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Resonance Poles in a Simple Model of S-Wave Pseudoscalar-Meson-
Baryon Scattering*
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In an earlier work a numerical calculation was made of S-wave pseudoscalar-meson —baryon scattering in a
simple broken-SU(3) model based on a static vector-meson exchange potential and coupled-channel Schrod-
inger equations. In the present work these calculations are extended to finding the location of the poles of the
scattering matrix in the multisheeted complex energy plane and finding the motion of these poles as the
strength of the potential is varied. Particular attention is paid to the behavior of the poles when the potential
strength is such that there is a resonance closed to a threshold.

I. INTRODUCTION
' 'N a recent paper' one of us (H.W.W.) reported
& ~ some numerical calculations of S-wave pseudoscalar-
meson —baryon scattering in a simple model with broken-
SU(3) symmetry. In this model the interaction between
the pseudoscalar mesons and the baryons is approxi-
mated by a static vector-meson-exchange potential and
the dynamics is approximated by coupled-channel
Schrodinger equations, which are solved exactly on a
computer. Several virtual bound-state S-wave reso.-

nances were found in these calculations. There is an I=0,
Y=O resonance which can be identihed with the
I's*(1405) and which has also been discussed by Dalitz,
Rjasekaran, and Wong. ' In addition we found, for an
appropriate choice of the coupling constant, an I=—,',
I'=1 resonance which we identified with Xr~s*(1570),
an I=0, I"=0 resonance which can be perhaps identi6ed
with Vs*(1670), and an I=-,', P'= —1 resonance which
has not been observed as yet. There was no evidence
of resonance behavior in the I=1, I"=0 state.

These numerical calculations were carried through
for real physical energies. The eigenphases, i.e., the
multichannel generalization of phase shifts, were
calculated and resonances were associated with the
rapid increase of an eigenphase through 90'. While this
is certainly the most efficient way of doing the numerical
calculation and yields all quantities which could
conceivably be measured experimentally, it does not
give directly very much information about the analytic
structure of the scattering matrix in the complex-
energy plane. In particular a resonance is associated
with one or more poles of the scattering matrix in the
complex-energy plane and in order to "understand"
the resonance it is desirable to locate these poles and see
how they move when the coupling constant is varied.
While this would in general be simple if an analytic
formula were available for the scattering matrix, for
a numerical example such as the model discussed above,
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it requires a separate investigation. In this paper we
report the results of the riumerical calculation of the
location of the resonance poles for the above model.

This model is described by coupled-channel Schrod-
inger equations

1 O'U, (r)
+P V,,(r) U, (r)

= (E—mg,—ms, ) U;(r) . (1)
2p, (E) dr'

The matrix potential is of the form

(2)

E=mr, +ms, +P s/2p, (E), (4)

is an exact relation for relativistic kinematics.
As is well known the asymptotic solution of a scatter-

ing problem involves an ingoing wave of unit amplitude
and an outgoing wave whose amplitude is given by the
scattering matrix S,, :

g ..~—iyir S . .~i@)r (5)

At a pole of the scattering matrix, the Schrodinger
equation has a solution with an asymptotic form which
is pure outgoing wave. Thus at a pole of the scattering
matrix at some complex energy E, the radial wave func-
tion U;(r) of Eq. (1) satisfies the boundary conditions

U;(r) ~ 0, r ~ 0,
U, (r) ~E,e'"'" r —+ ~. (6)

The coupled equations (1) together with the boundary
conditions (6) provide a well-defined eigenvalue problem
for a complex eigenvalue E. We can restate the eigen-
value problem in an equivalent way as follows: If
1467

where C;, is a numerical matrix of SU(3) crossing
coefficients, the details of which are given in Ref. 1.
The energy-dependent reduced mass,

p, (E)= [E' (mr; ms, )'5I—E+—m&;+ms;5/SE', (3)

is defined in such a way that the relation between
energy E and momentum p; in the ith channel,



j.468 R. K. LO GAN AN D H. W. WYLD, J R.

there are Ã channels we can And X solutions of the
coupled equations (1) which vanish at r=0 and have
unit derivative in one channel at r=0. We call these
solutions N, ,(r), where the first index v indicates the
channel and the second index j the number of the
solution. Thus the boundary conditions on these S
solutions I;,(r) are

We can find another set of E solutions of Eqs. (1)
which reduce to an outgoing wave in one channel
outside the range of the potential. We call these solu-
tions v;, (r) and they satisfy the boundary conditions

of the solutions (7) which will match a diferent linear
combination

(10)

of the solutions (8). In this way we will have a solution
which satisfies both boundary conditions (6). In
practice we match wave functions and derivatives at
a point r=a:

P(N;;(a)Ag —v,, (a)B;) =0,

P(N; (a)A;—v, (a)B;)=0.

