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The I'-wave pion-nucleon scattering lengths and 8-wave effective ranges are studied by means of the
current-commutator algebra and the hypothesis of partially conserved axial-vector current (PCAC). This
requires a model for the weak axial-vector production; but it is shown that the production of baryon reso-
nances with J=+ and J&-,' do not contribute to these threshold quantities, so that only the nucleon and
E*contributions are included in the model for the weak amplitude. The predicted P-wave scattering lengths
are in reasonable agreement with experiment, while a discrepancy for the isotopic even effective range
implies a possible T=o exchange in the weak amplitude. The other 5-wave effective range gives a deter-
mination of the induced pseudoscalar coupling which is a factor 2 smaller than the PCAC value.

I. INTRODUCTION

HE initial success of the Adler-Weisberger' sum
rule in correlating the axial-vector coupling con-

stant g& with pion-nucleon scattering by means of cur-
I'ellt-colllllllltatol' I'llles alld PCAC (partial collservatloI1
of the axial-vector current) has been repeated in, many
other applications of these assumptions. Of particular
interest is the work of %einberg', which recasts the rela-
tions of Ref. 1 into a threshold theorem for pion scatter-
ing which agrees well with experiment. A significant
part of this result is that PCAC indicates that the weak
amplitude plays no role in determining the S-wave
scattering lengths. Unfortunately this situation does
not persist away from threshoM; the details of the weak
amplitude must enter the discussion. In the absence of
sufhcient experimental information on weak axial pro-
duction one must resort to model making. However, if
we are only interested in the I'-wave scattering lengths
or 8-wave eRective ranges, then the task of the con-
struction of such a model may be simpli6ed. Further-
more, there is compensation in the interrelation of
strong interactions with the details of the weak axial
production amplitude and electromagnetic vertex. It is
this particular feature of the current commutator which
is so powerful, Since we dig deeper into the weak ampli-
tude, we get both further tests of the basic assumptions
and additional information on models for the weak
production.

In' this paper we discuss the pion-nucleon I'-wave

scattering lengths and S-wave eRective ranges which
are the terms which go as

~ II)
' at threshold. If we can

identify all the terms of this order, then we shouM be
able to predict these quantities reasonably accurately.
In Sec. II we discuss the general approach to the prob-
lem, where we argue that the nucleon and X~ are
essentially the only baryon states which contribute to
the quantities we are calculating. In fact in an Appendix
we prove that baryon states with J= ~~and JQ ~ do
not contribute, so that our approach is not just the
saturation of a sum rule by the lowest-lying states. In
Sec. III we construct the model for the weak amplitude.
The I'-wave scattering lengths are discussed in detail
in Sec. IV, while Sec. V is devoted to the S-wave
eRective ranges. An interesting feature which emerges is
a relation between the induced pseudoscalar coupling
constant and an S-wave eRective range. The over-ail
results suggest that the methods employed are sound;
however, we And numerical disagreements for the
isotopic even amplitudes which are fairly small for the
I' waves, but noticeable for the S-wave case. %e
interpret this to mean that an isotopic scalar-exchange
contributes a term to the weak axial-vector amplitude.

II. OFF-SHELL PION-NUCLEON SCATTEMNG

The current-commutation relations and PCAC as-
sumption provide a connection between pion-nucleon
scattering and the elastic scattering of nucleons by a
weak axial-vector current. The basic relation' is

d'xd'ye"'e *' "(ps~T/B„A„'(x) BA '(y)g(p )=rgb„d' d'yxe" e '" (ps~T(A„'(x),A„'(y)g)pl)

-VZ&„s... d*e'& —&'(ps[V„(x) tpl)-C d xe'&-"I'(ps)..p(x)[pl& (I)

obtained from the equal-time commutation relations and

8(xp—yp) LA p'(x), B„A„'(y)j=Ce,p(x) 5'(x—y),

algebras are V. Tomozawa, Nuovo Cimento 46A, 707 (1967);
K. Raman and E. C. G. Sudarshan, Phys. Rev. Letters 21, 450
(1966};A. P. Balachandian, M. G. Gunzik, and F. Nicodemi,
Nuovo Cimento 44A, 1257 (1966);however we prefer Weinberg's
method because of its clarity.

1471

b(xp yp)PAp (x),A„'(y)$—=92se.p, b'(x y)V„'(x) (2)—
* Supported in part by the National Science Foundation.' S. L. Adler, Phys. Rev. Letters 14, 1051 (1965); Phys. Rev.

