n8sinh('2X)jy(y'). (23)

VII. CLASS I
A. Syrn-0 Case

We shall now introduce a method which leads to the
result (i) (Sec. IV) found by Philips. We expect this
method, to have two advantages: One is that, although
the postulate (b) of normalization by eigendiGerentials
isnotused, themethoddoesnotlosesimplicity(for this
class, normalizationisactuallyatheorem);thesecondis
that the inclusion in So of at least one vector of the form
of Eq. (5) isnotassumed, something whichisimplicitly
done in Philips's work Lsee (A), Sec. Vj.

In the same way as in Rd. 3, only Lorentz accelera-
tions along the third, axis will be considered but we will
applyE8tovectorsof the formof Eq. (13) insteadof to
vectors like Kq. (5). We can always assume that the
vector of Eq. (13), which has been chosen in order to
build, up the set So by means of successive applications
of the group operators, is such that fz, WO. It then
follows from Eq. (6) and the de6nition of class-I sets
that f,' Lp 'fr=0—, so -that

p=i~ p=i~
fi=&op (24)

PS=+2+(gl)2+(g2)2)lj2SInhg8

and, let us call

e(q) =~[y(e)j
Then Eq. (3a) implies that

8
&8V(y)= P(e)

8/3

%C can now see that the effects induced, on repre-
sentation space by a Lorentz transformation of coordi-
nates correspond, to a translation in q space, that is,

e)Z8~(p) —P(~1 q2 ~8+y) (19)

where) stands for the (real) parameter of the trans-
formation.

Turning back to the y variables, we obtain

The successive application of (E8)2 (g8)8
specify the functions fz,-r, fz 2, up to constant of
proportionality c~, cm, c3, ~ -. The vectors belonging to
S8, i.e., thelinear combinations of q,1, (g8)y, I, ~ ~ ~ are
therefore arbitrary linear combinations of no more than
L vectors; from this result, recalling remark (3)
(Sec. V), it follows that S8 is a unitary Quite repre-
sentation of the Lorentz group. However, it is well
known that, with the exception of the trivial unidimen-
sional representation, the irreducible representations of
the homogeneous Lorentz group are all in6nite-di-
mensional. Our set So consists therefore of a constant
function because unidimensionality implies that the
application of all generators 3II„„(Kq. (2)j gives zero.
We can then write q, ),=constant which is the result
(i) (Sec. IV) found by Philips.

e""'V (p)=~(y'),

p'=(P', P', P'coshX+PesinhX).

~o A. S. %ightman, Rcv. Mod. Phys. 34, 845 (1962).

(21)

B. Syin—
~ Case

We will now essentially follow the same steps as in the
preceding case. We apply%8 to Eq. (14), butinsteadof
Eq. (6) the following formula Ldeduced from Eqs. (3)
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and (6)) must be used:

J j+1/2 1/2

E3 P P P (l, -'„m m—', m'~ j, m)f&(P)V„„'V„.
j~J' l= j—1/2 tn'=1/2

J j+1/2 1/2

(l, —',, m m—', m'~j, m)[E&(f/(P)F' ')V +f&(P)V „'E&V„), (25a)
j=J' l= j—1/2 m'=1/2

+P 1/2 —oV1 2/+~V —1/21

o= P(P+—2u) «»I2Po(po+u),

+3V—1/2 /' Vl/2++V —1/2 p

//= p sin8e'&/2 (po+u) .

(25b)

(25c)

From the properties of spherical harmonics it can be easily seen that

(2l+ 1)(2l—1)

V„,' single'"= —(Ss/3)"'([(2/+1)//4es (2(l—1)+1))'"(/, 1, 0, 0~/ —1, 0)(/, 1, m, 1~/ —1, m+1)F~~' '

[l+1+(m—m'))[/+1 —(m —m')) '/ [/+ (m —m'))[/ —(m m'—)) "'
V ' cos8= P', l—1

(2l+ 1)(2l+3)
(26a)

+[(2/+1)/-', s.(2/+1) J/2(/, 1,0,0(/, 0)(/, 1, m, 1(/, m+1)V~q'

+[(2/+1)/e4s. (2/+3) J/'(/, 1, 0, 0)l+1, 0)(l, 1, m, 1~/+1, m+1)F~~'+'}. (26b)

Now we can arrive at our result through two different
ways:

(1) We proceed via group-theoretical considerations.
The successive applications of E~, (Es)', to fhe
&p,q functions de6ned, in Eq. (14), and the definition of
class I (Sec. III), imply a set of differential equations
from which the functions f~ are speci6ed up to constants
of integration.

