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We introduce the notion of a field which is strictly localizable within a region of space-time. We investigate
what restrictions strict localizability imposes on the high-energy behavior of fields, and we find that it leads
to an upper bound on the growth of a field in momentum space. This bound allows the oB-mass-shell vacuum
expectation values to grow in momentum space faster than any polynomial. Furthermore, it turns out that
no maximum rate of growth exactly saturates our bound. In addition, strictly localizable fields need not be
Schwartz distributions. However, the usual distribution fields are strictly localizable fields of a special type.
We formulate a strictly local field theory in precise mathematical terms. Finally, we discuss simple examples
of strictly localizable fields that are not distributions.

I. INTRODUCTION

' 'N this paper we introduce the notation of a strictly
~ ~ localizable field (SLF). It is the 6rst of a series of
works on the properties of strictly local field theory
(SLI'T).

We shall study quantum field theories in which it is
possible to incorporate the physically motivated re-
quirements of: (a) a Hilbert space of states; (b) co-
variance of the fields under Lorentz transformations
and space-time translations; (c) positive energy;
(d) locality (as local comrnutativity of fields); and (e) a
particle interpretation.

on the basis of the Hilbert space and covariance
alone, it is known that a field A(x) will not be a field
of operators; rather it must be smoothly averaged over
some space-time region in order to yield an operator. ' '
In fact, using covariance one can write a spectral repre-
sentation for the two-point vacuum-expectation value
of a field, which for a scalar field has the form~'

«.,A*(*)A(yx.)= -' —.V»dp.

Here p(p) is Lorentz invariant:

p(~p)=p(p).

From the positive metric in Hilbert space, it follows
that p(p) is a positive measure. If we assume that A (x)
is an operator applicable to the vacuum state $0,
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then

IIA(x)@II'=(4,A*(x)A(x)4o) = p(p)dp&" . (3)

Combining the facts that p(p) is positive, Lorentz in-

variant, and integrable, would lead to

p(P) =c~'(p) (4)

Hence, we conclude that the field A(x) can be a field
of operators only in the trivial case that the two-point
function is a constant:

(A,A*(x)A(y)A) =c.

A similar result holds for fields with higher spin.
In other words, we are forced to formulate a Geld as

an operator-va)ued generalized function. A Geld must
be averaged with a smooth test function in order to
yield an operator

A(f) = A (x)f(x)dx

Let us introduce the idea of strict loculisability.
Suppose that a field A(x) can be averaged with some
test function f(x) which vanishes outside a certain
region of space-time. Then we say that the 6eld A is
strictly locglisuble in that region. Such a notion is con-
venient for the statement of local commutativity, so
we shall insist that our 6elds are strictl loculisable

within bounded open regions of space-time. Then
locality of the field A will be expressed by the fact that
A(f) commutes, or anticommutes, with A(g) whenever
the test functions f(x) and g(x) vanish outside spacelike
separated regions. (Later we shall specify more precisely
exactly which test functions are allowed, and on what
set of states the field operators can be applied and are
expected to commute. )

In this series of papers we show that it is possible to
6t strictly localizable fields into the framework of a
local quantum 6eld theory. We introduce new classes
of test functions for fields. We show that these lead to
6elds which need not be Schwartz distributions; rather
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they are operator-valued generalized functions which
include the tempered fields as a special case.

We derive for our more general class of fields, certain
results obtained previously for tempered fields. These
include the connection between spin and statistics, ' '
the existence of CPT symmetry, '" crossing sym-
metry, "" the asymptotic condition, '~" and the proof
of dispersion relations. '~"

The wider class of fields studied here is physically
relevant, since it allows for the possibility that the off-
mass-shell amplitudes can grow at large energies faster
than any polynomial. Such behavior is ruled out by
assumption in the study oi tempered (Wightman)
fields. Nevertheless, one believes that faster than
polynomial growth at high energies is associated with
fields which describe weak interactions, and possibly
also strong interactions.