140, 8736 (1965);W. I. Weisberger, Phys. Rev. Letters 14, (1965);
Phys. Rev. 143, 1302 (1966).' S. Weinberg, Phys. Rev. Letters 17, 616 (1966).Earlier papers
which calculate the 8-wave ~N scatterings lengths from current
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where superscripts a, b, c are isospin indices, A„(x) the
axial-vector current, V„(x) the vector current, 0,2(x) a
scalar field, and pi, (ps) the initial (final) nucleon
momentum. We de//2e the off-mass-shell pion-nucleon
scattering amplitude by the equation

(Rs Ri) 1/2 (q2 /42) (k2 /42)

r,.(p„q; p„k)= 2I
———

~
(2~)2

&2N 2/2& /44f 2

x z'» e"*(p212'[a„A„'(»),a„A..(0)] I p,), (3)

with Pi+k=P2+q, /4 the pion mass, and f given ap-
proximately by the Goldberger-Treiman relation

f. i@22/sg~/g. ~(0),

where 2/2 is the nucleon mass. Thus Ts,(Ps,q;Pi, k)
describes the scattering of a pion of momentum k and
isospin a from a target nucleon with momentum Pi to a
pion of momentum q and isospin b and nucleon with
momentum ps. When the pions are on the mass shell,
the S-matrix element for this process is given by

(ps, q; b
I
S 1

I pi, k; 42)—

(22r)t/4(ps+ q pl k) (qs /42) (ks /42)

lim
2 -";/ -" (2~.)'"(2~2)'" ~4f 2

with

Ts,(s, t, qs) =A b,(s,t,qs) —y QBt„(S,t,q2),

A2, =82.AH&+-,'[rs;rN]A& ',
B2,=52,BH&+2[22,r,]B& &,

(7)

where

A~+&=-,'(A'/'+2A2/') and. A& '=-', (A"'—A"')

form factors, with Fi(0)=2, F2(0)=1.85, t=(P2—Pi)',
and Q=-', (q+k). At threshold the PCAC assumption
indicates that the coef'6cients of q', k', and q k are small

compared to those of p q and p k; thus the term

q„k„R„„, which is 0(q', k', q k), may be neglected at
threshold. One is then able to cast (6) into a threshold
theorem for the S-wave pion-nucleon scattering lengths
which agrees well with the experimental values.

The relationship (6) is supposed to be true for all
energies and momentum transfers, although this has
not been fully exploited. It is desirable to extend the
results away from threshold to obtain further tests of
the basic assumptions. One might be tempted to com-

pute the I'-wave scattering lengths by either neglecting
q„k„R„„entirely since it is 0(q', k', q k), or perhaps by
keeping only the nucleon-pole contribution to q R k.
Unfortunately, one must dig deeper into the axial-vector
scattering. This becomes clear if one separates the terms
in E4l. (6) into invariant amplitudes:

X d"."(p l&[~,A, '(),&,A:(0)]lp). (4)

For convenience we write the amplitude for the axial-
vector scattering by nucleons as

(22r) 4&4(P2+ q Pi k)R„„"=—d—4x&4ye'2'e '"'"

W'= s= (pi+k)2, I= (ps —k)', and

s+ t+24= 22/22+2qs

The off-shell scattering amplitude in the center-of-mass
system is

F(s,cos8) = (2/2/42rW)T, where do/dQ=
~
F

~

'.

X (p2 ~

2 [A 2(x) A (y)] ~ pi) (5) Important kinematical relations are

As a result of Adler's' consistency condition we neglect
the contribution of 0- ~ in the following. For convenience
in the subsequent discussion we set k'=q'. The matrix
elements of. the vector current together with Eqs. (3)
and (5) enable us to write

(~.q)(~ &)F=fi+ f2

f1= (162rW2) 1[(W+21) —qs][A —(W—2I)B],

&2.(ps, q; pi, k)
f2= ($62rW2)-'[(W —2/2)

'—q'][—A —(W+ 2/2) B],
where

) q [
'= [(W+2/2)' —q'][(W—222)

'—q']/4W'

is the pion 3-momentum squared in the c.m. system, and
(Pi+Ps) q

F2(t)
2m

XN(ps)r. —

/q2 /4
2 (F2 Ri 1/2

i I
— (22r) 2~

——— qP.R„.' e,s, —
E /42f. km 224

+y Q(F1(t)+Fs(t)) 24(pi), (6)

where Fi,s(t) are the Dirac isovector electromagnetic

f&~ e"&+ sinb, ~/ ( q )——

/tx[fi(x)&4(x)+f2(x)&4+1(x)]. (9)

' S.L' Adler, Phys. Rev. 137, 81022 (1963);139, 31638 (1963). This then gives the connection between the partial-wave
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amplitudes f~~ and, the invariant amplitudes

f&~= (16sW') '(L(W+m)' —q']LA& —(W—m)B&g
—L(W—m)' —qs]l A &+&+(W+m)B&~&j}, (10)

where
1

A, (s)=— dx P)(x)A(s, t),
2 1

and similarly for Bi(s). One also expands the right-
hand. side of (6) in terms of the same set of invariants.
However, even though g R k is negligible at threshold,
it does rot mean that the contribution of the axial-
vector scattering to 3 and B separately is negligible.
Quite the contrary, the contribution to each of these
terms from the axial-vector, scattering is large, but they
cancel in the combination A —v&B at threshold when
q' p 0 (where we have defined p&= p& k/m at threshold
for convenience).