This gives the 2E)(2Ã determinantal condition:

e(a) —v(a) )D=det ~=0.
u'(u) —v'(a)]

(12)

The numerical calculation proceeds along the follow-

ing lines, suggested to us by D. G. Ravenhall. The
solutions u;;(r) and v,, (r) are found for two assumed
complex energies E~ and E2, and the determinant in
Eq. (12) is evaluated for each energy. Since the assumed
energies will not in general be eigenvalues the deter-
minants will not vanish, so we have two nonvanishing
determinants D~ and D~. We assume the determinant
can be expanded in a Taylor series in the energy near
the true eigenvalue E. Then keeping only one term in
the expansion we have

Di C(Z—Ei),
D2~C(E—E,).

(13)

If E is an eigenvalue of the complex-eigenvalue problem
defined by Eqs. (1) and (6), it is possible to 6nd an
appropriate linear combination

PN, ;(r)A;= U;(r)

Eliminating C we find an estimate of E:

E~E2 1——— 1——

This procedure is now iterated, i.e., we start with E2
and E in place of E~, E2 and calculate an improved
estimate of E, etc. The iteration converges rapidly if one
starts anywhere near the correct eigenvalue.

We now remind the reader of the multisheeted
character of the complex-energy plane for a multi-
channel scattering problem. The scattering matrix for
a given angular-momentum state is a real analytic
function of the energy E with a unitarity cut starting
at each threshold. The branch point at each threshold
is of square-root type, corresponding to the two mo-
menta (+p;) which yield the same energy in a given
channel —see Eqs. (4) and (5). Thus for an X channel
problem the complex-energy plane has 2~ sheets.
The best way to specify a sheet is to give the sign of the
imaginary part of the momenta in each channel. We
shall use a symbol such as ———+ for a four-channel
problem. This means that the sign of the imaginary
part of the momentum is negative in the first three
channels and positive in the fourth channel. Naturally,
the channels are listed in order of increasing mass. For
the case of 2 channels (or 2 neighboring channels
in a symbol such as ———+) the four sheets are
often labelled: Sheet I=++, Sheet II= —+, Sheet
III= ——,Sheet IV=+—.The physical sheet is, of
course, ++++. On this sheet the outgoing wave in
the asymptotic wave function (5) is really an outgoing
wave for the open channels and a decaying exponential
for the closed channels. If we cross through the cut at
some energy E, we will reverse the sign of the imaginary
part of the momenta in all channels whose threshold
is below E. Thus if we start on the physical sheet
++++ and cross between the thresholds of channels
2 and 3 we go onto the neighboring unphysical sheet
——++. If we now increase the energy above the
threshold of channel 3 and then go back across the
cut we And ourselves on a super unphysical sheet
++—+.

Finally we note that it follows trivially from the form
of Eqs. (1) and (6) that poles of the scattering matrix
lie at complex-conjugate points on the same sheet. In
the figures in the next section we show only one of this
complex-conjugate pair of poles.

The behavior of the poles associated with a resonance,
when parameters such as the coupling constant are
varied so that the resonance crosses a threshold, has
been discussed by several authors. ' If the resonance is

' M. Ross, Phys. Rev. Letters 11, 450 (1963); R. J. Eden and
g. R. Taylor, ibid. 11, 516 (1963); M. Nauenberg and J. C.
Nearing, ibid. 12, 63 (1964};R. H. Dalitx and G. Rajasekaran', :

Phys. Letters 5, 373 (1963); G. Rajasekaran, Nuovo Cirnento
31, 697 (1964); C. R. Hagen, Phys. Rev. Letters 12, 153 (1964);
D. Amati, Phys. Letters 7, 290 (1963); K. C. Wali and R. L.
Warnock, Phys. Rev. 135, B1358 (1964).
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FIG. 1. ,Location of the poles of the S matrix in the complex-
energy plane as a function of the coupling constant for the stateI= 2, 7 =1.The numbers on the curves are values of the coupling
constant 6'/4s Lsee Eq. (2)].For this state the threshold. energies
in MeV .are mE(1O77), qX(1488), E'A. (1611),and EZ(1689).

far from threshold it is "caused" by a pole on the neigh-
boring unphysical sheet. For example, if the resonance
is between the second and third thresholds there is a
pole on sheet ——++; if the resonance is between the
first and second thresholds there is a pole on sheet
—+++.If the parameters of the problem are adjusted
so that the resonance lies close to the second threshold,
then the resonance is associated with both the poles on
sheets ——++ and —+++. In the numerical ex-
amples discussed below we shall see several examples
of this effect.