We then have a 6nite (bidimensional) unitary repre-
sentation of the Lorentz group. The two follows from
the dimension of spinor space [see Eq. (14)). Con-
sidering that the only finite unitary representation is the
one-dimensional trivial one, it follows that no class-I
sets of localized states exist. More specifically, the
dimension of the representation implies

3f„„y,y ——0 for all pv, (27)

where M„„is given in Eq. (2), and this in turn implies
that j=/+s=0, which is absurd.

(2) The preceding result can also be found in an
elementary way. We recall that at least one of the
functions f/, (p) is a nonvanishing function. Equations
(25) and (26) then show that the application of Eq to a
certain y, ), generates factors with higher values of /.

Ke could, in the same way as Philips, try to keep l from
taking higher values by choosing f&(p) in such a way
that, f((p) —p 'f~(p) =0. However, we still have
linearly independent terms, with t, also taking higher
values and whose addition can not be made to vanish
unless all f~(p) =0. We again conclude that no class-I
sets of localized states exist.

so that
fi '+(I-+1)p 'fr=0,

f, p
L' 1——

(28)

The orthogonality of the spherical harmonics implies
that

lie""II &~ llfi V-'ll, (29)

where the norm has been calculated by using Eq. (1).
Taking into account Philips s results, it now follows that
~~ fz V ~'~~ diverges so that no class-II set of localized
states exists. We have therefore arrived at Philips's
result (ii) (Sec. IV).

B. Syin —2 Case

We use Eqs. (25) and (26). In the same way as in
Sec. VII 8, we could try to keep l from taking lower
values (see Sec. III) by making f&'(p)+(/+1)p 'f&(p)
=0 vanish identically, but, as in the above mentioned
case, it is seen that the addition of the remaining terms
with lower values of / only vanishes if f/(p) =0 for all /.
This proves that, as for spin zero, no class-II sets of
localized states exist for the spin-2 case.

VIII. CLASS II

A. Spin-0 Case

It can always be assumed that the vector of Eq. (13),
by means of which the set 50 is built up, is such that
fr, &0. It is therefore found from Eq. (6) and the
definition of class-II sets that
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p„=Q exp[ —(re-'+sp-'p)], (30)

where Q, r, and s are non-negative constants. We shall
now show that by the application of the group operators
to q, 0, a set 50 of states localized at the origin is gener-
ated. We indicate by p, i the transformed function
resulting from an arbitrary Lorentz acceleration along
the third axis. By means of Eq. (20) we obtain

~"=Q expL —(re '+~P 'p)]. (31)

IX. CLASS III

A. Spin-0 Case

By considering that the angular momentum generally
has neither an upper nor a lower bound, it is found that
when the group operators are applied. to most functions
of the form fi(p)Y ', and if the resulting states are
localized, , then the sets of such states are class-III sets.
The point is therefore to see if those states are actually
localized, i.e. if the corresponding sets satisfy Philips s
postulates.

It can be easily seen that they are linear manifolds
satisfying postulates (a) and (c), but it is not so simple
to verify whether postulate (b) is satisfied. In this
respect we note that it is easy to find. many fi(p)
functions such that the eigendi6erential derived from

fi(p) Y„' has a finite norm, but we still must
verify whether for the eigendiBerentials derived from
(E3)"fi(p)Y this condition is also satisfied. We are
here faced with the diKculty that for most cases a
single general expression for (Es)"fi(p) Y '(e= 1, 2, )
cannot be easily obtained. However, the explicit form of
a Lorentz transformation which was found in Sec. VI is
useful in the solution of this problem.

Let us take the function

the change of variables

gi cosll($3+X) =g,

qs sinh(ga+X) =y,
p sinh(qg+l~) =s,
(+2+y2+ s2) i /2

from which it follows that

4s lAl' exp[ 2(—rp 'p+—sp 'p)—]
(33)

(1+p'/p')'"

Now the well-known formula

(&3)"~.0= (~ "/~l ")~" 'v.oli=o (34)

leads us to prove, using the above-mentioned test, that
the following inequalities:

ll(&3) "~.oil & ~ fl(Isa) "v.o'll & ~,
(35)

are also true. For this proof it is useful to know that the
successive derivatives of y, ), are of the form

0 B 0 D E
(~"/@")v.~= 2 2 Z 2 2 &" ~ ~ p"(ps)'

a=A,5=0. c=0 d~ e=0

0 B 0 D S
(~"/@")p = 2 2 2 2 2 &" p'(p)'

a=A 5=0 c=0 d=0 e=0

XPO'(sinhli) "(coshli)', (36)

where A, 8, C, D, E are non-negative integers. Equa-
tion (36) follows from the analogous expression,

By using Philips s result for the incomplete eigen-
di8erential which was originally deduced for the special
case of Eq. (5), and by applying a well-known test for
the convergence of definite integrals, "we find that the
norm [computed via Eq. (1)] of the incomplete
eigendi8erential is finite; that is,

(32a)

Now it follows from Kq. (16) and the mean-value
theorem that this is also true for the complete eigen-
diGerential, that is,

(32b)

Surprisingly (see discussion in Sec.X) it is found that
the norm of the states is also finite, so that we can
write

(32c)

Indeed, we can compute the value of this norm by using

"Ch.—J. de la Vallde Poussin, Cours d'Analyse Inffnitesimale
(Gauthier-Villars, Paris, 1957).