II. DISCUSSION

In the usual Wightman framework, one assumes that
a field is an operator-valued tempered distribution. '~22

Occasionally it was found convenient to relax that
assumption and to only assume that fields are operator-
valued Schwartz distributions. "Let us see why even
this wider framework is inadequate for relevant field
theories. Since the state space is a Hilbert space, vectors
have a positive length:

Since (g) must be true for every f(P) whose Fourier
transform f(x)P X)(%o), the space of infinitely difleren-
tiable functions with compact support, "we infer that
p(P) is a positive, tempered measure. ""In other words,
there is a finite integer X such that

f (P)
iiP( oo,

(1+Ilpll')"

where llpll'=Pos+p' is the square of the Euclidean
length of p. In particular, (9) shows that only a finite
number of subtractions are necessary to define the time-
ordered two-point function, or propagator. '~

There are many indications that (9) is not true in
relevant theories, and hence that some relevant fields
cannot be operator-valued Schwartz distributions. For
instance, in the study of Lagrangian field theory de-
scribed by a nonrenormalizable interaction, perturba-
tion calculations lead one to expect an infinite number
of subtractions in defining the time ordered two-point
function. " Secondly, certain exactly soluble models
which come from nonrenormalizble Lagrangians have
two-point functions in which p(P) is not tempered. »—"
For instance, ii q (x) is a free, neutral scalar field, and

P(x) is a iree sPin-ss lmld, then A(x) =:exP&P(x):P(x)
has a two-point vacuum expectation value

(A,~'(x)~(y)4.)
ll~(f)lfoll'= (fo,~*(x)&(y)fo)f(x)f(y)dxdy)0. (7). =(1/i)St+&(x—y) exp( —id&+i(x —y)). (10)

Here

If A is a scalar field, this norm can be written in terms of
the spectral representation (1) which gives and

(AA'(x)4(y)0 )= (1/i)S'+'(x —y),

(A, p(x) ~(y)lf o) = (1/i) ~i+'(x—y)

lla(f)lfoll = &(P) lf(P) I
dp)0.

7 N. Burgoyne, Nuovo Cimento 8, 807 (1958).
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Expression (10) is not a Schwartz distribution, but it can
be defined as a generalized function" "on all test func-
tions which are Fourier transforms of functions in
K)(g4). Further evidence for the singular behavior of
the two-point function comes from an approximate, but
nonperturbative, calculation by Sardakci and Schroer'4

'4 The support of a function is the smallest closed set outside
which the function vanishes identically.

"A distribution T is said to be positive if for every positive
test function f, T(f) &0. A positive distribution must be a meas-
ure (see Ref. 23).

"A distribution T is positive deGnite (of positive type) if for
every function f in S), T(f*f))0, where f(x)=f( x) Every— .
positive-deGnite distribution is the Fourier transform of a posi-
tive, tempered measure (see Ref. 23). This was applied to Geld
theory by Wightman (see Ref, 20).

27 O. :Steinmann, J. Math. Phys. 4, 583 (1963).
2g N. N. Bogoliubov and D. V. Shirkov, Introduction to Quanutm
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Phys. 5, 1361 (1964)."B.Klaiber, Nuovo Cimento 36, 165 (1965).» I. M. Gelfand and G. E. Shilov, Generalized Functions
(Academic Press Inc. , New York, 1964), Vols. 1 and 2.

» I. M. Gelfand and ¹ Ya. Vilenkin, Generalized Functions
(Academic Press Inc. , New York, 1964), Vol. 4."K.Bardakci and B. Schroer, J. Math. Phys. 7, 10 (1966); 7,
16 (1966).
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on vector mesons interacting with scalar mesons by a
XA &B„y' coupling.

In all the cases described above, it is possible to use
momentum-space test functions in S. In other words,
it seems consistent to describe a field as an operator-
valued distribution in momentum space, and this was
proposed by Guttinger" and by Schroer. ' However,
the Fourier transform of S contains no functions with
compact support, so that Gelds defined on only those
test functions may not be strictly localizable. Thus it is
not clear how to formulate locality for such Gelds, and
all the major results of local quantum Geld theory would
not naturally carry over. A suggestion was made by
Nguyen Van Hieu" and also by Guttinger" that a new
class of test functions might be used to make a state-
ment about locality.