From Eq. (10) we see that the E-wave scattering
lengths and S-wave eRective ranges depend on Ao, Bo,
A i, and B~ evaluated at threshold, but not on A2 or B2,
since these terms vanish like Iql' or faster. Thus a
discussion of these quantities requires that we include
all low-lying S and I' states which contribute to the
axial-vector scattering (or weak axial production of

strongly interacting states if we use unitarity). If we

take this to mean only single-particle baryon states,
then only the nucleon and E* states qualify. This is
more than just a simple saturation argu1nent, since the
higher spin resonances (with s and I poles taken to-
gether) do not contribute to these threshoM quantities
(see Appendix). Exchange poles in the 1 channel could
also contribute to the axial scattering; however, we will

not include them in our calculation. The validity of this
last assumption will be examined in the light of our
results.

III. THE WEAK AMPLITUDE

In the previous section we discussed the connection
between the weak. axial-vector scattering amplitude
and oR-shell pion-nucleon scattering. It is clear that to
determine the P-wave scattering lengths4 and S-wave
eRective ranges we must 6nd an accurate model for
q„R„„k,. The Grst term we consider is the one-nucleon
intermediate state which can be computed from the
nucleon matrix elements of the axial-vector current,

1 mm 1/2

(Ps I A.'(o) lP-)=,—— N(Ps)
(2~)s EsE

X I g&(q')4'pvs+k&(q')iqp'Ysl~(P ) (11)
v2

4 See also S. L. Adler (unpublished). K. Raman, Phys. Rev.
Letters 17, 983 (1966), studied the E-wave scattering lengths,
but did not examine the weak amplitude in sufIIcient detail.
)However, see Errata (to be published). g A. P. Balachandian,
M. G. Gundzik, and F. Nicodemi (to be published) study the
same question with a different philosophy and obtain very different
results.

Asr& i(s,tqs)=0 (13a)

gs +si 2

I Lmg (q') —q'k~(q')lg~(q'), (»b)
i IJsf i

g-~'(q')
Ar' '= +

s—m'+ie I—m'+ '
Z6

(q —~') '
I
g~'(q'), (13c)

i I 'f. I
and

gpN (q ) gpsr (q )
)

s m'+—ie Q—m'+is
(13d)

where the subscript S indicates that these terms come
from the nucleon poles.

The contribution of the (33) resonance intermediate
state is more complicated since there is no unique model
for the resonance production. Here we choose a par-
ticularly simple model, namely the direct production of
a narrow E* state. With this choice of production
mechanism the remaining calculations are lengthy but
straightforward. There are four linearly independent
form factors' for the X*-X axial-vector vertex with
both baryons on their mass shell, which we choose as
follows (suppressing isospin indices):

1 )m Mi'is
f.(P){g (k')k. (k'P —k P k)

(2w)s&t Ej
+&gs(k )kit(vaenpxpplp475)+igs(k )ep~sv

Xe„p„pt.ptpksk, +igg*(k')b. ,)~(pt), (14)

with k= P
—Pt, and |P,(P) is the Rarita-Schwinger wave

function for a particle of spin —',+ and. mass M. It is

clear that the coefIjtcients of gj, g2, and g3 are transverse
to k, and hence do not contribute to Eq. (6), while the
coefBcient of g~* is longitudinal. If we assume that E„„
satis6es an unsubtracted dispersion relation for each
of its invariant amplitudes, and recall that the spin--, +
projection operator is

2 1 y p+M
o'„.= g„,— P.P,—lv,v, —— (P,v.—v.p.)—

335 2M

5 J. D. Bjorken and J. D. Walecka, Ann. Phys. (N. Y.) Bs, 35
(1966).

with q=(P„—Ps). The principle of PCAC enables us

to write

(q' —v') I
—2mg~(q')+q'k~(q') j

i~—&f-1 'g.N(q') (12)

where g sr(p')=g sr is the conventional pion-nucleon
coupling constant Lg„~'j4s~14.6J. It is now straight-
forward to evaluate the nucleon contribution to the
right-hand side of Eq. (6):
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then it is easy to compute the N* contribution. The results are

A~ ~
—

&(s,t,q')=—
gg*'(q ) fq' &J'—' 1 1

6f ~ ( p2 s M—2+i' u M—2+it)

(M—m) (E*+m)— m(s —u)
X (M+m)t+2q*' (M+m)+ + —, (15a)

3(E*—m) 3M'

g *'(q') t'q'-u '
&' 1 (M—m) (E*+m)