X Po'(sinhl%, )~(cosh'%, )', (37)

where A, B, C, D, E are also non-negative integers.
The set formed by means of the linear combinations

of the functions resulting from the application of the
group operators to the original function [Kq. (30)] is
found to be a set S0 of localized states. To see this, we
note that postulates (a) and (c) are satisfied by con-
struction. Now, considering that a general Lorentz
transformation is the product of an acceleration along
the third axis and spatial rotations, and that the action
of rotation group operators can be found, in an ele-
mentary way, then the above results allow us to see that
postulate (b) is also satisfied by the set under
consideration.

We have therefore found a set of states satisfying
Philips's postulates which can be proved to be a class-III
set by using the definition of class-III sets and the
previous results for class-I and -II sets.

Incidentally we note that the state [Eq. (30)] which
is localized. at x=0 is not completely specified, by giving
the position eigenvalue. [See remark (C), Sec. V.]
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B. Spin=~ Case

According to Eq. (14), the analog of Eq. (30) for this
spin-~ case is

q, o
——Q exp[—(rp 'p+sp 'p)]E(p)~ . (38)

Now, the Lorentz-transformed function

poX ~ +00 )

where E, is given by Eq. (3), can be written

(39)

q,q=Q[cosh(-,'X) —n3 sinh(-', X)]
Xexp[—(rp 'p'+esp' ')]E(p)e ~ . (40)

This latter result is obtained by using Eq. (23).
It can be proved that from Eq. (38) a set of states

satisfying Philips's postulates for the spin--,' case can be
obtained and, that this is a class-III set. The proof is
similar to the one we used for the spin-0 case and, will

therefore be omitted.

X. CON CLUSromS
0

A more rigorous method which leads to Philips's re-

sults concerning class-I and class-II sets has been given,
but our main result is that opposite to Philipss as-

sumption for the spin-0 case, class-III sets of localized.

states are found to exist. We have also found that class-

III sets exist for spin--,'systems.
We now face the following question: Considering the

state found by Philips [see (i), Sec. IV] and the new

states (Sec. IX), are all of them "true" localized states
or must Philips's postulates be complemented with

stronger requirements in order to uniquely d,efine the
localized, states? If the latter point of view is correct,
then one can ask whether the "true" localized. states
belong to class-I or class-III sets. As regards this last
question we believe that the true localized states
probably belong to class-III sets because if this were not
so we would be faced with the difhculty that for spin--',

systems we would. not have localized states. Indeed, , our

The situation is similar for all the y, q functions we can
form by using Eq. (31); the sole exception is the case
where

E,y, p
——0, (i=1, 2, 3)

and this is only possible for Philips's localized, state.

results show that Philips's localized state for spin-0
systems is not a typical example from which conse-
quences for any other spin can be deduced.

On the other hand, if the true localized states belong
to class-III sets, an accordance with the ideas expressed,
in Ref. 6 (especially in the fourth article, Sec. III) is
obtained. . Moreover, it is deduced from these ideas that
the space So of states localized at the origin is infinite-
dimensional, the states depending on a continuous
parameter which is found to be the relative velocity
between inertial frames with which we deal in a pure
Lorentz transformation. It is easily seen that due to
the relation between P and the relative velocity between
inertial frames this is just what happens in our example
of Sec. IX.

Let us mention here that Philips proposes an alter-
native set of postulates where the normalization postu-
late (b) is replaced by a new one. This new postulate
requires the linear manifold So of localized states to have
a finite basis, leading therefore to the conclusion that no
spin--,'elementary system could be localized. This is an
undesirable consequence because there is no physical
reason supporting the fact that spin-0 elementary
systems can be localized while spin--,' systems cannot, so
that we must probably disregard this alternative set of
postulates.

As a last remark we recall that, not only the eigen-
differentials derived from the localized states [Eq. (31)],
but the states themselves also have a finite norm as
mentioned in Sec. IX. This may seem strange because
position has a continuous spectrum and the eigenfunc-
tions of a continuous spectrum operator are usually
normalizable in terms of Dirac's 8 function. However,
we note that this theorem of normalization cannot be
applied to position eigenfunctions because it is based on
the Hermiticity of the corresponding operator or at
least on the normality, i.e. [A,At] =0. Considering that
we are not dealing with a normal operator, the localized
states do not have to be normalizable in terms of
Dirac's 5 function.
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