We show here that it is possible to carry through the
field-theory program for strictly localizable Gelds. In
this work we shall assume that our fields are. operator-
valued Schwartz distributions in momentum. space.
While that considerably simpliGes our analysis, and
there is no known reason to believe that it is false, we

shall remove that restriction- in a later work.

Here e and A are integers,

and g(t) is an entire function which will characterize
the 'momentum-space growth of the off-mass-shell
amplitudes

Then

g(l )= Q cs~k "~ et~+0
q cp/0.

r=o
(14)

~(&')= (f(p):llfll-. -.~&" ««il & m ~) (15)

When we consider all the various test-function spaces
which meet these requirements, there is no one smallest
space contained in all the others. Hence there is eo ore
test futsctiots class suitable for all strictly localizable fields.
Each Geld will dictate which test-function space is
appropriate for that field, and the relevant test func-
tions will vary from problem to problem.

D—
Qp tgpgp t'ai. . . tip thp

lml =ms+mt+" +m„(13)

T.F.3.
that

(Momentum-Space Distributions) We assume

$(%4)t R($4).
T.F.4. (Topology) We assume that convergence in
K(Q') is defined by the following family of norms:

llfll-, -.~= sup g(~llpll')(1+Ilpll')" ID"f(p) I
(12)

ugR4

III. TEST FUNCTIONS AND HIGH-
ENERGY BOUNDS

A. Requirements on the Test Function (T.F.) Spaces

T.F.j.. We denote the conGguration-space test func-
tions by K(R') and their Fourier transform, the rno-

mentum-space test functions, by K(RP). Both @ and
R should be countably normed, complete, linear spaces
in which the nuclear theorem holds. "They should be
invariant under linear transformations and translations
of the coordinates.

T.F.2. (Strict Localizability) Define P(0) to be those
conGguration-space test functions, localized in the open
space-time region 0.

p(o) =a(m )An(o). (11)

We assume that 8(~R') contains some function which is
not identically zero.

B. Test Functions over %'

It is possible to define analogous test-function
spaces over g', namely, K(%'), gg(R'), or 9(~R').
Merely replace Q' by 5' in each definition. Note that
the norms defined in (12) automatically entail T.F.3,
the fact that the fields are Schwartz distributions in
momentum space.

C. A High-Energy Bound Imposed by Strict
Localizability

The property of strict localizability can be translated
into a property of the growth-indicator function g(t).
In particular, strict localizability puts a high-energy
bound on the growth of Gelds. It will be used in later
works to give bounds on matrix elements.

Theorem 1. (High-Energy Bound) The space P(g')
is nontrivial (that is, there exists one local test func-
tion not identically zero), if and only if

"ln g(t')
d']( op .

1+ts

In terms of the power series coefficients of g(P) defined
in (14), the function g(t') satisfies (15) if and only if

slip L(c „„)t/(s&sn)~ po

r=o n& 0

We next see that whenever there exists one strictly
local test function, a sufIiciently large class must auto-
matically exist.

"Nguyen Van Hieu, Ann. Phys. (N. Y.) 33, 428 (1965).
"W. Guttinger, Fortschr. Physik (to be published); Nuovo

Cimento (to be published).
"Let T be a multilinear functional de6ned on functions in

QXi K(K'), and continuous in each variable, the other (l i)—
being held Axed. The nuclear theorem says that T has a unique

- extension to an element of 5'(5'). This is a stronger requirement
that the "abstract kernel theaIq~" ploved in Ref. 33 for "nuclear

,.spaces. "
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Theorem Z. If P(g ) is a nontrivial, then for any open domain D is invariant under Lorentz transformations,
region 0 in g', the space 8(0)=K($')QS(0) is dense under space-time translations, and under application of
in the space K)(0). the Geld operators

Remarks

(1) If g(t) is a polynomial, then @(g')=Pg(g')
=P(R'), the Schwartz space, and P(g') = $(g').

(2) Theorem1 gives a high-energy bound on strictly
localizable fields. For example, while growth of g(llpll') as

and

U(a,M)DQD,

A(f)D&D,

A*(f)DQD.