A~"&+&=
~ ~

+ (M+m)t+2q*' (M+m)+
3f ' E u' ks M—'+if u M—'+is 3(E* m)—

and

+ [2M3+2(M+m)(M2+2Mm —2m')+4(M+m)q'+m(s+u) j, (15b)
33''

g 42(q2) q2 2 2 1 ) (E*+m)
+ -I t+2P' 1—

6f 2 u2 (s M—2+i' u —M2+ jgJ 3(E+—m)

+(3M') 'L2(M'+2Mm —2m'+2q')+(s+u) j, (15c)

g~*'(q') 1
&

(E*+m) (s—u)
J3~*'+&=— —

~

— —
~

t+2q*' 1— — +
3f 2 p2 (s—M2+ig u —M2+ jgf 3(E+—m) 3M

(15d)

In these expressions q* and E* represent the c.m. 3-momentum and nucleon total energy evaluated at the xN
resonance. In detail,

and
E*+m= (2M) 'L(M+m)' —q'$

q*'= (E*+m)(E*—m) = [(M—m) '(M+ m) '—2q'(M'+ m')+ q4]/4M'.

Thus Eqs. (13) and (15) together describe the X and X*terms of the weak axial-vector contribution to the off-shell
pion scattering. As we have argued above and in the Appendix, if t-channel exchanges can be neglected, these
equations should provide all the information for the calculation of the I'-wave scattering lengths and 5-wave
effective ranges.

For completeness we rewrite the contribution of the equal-time commutator:

and

q2 u5 2 F2(t)
A, & &(s,t,q') =

~
Ls+-', t—m' —q'j

m

a,&+)=0,

—
~
LFi(t)+F2(t)j,

2 t'q

f 2k p2

8,&+) =0.

(16a)

(16b)

(16c)

(16d)

Now we must relate g&* to the strong-interaction ~NN* vertex by means of PCAC. We could do this directly by
considering Eq. (14) and the S*XB„A„vertex in the standard way; however, we will take a more round-about
route since (1) we will easily be able to take into account the large width of the E*, and (2) our method may be
useful for other applications. We begin by inserting Eqs. (13), (15), and (16) into (6), and by noting that

(q' —p' ' gp*'(q') (u-ms) t' t— F,(t)-
T&-&(s,t,q') —.-~ +~ s+-—m' —q'' " kg'f 18M2 E 2 m

g 42(q2)

+y Q gz'(q') — (2M'+4Mm —4m'+4q'+s+u) —2(F&(t)+F2(t))
j.83''

+(additional polynomial terms) . (17)
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The additional polynomial terms come from higher
resonances and high-energy contributions, which al-
though not important for near-threshold properties, do
appear in (17). Their explicit form is unimportant for
our purposes; all we need note is that if E„„& & satisfies
unsubtracted dispersion relations, then the polynomial
does not increase faster than s as s-+. This becomes
obvious when one generalizes our results for a —,'+ reso-
nance to arbitrary spin. The requirement that charge-
exchange scattering vanish as s ~~ for oR-shell pions
requires the coefficient of s in (17) to vanish. For forward
scattering this condition implies

(q)
gA2(q2) [(~+m) 2+3q2]

9M'
+(additional terms) . (18)

With a little thought one can see that the relation
(coefficient of s)=0 in Eq. (17) is equivalent to the
usual current-commutator sum rules derived by means
of Fubini's method. ' This is clear since the terms that
appear in (17) are just the difference of the Hilbert
transforms

q„[Xr„„]&„—X[q„r„„t„], (19)

where r„„is the absorptive part of the weak amplitude
[R„„=Rr„„].Our assumption for T& ~(s~~) is then
equivalent to a statement about the convergence
properties of the dispersion relations R[q„r„.k„]. This
then is sufhcient to establish the equivalence of our,
condition and Fubinis method. Iri a similar way, if
we require the oR-shell total cross section to go to a
constant as s ~~, then the constant term in the equa-
tion for Tt+&(s-+oo) yields a sum-rule for the isotopic
even amplitude. One can now see that if we set q'= 0 in
(18) we obtain the usual Adler-Weisberger sum rule

g
o2(p)

1=g~' — (M+m)'+ (additional terms), (20)9''
which is to be compared with

g~*'(0)/g~'=1 7 (23c)

IV. THE P-WAVE SCATTERING LENGTHS

In order to compute the P-wave scattering lengths,
we have to use Eqs. (13), (15), and (16) in conjunction
with (10). Our procedure is to evaluate fr~/IqI' at
threshold for the oR-shell scattering in the limit q' —+ 0.
The basic assumption of PCAC is that the oR-sheH

scattering length will extrapolate smoothly back to the
pion mass shell. In practice this means replacing oR-shell

coupling constants by their mass-shell values, and re-

placing v~ —+ p, in the final result [e.g., g,~'(0) ~ g ~'].
At threshold one finds

fi-/ I a I

' ~—
4~(mar ()

m 1
X (A x

—r ~Bi)— [A o+ (2m+ v~)Bo], (24a)
4m

m 1
fr+/IrlI'~ [Ax—v~8&]