II. NUMERICAL RESULTS

A. I=-,', Y=l State

For values of the coupling constant of physical
interest there is a resonance close to the gX threshold
at 1488 MeV. Correspondingly there are poles on two
adjacent unphysical sheets. The motion of these poles
as the coupling constant is varied as shown in Fig. 1.
The behavior of one of these poles is somewhat patho-
logical. For values of the coupling constant larger than
0.91 this pole is on sheet —+++ just slightly (about
1 MeV) below the real axis. Thus for these values of the
coupling constant we would have an extremely narrow
resonance below the gX threshold. For smaller values
of the coupling constant the pole crosses the cut onto
the adjacent unphysical sheet +—++ and rapidly
moves away from the physical region in the peculiar
fashion indicated in Fig. 1. There are no poles close to
the physical region for energies substantially above the

threshold; consequently, the resonance rapidly
disappears as the coupling constant is decreased so that
the resonance energy moves above threshold. These
results are in agreement with and serve to "explain"
the corresponding results in Ref. 1.

In addition to the poles indicated in Fig. 1 we found
a third pole on sheet ——++.With increasing values
of the coupling constant this pole moves nearly parallel
to the imaginary energy axis, approaching the real

axis at 1060 MeV. This pole is very far from the physical
region.

B. I=1, Y=OState

For this five-channel problem there are poles on
the neighboring unphysical sheets ++ and

+ close to the qZ threshold. As one can see
from Fig. 2, they are so far from the real axis that they
do not give rise to a real physical resonance. In the
corresponding calculation in Ref. 1, one of the eigen-
phases goes through 90' extremely slowly.

C. I=-', , Y= —1 State

For this state the motion of the poles shown in Fig.
3 is more or less normal. For values of the coupling
constant larger than 0.90 the pole on sheet —+++
gives rise to a very narrow resonance below the AE
threshold. For values of the coupling constant smaller
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Fxe. 3. Location of the poles of the S matrix in the complex-
energy plane as a function of the coupling constant for the state
I=q, F= —1. The numbers on the curves are values of the
coupling constant G'/4n Lsee Eq. (2)). For this state the thres-
hold energies in MeV are s" (1456), EA(1611), KZ(1689), and
g - (1867).
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FrG. 2. Location of the poles of the S matrix in the complex-
energy plane as a function of the coupling constant for the state
I=1, F=O. The numbers on the curves are values of the coupling
constant CP/4n Lace Eq. (2)j.For this state the threshold energies
in MeV are xA(1253), 71-Z(1331), ES(1435), qZ{1742), and
X (1814).
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FIG. 4. Location of the poles of the S matrix in the complex-
energy plane as a function of the coupling constant for the state
I=0, F=0. The numbers on the curves are values of the coupling
constant CP/4s (see Eq. (2)g. For this state the threshold energies
are sZ(1331), KN(1435), eA(1664), and K" (1814). Figure 4(a)
for ReE(1520 MeV shows the pole responsible for the F0*(1405)
resonance. Figure 4(b) for ReE&1520 MeV shows the poles
which are perhaps associated with the Ys~(1670) resonance.

D. I=O, Y=O State

For this state there are two resonances to consider.
The motion of the corresponding poles is shown in
Figs. 4(a) and 4(b). For a coupling constant of 0.56
there is a pole on sheet —+++ at an energy of 1400
MeV and a width of 30 MeV. This pole is to be as-
sociated with the Fs*(1405) state. Note that as the
coupling constant is decreased this pole moves above
the EX threshold, crosses the cut onto sheet +—++
and then moves to lower energies. In addition there are
poles on sheets ——++ and ———+ which, for
somewhat larger values of the coupling constant, give
rise to a very broad resonance near the ph. threshold.
Again these results are in agreement with those of Ref. 1.

Finally we note the characteristic di6erence between
the pole shown in Fig. 4(a) and the pairs of poles shown

in Figs. 1, 2, 3, or 4(b). For the situation shown in

Fig. 4(a) there is only one pole (not counting the com-

plex-conjugate pole which is not shown). This pole is

a virtual bound state in the EX channel and does not
depend in any important way on the higher-mass

coupled channels gh. and E . In fact we repeated the
numerical calculation with the gA and E™channels

removed and obtained a diagram very similar to
Fig. 4(a). There is no second pole on sheet ——++
giving rise to a resonance above the EE threshold

because there can be no virtual bound state in the
KX system above threshold. For the other cases,
Figs. 1, 3, 4(b), we have a virtual bound state in a
higher-mass coupled channel, KZ for Fig. 1, EZ for
Fig. 3, and E for Fig. 4(b). This virtual bound state is
associated with two poles in the neighborhood of some

lower threshold.