For each f, C, in D, the form

(2o)

or as
exp(ll pili(inllpll)"'}

exp(llpll/(lull pll(l»nil pll)'+')}

is acceptable, a growth as fast as

exp(ll pll/»IIPII}

lim g(At' )/f(t') =O. (19)

is not strictly localizable. In a later paper, we translate
this bound into a bound on the growth of the momentum-
space vacuum-expectation values.

(3) Theorem1provides the substance for the remarks
made above that there is no one test-function class
suitable for all strictly localizable fields. If we are given

g(t ) for which (16), is 6nite, then there is'a. function
f(t') for which (16) is finite and such that for any A,

C. Covariance of the Fields

The Geld A with components A; transforms under the
Poincare group as

U(a,M)A, (f)U(a, M) 'P

= 2 S~"™~~"tfi.,~i)4, (21)

where P is any vector in D,

(f(„~))(z)= f(h.(M-')(x —a)), (22)

(AA(f)c')

is continuous in f in the topology of @(Q).That is,
(Q,AC') is a generalized function in (P(gp).

D. Positive Energy

By Stone's theorem,
IV. A STRICTLY LOCAL FIELD THEORY

(4) We postpone the proof of Theorems1 and 2, and
first define a strictly local Geld theory. SL(2& C), the covering group of the Lorentz group.

(5) In Ref. 38 we apply the bound of Theorem1 to
derive a bound on the decay of form factors at large
momentum transfer.

We deGne an SLFT as a local Geld theory of an SLF.
We adopt the usual Wightman assumptions listed in the
introduction'0 —22 and we now give them in a form
applicable to our Gelds.

A. A Hilbert Space of States

The state space is a (separable) Hilbert space H.
There is a unitary representation of the Lorentz trans-
formations on H. More precisely, there is a strongly
continuous unitary representation U(a,M) of the cover-
ing group of the Poincare group, namely, the inhomo-
geneous SL(2; C) group.

U(a, 1)=exp(iE&a„), (23)

where E'& is interpreted as the energy-momentum opera-
tor. The spectrum of the energy-momentum is assumed
to lie in the closure of the forward light cone. In other
words, for any vector f in the domain of E&, the
numbers

k =(p,ry)
form a vector in t/'+. We assume that there exists a
unique vector fp in H, invariant under Poincare
transforrnations, and denote Pp the physical vacuum.

U(a,M)gp ——A,
Egp ——0.

B. Fields as Operator-Valued Generalized Functions The vacuum fp is assumed to be cyclic for the smeared
Geld s.

To each test function f(x)gg(g4), a 6eld A assigns
an operator A(f). All such 6eld operators are de6ned. E. Strict Localizability and Locality
on a common, dense, invariant domain DQH. The

"A. M. Joe, Phys. Rev. Letters 17, 661 (1966).
We assume that the Geld A is strictly localizable;

in other words, P(R ) is assumed nontrivial. Then A is
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loca/ if whenever f and g in P(g') have spacelike
separated supports,

A (t)A (g)4=~A. (g)A (f)4.
Here f is any vector in D.

F. Particle Interpretation

The classical theorem of Denjoy and Carleman gives
the condition on the coefEcients M„which is necessary
and sufficient for the class C{M„}to be quasianalytic.
A related condition was given by Ostrowski. ""
Theorem 4. (Denjoy-Carleman) The class C{M„}is
quasianalytic if and only if

We wish to ensure a particle interpretation and a
connection with an S matrix. This will be discussed in
a later work.

V. QUASIANALYTIC CLASSES AND THE PROOF
OF THEOREMS 1 AND 2

Z sup L(M.+-) "'"'"'j=".
r=o n& 0

Theorem 5. (Ostrowski) Let

H(t) = sup [t"M„'].
r&0

(2't)

In this section we shall prove Theorems 1 and 2. Since
we shall use the theory of quasianalytic classes of Then the condition (27) is valid if and only if

functions, ""we review some de6nitions. "1nII(t)
Qo ~

A. Quasianalytic Classes

sup ID"f(x) I
&Ar(As)"M„.