4m (m+r, )
(24b)

The calculation is facilitated by noting that

A(t) =A(0)+t(aA/at)+ ",
where t= —2IqI'(1 —cos8) in the c.m. system, so that

tions' for the integral to evaluate (22). Prom Adler's

value for the integral, which includes a correction for
the zero mass of the pion, and hence presumably the
more accurate, we find

g *o(p)/g„o=1.4, (23a)

while from Weisberger's results, which do not include
this correction,

g~"(0)/g~'= 1 2; (23b)

and finally the usual saturation arguments applied to
the Adler-Weisberger sum rules generalized to SU(3)'
imply that

gA2 1 dV
1=g~'+ — L~(~ p) ~(~+P—)], (21)—

g~N (0) ol P

where the cross sections refer to zero-mass pions. From
this comparison it follows that

and

/BA
A,=A(0) —2

I a I
'I

4 at s=o

2lel'(&A)

3 ( itt ~=o

g~*'(0)

gz fg 1 2m 8A

I q I

' 4n. (m+r, ) 3 at
Vg

where the integral is taken over the (33) resonance. If
Eq. (22) is used to evaluate g~*, this allows us to take
into account the large width of the S* and hence is
superior to estimates based on a narrow resonance. We
can use Adler's and Weisberger's numerical computa-

1
[A+ (2m' p,)B], (25a)

4m g=o

This enables us to simplify Eq. (24) as follows:—~(7'= o), (22)
(M+m)' g.gg'(0) m. v 88

6 S. Fubini, Nuovo Cimento 43A, 47S (1966).
7 L S. Gerstein, Phys. Rev. Letters 16, 114 (1966);H. J. Schnit-

zer, Phys. Letters 2Q, 539 (1966).
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Amplitude

f1+& )/ q '
fI-( &/ q '
f1+&+)/ q '
fI-&+)/ q '

—0.054—0.054
+0.054—0,108

—0.014
+0.016
+0.060
+0.038

Com-
mutator

—0.007
+0.033

0
0

Total

—0,075—0.005
+0.114—0.070

Experi-
ment
(Hw)
—0.081—0.021
+0.134—0.059

Experi-
ment

(Roper)

—0.081-0.001
+0.134—0.039

TAsx,E I. The contributions of the various terms to the E-wave
scattering lengths for (gz~/gg)'=1. 4. The theoretical results are
compared to the experimental analyses of Hamilton and Woolcock
(Ref. 8) and Roper et al. (Ref. 9).

and

lql'

2 (g~*&'
+ 2

3 9&gg)

tr(M+m)'
X [(M—m) —p) —, (26d)

M2q*2 p 3

where we have set

and
fr+ 1

Iql' 4~(m+v ) 3 at

2m BA
(25b)

evaluated at threshold vrith q2 —+ 0. We vrill not display
the complete results explicitly, but merely write an
approximate expression for (25) keeping the numerically
dominant part of the S*contribution, and the complete
S and commutator terms. It is interesting that the main
part of the E* term comes from the pole terms in
Eq. (15).Notice also that in these expressions, because
of an equivalence of ps(ps) and ps(po) theories for
the P-wave part of the nucleon poles, the nucleon
term is identical to the usual Born approximation for
m-E scattering. Finally we remark that we have already
continued these expressions back to the mass shell by
means of the replacements v& ~ p and g ~s(0) ~ g ~s.
Our approximate scattering lengths are

2 1(gg* ' ps(M+m)s 4

3 9 k gz Msq*s 3gzs

BIi1
X — Fs(0)+2p' (0) —,(26a)

2m Bt p

ft t & 2 1/gg*)s p(35+m)s
f' —-+-I —

I
--, [(~— )—)

Iqls 3 9k g&) Msqes

(g.pP/4s. ) (p/2m)'= fs 0.08.

We have made our numerical evaluation of these
scattering lengths using the complete expression
[rather than Eq. (26)) with the results displayed in
Tables I and II for (gz*/gz)'= 1.4 and 1.7, respectively.
Our predictions are compared with the analyses of
Hamilton and Woolcock' and Roper et al. There
is certainly very reasonable agreement (particularly
with the Roper phase shifts); however, the quantita-
tive agreement is not quite as good as one has come to
expect from current algebras. If we restrict our atten-
tion to the Roper et al. scattering lengths, then the
disagreement is confined to the amplitudes fr+i+&/Iql'.
There is the possibility that this situation would be
improved if we included the Roper resonance Ett(1480)
in the weak amplitude. A second possibility is that a
more accurate treatment of the S* production, using
a finite width from the beginning of the calculation,
may be required. The explanation we prefer is that a
T=O exchange in the t channel should be added to the
vreak amplitude. The E'-wave scattering lengths do not
make this compelling, but in the next section we give
evidence from the S-wave effective ranges which makes
this the favored explanation.

V. THE 8-WAVE EFFECTIVE RANGES

4 p c)Ft(0)
+ — Ps(0)+2y'3' ~ 282 Bt

The calculation of the S-wave effective ranges is

very similar to that of the E-wave scattering lengths,
so we need only sketch the procedure. From Eq. (10)
one finds

r)fp+ 1 i)Bp
5$ — Pg--

4~(m+~c) -~I»i' ~l»

DAO

1
P r+(2m+~~)%) — [&p+map) ~ (27)

4m 2pg
TAszz II. Same as Table I, but for (g~*/g~)'=1. 7.

1
+

I

—IP,(0)+-Zs(0)) (26b)
gg km) pa

f„i+i 4 2 g.*q t,yr+m) yr m) 1—
—-+ 2

Iql' 3 9 g& / ~sq*s
(26c)

Amplitude
Com-

mutator

Experi-
ment

Total (HW)

Experi-
ment

(Roper)

Again expanding the amplitudes as in the previous

f1+& )/ q '
fI (-)/ q 2

fI+(+&/ q '
fI (+)/ q &

—0.054—0.054
+0.054—0.108

—0.018
+0.019
+0.074
+0.047

—0.007
+0.033

0
0

—0.079—0.002
+0.128—0.061

—0.081—0.021
+0.134-0.059

—0.081—0.001
+0.134-0.039

8 J. Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35, 737
(1963); abbreviated HW.

'L. D. Roper, R. M. Wright, and B. T. Feld, Phys. Rev. 138,
B190 (1965).
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section, one can recast this as

c&fe+ 1 (m+vg) c&A

c&iq(' 4n- v( c&s

BA BB—pg — —2
Bg Bg

retical prediction of PCAC:

(31)$2y'hg/mgg]= —4 (PCAC) .

These numbers are not the best possible estimates,
since the analysis of Hamilton and Woolcock' gives
for the eRective ranges

Re(c&fe+&+&/c&
~ q ~

') = —0.042(1/&u')

PA+mB] . (28)
2(m+v, )v,

It is crucial to notice the term DBA/Bq') v&(88—/Bg')]
which comes from the off-shell dependence of the ampli-
tudes and c&q'/8 ~q ~'. It makes an important contribu-
tion to the final result, and is a manifestation of the
fact that we are doing an oR-shell calculation. When
Eqs'. (13), (15), and (16) are inserted and the gentle
continuation to the mass shell of PCAC assumed, one
obtains for the eRective ranges

8fe+'+' (gg*) ' (M+m)'mp (M+m)'
Re — ~2@ 1—

~

c&
~ q ~

' 4 g~ J 9M4q*' 16M'qe'

and

+I (M' —m') '+4m'y'7 —m' — (29a)
p 3

These equations become more transparent when num-
bers are inserted for the kinematical quantities and
electromagnetic form factors; then

gf (+l — 2 g
e 2-

Re ~2f' 1—— (30a)

and

(g~*) '
Re ~ f' —0.656~ —

~
+3.07 —. (30b)

~lql —mg~ & g~/

Because the experimental eRective ranges are small, as
an orientation one might examine the consequences of
zero eRective ranges, i.e., linear dependence of the
S-wave phase shifts with c.m. momentum. This would
then require (gz*/gz)'=1. 5, an entirely reasonable
value, which when combined with (30b) would give
Pg'h~/mg~]= —2.1. Using our other estimates of g~*,
the resulting range of values would be (2p'h~/mg~]
= —2.1+0.1, which is to be compared with the theo-

c&fe+&
—

& 2p'hg(0) gg* ' (M+m)'m(M m)—
Re ~f'

& lq(' mg~(0)

(M+m)' 2
X DM m) '(M—+m) 4m@'—) 1+—

16M'*' g
2

p BPy 1
X 5Fg(0) ——LFg(0)+Fe(0)]—4p' — —. (29b)

m Bt p

Re(8fe+i &/c&~q~') =+0.010(1/p').

With these values we obtain from Eq. (30a)

(gg*/gg)'= 1.9
and from (30b)

(32)

(33a)

VI. CONCLUSIONS

Our study of near-threshold pion-nucleon scattering
by means of current-commutator rules and PCAC
should certainly be considered successful. In particular,
we have found reasonable agreement with experiment
for the I'-wave scattering lengths, although the agree-
ment between our values for f~+&+&/~ q ~

' and the scatter-
ing lengths is not as good as it could be. The isotopic
odd S-wave eRective range gives a prediction for the
induced pseudoscalar coupling constant which, al-
though still experimentally reasonable, is smaller than
that given by PCAC by a factor of 2. Furthermore, the
curvature of the isotopic even S-wave phase shifts
indicates that an additional T=O exchange contribu-
tion is possibly required in the weak amplitude which
could also improve the agreement of the P-wave scatter-
ing lengths. This point certainly deserves more study.