An important property of analytic functions is the
fact that they are uniquely determined by their deriva-
tives at a point. Taking this property as basic, a class
of functions is called qlasiaealytic if any function in
the class in uniquely determined by giving all its deriva-
tives at a point. Thus analytic functions form a quasi-
analytic class, but there may be other quasianalytic
classes which contain functions that do not have every-
where convergent power series.

Let {M„}be a sequence of non-negative numbers, and
consider the class of infinitely di6erentiable functions
C{M„}defined by the following: A function f(x) of one
real variable belongs to C{M„}if and only if there exist
constants At and As such that the derivatives of f(x)
satisfy

(26)

sup [(c „)1/(sr+st) j& ~&

r~o n& 0
(29)

where c„is defined in (14).

Proof. Suppose that f(x) is a nontrivial element of
P(%'), with Fourier transform f(p) g K(%'), nor-
malized so that J g(p') I f(p) Idp=1. Then

3. Some Useful Results

Recall that P(g') =QK(g') Q S(g'), where 5 stands
for Fourier transformation. We start with

Theorem 6. The space P(Q') is nontrivial if and only if

The class C{M } is a qlusianalytic class, if and only if
any function f(x)QC{M„}which vanishes along with
all its derivatives at one point,

(D-f)(*,)=0,
must vanish identically:

f(x)—=0, for all x.

Thus no quasianalytic class of functions will contain a
nontrivial function with compact support. Conversely,
the following is known (see Mandelbrojt" "):
Theorem 3. Every class C{M„}which is not quasi-
analytic, contains a nontrivi. al, positive function with
compact support.

"T. Carleman, I.es Iionctions QNasiunulytigues (Gauthier-
Villars, Paris 1926).' S. Mandelbrojt, Rice Inst. Pam. 29, No. 1 (1942).

4' S. Mandelbrojt, Series Adherantes, Eegllurisation des Slites,
A pplications (Gauthier-Villars, Paris, 1952)."P.J. Cohen, Stanford Report, 1966 iunpublished).

2 os. sup ID'"f(*)
I
& 2 os p'If(p) Idp (30)

r=o

By the monotone convergence theorem, (30) remains
bounded as Ã —+~ and therefore

cs„sup
I
Ds f(x) I

& 1

or

sup [(c )I/(st+ra) j
n&O

sup [( sup ID'"+s f(x) I) '/t'"+'"/j. (31
m& 0 ~gRI

Use

sup( sup
I
Dsr+2mf(x)

I )
—1/(sr+2m)

0

sup ( sup I Dsr+mf (x) I )
—I/ (sp+m)

m&0

sum (31) over r, and add the odd terms to the right-



hand sldc 1n older to gct,

sup L(~ ) i/(2t+Rn) j

&2 Lsup( sup
I
D"'"f(*)I) "' "'j (32)

~=0 ny 0 gpss&

of gP(g'), and f(x) an element of K(R'). We now need
to show it possible to construct such an f(x) with
compact support. If g(P) is a polynomial, 5(R')
=S(R')Q X)(%'), so we can assume that not to be the
CRSC.

Let
~2.= (&2 )""

Since f(x)$0, and f has compact support, it does not wh«c d2, 'is defined by (34). Also, let

belong to any quasianalytic class. Therefore„by
de6ning

M„= sup ID"f(x)l,

v e infer from Theorem 4 that the sum on the right side
of (32) is finite, which is the desired result.

Conversely, let us suppose that the sum (29) is
Rnite vre then construct a nontrivial function in
9(%'). The erst step is to note that any in6nitely dif-

ferentiable function f(x) is an element of K(R') if it has
the following property: For each e, m, and 8, there
exists a constant M(N, m, B) such that

M(r),m, B)
I (&+*')D'~"(*-f( )}I

&
~gRI d2„8"

&2.=~2./(e.)'",
(40)

72r= inf P2m
frag

By hypothesis (29) wc liavc ))0& ce. It is then easy to
deIQonstrate that

Lsup{~ 1/(Qy+2n} }jar (34) It is no loss of generality to assume y2, &I. Note that
ng„ym„and yg„'" all decrease monotonically. Thus

We now verify that f(p), the Fourier transform of f(x),
's an e o K{%') i llfll, ,~
for all the norms defined in (12). Clearly,

6 2./v2. )&gee.

for soriie s(r)&r. Furthermore, by (42) we sec that
'Y2 ~0 as r~oo, winch implies ths, t g(r) )m

llfll-, -,~&2" 2 ~2.~'(Ifl2. ,-+ Ifl2~2-, -}, (33) r~~. Thus gm. i,) ~0 as r~~, and

Hovrever,

Ifl-,-= sup Ip D f(p)I.