Our calculations have used the tenets of PCAC and
current-commutation rules to relate off-shell pion-
nucleon scattering to physical values. This procedure
intertwines in a detailed and satisfactory way the

"T.D. Lee and C. S. Wu, Ann. Rev. Nucl. Sci. 1S, 381 (1963).

L2p'h~(0)/mg~(0)7= —1.9, (33b)

if we use our best value g~*/g~' ——1.4. The value deter-
mined for the induced pseudoscalar coupling which is
a factor of 2 smaller than that predicted by PCAC
need not be in disagreement with experiments, ! which
themselves are far from definitive. On the other hand,
there appears to be some discrepancy in Eq. (33a)
since this value for g~*' is larger than any of our other
estimates. This means that there may be another con-
tribution to 8fe+&+&/8

~ q ~' which we have not included.
A very plausible term which could be reasonably added
is an isotopic scalar exchange in the process A„+1V-+
~+X. A particular example of this would be a 0+
meson exchange in the axial production of mesons. The
precise mechanism for the required T=O term is not
determined here, but we emphasize that some form of
isotopic scalar contribution is indicated, the evidence
being the curvature of the S-wave phase shifts.
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strong interactions with the nucleon electromagnetic
and weak vertices. In order to predict the P-wave
scattering lengths and S-wave eRective ranges we have
required more detailed information on the weak ampli-
tudes and electromagnetic vertex than needed for the
Adler-Weisberger sum rule or the threshold theorem;
yet the method works well as a calculation device,
and gives new information on the weak production
amplitude.

where q k = —,'t —g'. Furthermore, it is important to recall
that

(Axv v~B—~v]qp=0 ~ 0 at threshold

From Eq. (25b), we see that we require

APPENDIX A: HIGHER RESONANCE
COÃTRIBUTIO5'S

In this Appendix we show that baryons with J= ~

and J&-,' do not contribute to our calculation. Con-
sider the normal axial-vector transition

BA~ BB~—
Vg

~~ —t=o, q'=0

= f(0)[A~' vpB~']—
t Og~ 0

Thus

at threshold. This is simply evaluated by noting

. (A5)

A,+1V —+ R(J) J= 3+ -' — k =p —pg,

for nucleon with 4-momentum p~ and a baryon reso-
nance with spin J and momentum p. From the work of
Bjorken and Walecka, ' the vertex function can be
written

1 t pu M '~'

p vl v2" ' vJ-1I2 (p)k p2 k vJ-I /pe~ (k )k pl

(2~)'kEg E

X(k'Pi, k,Pi k)+ig—2(k')kp, (Va~ap). Pxpk)ys)

+Zg3(k )Epgapy&ypvvplaplpkpk v

+ig4(k')8.„]u(p&) . (A1)

BA~ BB~—v~ ~ 0 at threshold.
Bt Bt F2=0

(A6)

BA ~ BB~—V

In addition

As(s, t,q') ~,v 0
—+0 and Bs~,v 0~Oat threshold. (A7)

Thus by comparing with Eqs. (25), we see that the
I'-wave scattering lengths do not receive contributions
from normal transitions to baryon states with J&~.

To discuss the S-wave eRective ranges we turn to
Eq. (28). We have

Just as in the S*(—,'+) case, only the invariant propor-
tional to g4(k') is longitudinal to k. Recall that the
Rarita-Schwinger wave function is

BA~» BBN»
Vg

Bs
~ 0 at threshold, (AS)

(1) symmetric under permutation of any pair of
indices,

(2) zero on contraction of any pair of indices,

(3) a solution of the Dirac equation, and

(4) orthogonal to y, and pp v

We write for arbitrary J the projection operator

ppv(J) P Pppp" pg Ilp(p) Pvv 'v pl -p(p)Ip

Xq„q„,„,k., k., „„(A2)
which can be re-expressed in terms of the spin-~+
projection, using the above properties, as

(A3)

-BA~ BB~—
Vg

Bg Bfjt g=o, q2=p

= ——',f(0)LA~*—v&BN ]~ 0 at threshold. (A9)

Equations (A5)—(A9) together with (28) enable us to
conclude that the normal transitions to states with

J&2 do not contribute to the S-wave eRective ranges.

To complete the proof, we turn to the abnormal
transitions, i.e., axial-vector transitions to baryon
resonances with J=—,', —',+ . .. This case is treated by
replacing u(pz) —& you(pq) in (A1), which means in the
c.m. system we replace the Pauli spinors by

where f(q k) is a monomial in q. k of degree J—s~.

We write for the contribution to the invariant ampli-
tudes of a resonance with spin J=-,', —,'+, ~ ~

As(s, t,q') = q kf(q k)A pt*(s, t,q'),

Bs(s,t,q') = q kf(q k)B& (s, t,q'),

and
(E+pu)

eq
xt -+ -ixt
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Hence the abnormal transitions vanish at threshold by
a factor

~ q~
' faster than the normal transition of the

same spin, which rules them out for J&~. In conclusion,
we have shown that baryon states with spins J=~3

and J& ~3 do not contribute to the E-wave scattering
lengths or 5-wave effective ranges. This completes
the justification of the choice of baryon states in our
calculation.
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Model of the N*(1236)
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A variational method is proposed, and is used to calculate the width and the radiative widths of the
$*(1236).Good agreement with experiment is obtained.

I. I5TRODUCTION
'HE aim of this paper is to develop a dynamical

scheme for relating the widths of the 32+ reso-
nances of the (10) representation of SU(3) with the
baryon-meson coupling constants. Such a method is
developed, and used to calculate the width and the
electric and magnetic radiative widths of the $*(1236).
It is also inverted, and used to give a determination of
the pion-nucleon coupling constant, and in a further
paper will be applied to the V~*(1385) resonance.

The standard approach to this problem has been to
use a one-channel 1V/D method, with the assumption
of no Castillejo-Dalitz-Dyson (CDD) poles. The re-
sults of these calculations are in gross disagreement with
experiment. For example, in the paper of Coulter and
Shaw (G.L.), ' the cutoff parameter is adjusted to give
the correct resonance position, but the predicted width
is too large, and the energy dependence totally wrong.
(See Fig. 1. The Wigner condition should be borne in
mind. ) Further, the fact that the phase shift begins to
fall off immediately after resonance is characteristic
of this type of calculation, whereas experimentally, '
the phase shift rises towards 180 and stays there, sug-
gesting the presence of a CDD pole. However, a one-
channel CDD pole may not correspond to a CDD pole
in a multichannel situation. 4 ' An explicit example of
this for the Ã*(1236) has been given by Atkinson and
Halpern, ' who have shown that if the static SU(6)

' P. W. Coulter and G. L. Shaw, Phys. Rev. 141, 1419 (1966)'
Their input consists of 1V, E*, and p exchange with more or less
Gxed parameters, and the experimental p» inelasticity.' E. P. Wigner, Phys. Rev. 98, 145 (1955).

A. Donnachie, Scottish Universities Summer School, 1966
(to be published).

4 E. J. Squires, Nuovo Cimento 34, 1751 (1964).' H. Munczek, Phys. Letters 13, 92 (1964).' M. Bander, P. W. Coulter, and G. L. Shaw. Phys. Rev. Let-
ters 14, 270 (1965).' D. Atkinson, K. Dietz, and D. Morgan, Ann. Phys. (N. Y.)
37, 77 (1966).

D. Atkinson and M. B.Halpern, Phys. Rev. 150, 1377 (1966).

bootstrap' is successful, then the pg3 partial wave will
contain a one-channel CDD pole. Unfortunately, in
practical calculations, the. incorporation of more
(closed) channels adds to the number of adjustable
parameters, and thus strips the method of all its predic-
tive power —except in the restricted, and for detailed
calculations, unreliable case of exact SU(6). Also, the
slowness of convergence of the integrals means that
distant singularities, which are not amenable to any
known approximation scheme, could well play an im-
portant role in these calculations. Thus a completely
diferent approach is needed, one which

(a) is sensitive only to those regions of the complex
plane around threshold, where one can make approxima-
tions with some confidence,

(b) in which the question of the presence of CDD
poles is circumvented by a criteria making a more
direct appeal to experiment,

(c) in which the minimum amount of input informa-
tion is required.

A calculation which satisfies some of the above
criteria is the variational calculation of Donnachie
and Hamilton. ' In this paper, parametric forms are
fitted to a partial-wave dispersion relation in the low-
energy region, via the minimization of a somewhat
complicated function. The integrals are weighted with
the threshold factor, so that the convergence is rapid,
and the results insensitive to distant contributions.
A Layson" formula is used for fr&3', and is found to
give a good solution to the equation in excellent agree-

R. H. Capps, Phys. Rev. Letters 14, 31 (1965);J. G. Belinfante
and R. E. Cutkosky, ibid. 14, 33 (1965);R. H. Capps, Phys. Rev.
139, B421 (1965); J. G. Koerner and R. H. Capps, ibid. 139,
B1388 (1965).

"A. Donnachie and J. Hamilton, Phys. Rev. 133, B1053
(1964).

"M. Gell-Mann and K. Watson, Ann. Rev. Nucl. Sci. 4, 219
(1954); W. Layson, Nuovo Cimento 27, 724 (1963).