I fl -,-«sup I
(1+x')D"(x"f(*)}I,

(36)

(37)

Berne

lim (n2,/y, „)=0.

M2„= (yg„)-",
M2.+i=(v~ ) ""+"

(44)

(45)

a= dx(1+x') '.

Combining (3'f) with the assumption (33) leads to

llfll „„,&2-(M(g, rr/, B)+M(2n, m,B)}

and consider the class of in6nitely differentiable func-
tions C(M,}.From (42) we see that C(M„} is not a
quasi-analytic class. Hence it contains a positive func-
tion h(x) with compact support. Smce C(M„.} is in-
vR118nt Ulldcl tl Rnslatlons Rnd dllRtlons %'c can as-
sume that 6{x)vanishes outside the interval I= L

—s, sj.
Ke now show that

xE I

—
i I ) (3~).-0L B) kdm„

S,„ceby definition gm„&d2„ the series on the right-hand is an element of P(R ). Since f(x) is infinitely differcn-
side of (3g) convergcs wliciicvci' wc clioosc thc Rrbi- tiablc Rnd VRiiisllcs oiltsidc 'thc interval 21, it is suffj
trary constant Bgreater than +.Thus f(p) is an ~lem~nt .cicnt «p«v«hat f'EK(R'). Keeping the support of
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f(x) in mind, we have

sup l
(1+x2)D2"+ {»x»f&(x))

l

&2 sup lD"+"{x"f(x)}l

m (2r+ n)
&2 2 sup (ID x-IlD"" f(x) I)l

n 0 x&RI n )

( 22"+»+i(m+ 1)!
l
D"h(y)

l
&Ey

Then for t&1, g(P)&H(t), where H(t) is defined in
Theorem 5. Hence (49) leads to

"lnH(t)
d'h( ~,

0 g2

which by Theorem 5 assures us that C{M„)is not quasi-
analytic. Therefore Theorem 4 gives that

Slip
C (C „)2/(2W2»)g(

r=0 nQ 0

which by Theorem 6 is equivalent to a nontrivial

sup LD" h(x)j. sPace ~(91')
&gg1,0& n& min(m, 2r) Conversely, suppose that f(x) is a nontrivial element

of 8(%'), whose transform f(p) is normalized so that
Recall that h(x)QC{M„},and that M, defined in (45) J'g(p2)

l f(p) ldp=1. Then by (31),
increases monotonically. Thus

sup
l
(1+x')D'"+"{x"f(x))

l

&22~"+'(m+1)!
l
D.h(y) l

dyA, (A2) m2„

lD2"f(x)
l &1/e2, .

Consider the class of functions C{M,},defined by

3E„=A' sup lD'f(x)l, (51)

(28'12A2n2, ) '" 1
= C(n, m)l l, (47) where A is a given constant. Since M2„(A "e2„-', the

d2,8" function H(t) defined in Theorem 5 satisfies

where C(n, m) is a constant independent of r By rela. -

tion (44), we infer that

~28»2A n q2"
sup C(n&m)l —

l
=cV(n, m,B)(~. (48)

)

A'"H(t) & cp,t'" for all r.

Choosing A( j. and summing over r yields

H(t)& (1—A)g(t').

(52)

(53)

Therefore we conclude that
M(n, m, B)

sup
1
(1+*')D' "{x"f(x))I &

d2„8'

Since f(x)QC{M,), the class C{M,) is not quasi-
analytic. By Theorem 5,

"lnH(t)
dt( ~,

$2

which is precisely relation (33). The above argument
then shows that f(x)QK(R'), which completes the which combined with (53) yields

proof of Theorem 6.

Theorem 7. P(Q') is nontrivial if and only if P(Q') is
nontrivial.

"ln g(t')
d/(~.

p 1+P

C. Proof of Theorems 1 and 2

Theorem 1 is a combination of Theorems 6—8, and
hence has already been proved. %e now proceed to
Theorem 2. First note that it is sufhcient to prove that
if P(R') is nontrivial, then it is dense in S(Q'). Secondly,
convolution by S maps p into p, Sp /gal.

Let us suppose that P is nontrivial, but not dense in S.
Then there exists a nonzero Schwartz distribution
XQS' which annihilates P, X(P) =0. In other words, for
any f+P(g') h+S(%')

Theorem 8. Q(R') is nontrivial if and only if

" ln g(t')
— dh( .

p 1+P
(49)

Proof. By Theorem /, it is sufficient to prove the
case /=1. Suppose first that (49) holds, and consider

the class C{M„),where we define

proof. If f(x)gp(g'), then g, i' f(x;)gpgg'). This This completes the proof of Theorem 8.
follows from the fact that g(ti'+ +t~') &g(tti')+
+g(lti2). Conversely, if f(xi, ,xi)C8(R'), then fixing

x2, xp, , xi yields a function in Cga').

~2r 1~2r (e2r)— (50) x(f+h) =0=!'h*x)(f),
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where (A) (x)= lr( —x). Here 4X is a regularized distribu-
tion, and hence an in6nitely di6erentiable function.

In the proof of Theorem 6, it was shown that if
Q(g') is nontrivial, then it contains a nontrivial, non-

negative function. In the proof of Theorem 7 this posi-
tive function yields a nontrivial, non-negative function

f(x) in 8(g'). Furthermore, since 9(g') is translation
and dilation-invariant, it is possible to choose the sup-
port of f(x) in an arbitrarily small neighborhood of any
glvcn point.

We now use this fact to show that X must vanish.
Suppose not; then for some h&X), the regularization
(Ibex)(x) is not identically zero. Choose a point xo

where (4X)(xs)WO, and chooses a sufficiently sma, ll

neighborhood E of xo, so that the real or imaginary
part of the inGnitely differentiable function (A,eX)(x)
has a constant sign. Choose the support of f(x), a
positive element of P(%') to he in P This c.ontradicts
(54), unless X=0, and therefore it completes the proof of
Theorem 2.

A(x) =:exp) s:(x) (55)

cannot be an operator-valued distribution. Nevertheless,
if we choose the indicator function g for @(%4),

VI. EXAMPLES

In this section we discuss. some simple examples of
SI F's which are not operator-valued distributions.
While the examples given have trivial scattering, they
give a concrete illustration of how to deal with singular
high-energy behavior. The most straightforward ex-
ample of an SLF is obtained by exponentiating a free
scalar Geld y(x). It was explained in Sec. II that

can be written

(14,~*(x)~(y)fs)

= exp{ I
&

I
'(A v'(x) v(y) A) )

=exp{ I XI '(eP/Ssi) I ms(x y)—'j 'I'

XK"'((~'(x—y)') "'))
p(M') —A'+'(Ms; x—y)dMs, (57)

where p(M ) ls a positive IIleasure, and

"~(M')
dM'( ~ .

g(M')

Here g is an acceptable indicator function described
above. Thus at large values of the invariant mass M',
the spectral weight p(M') grows slower than the indica-
tor function g(M').

More generally, if one were interested in exponenti-
ating any free-6eld component de6ned over 3-dimensional
space-time, this can be done to give an SLF in jh'(R').
The strict localizability of such functions of free 6elds
was discussed in Ref. 43. In addition, any entire func-
tion of a free 6eld'4 can be realized in four-dimensional
space-time as an SLF. It is possible even to include a
@rider class of functions.

In all these cases, the discussion of convergence of
in6nite series of free 6elds can be dealt with by using
tcchIllqucs similar to those ln Rcf. 44. Thc required
technical tools will be developed in later works. In
particular, there is a limit theorem" associated with
tg'(R'), and this allows a discussion of convergence of
6elds in terms of their analytically continued, vacuum-
expectation values.
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In this case, the two-point function of the exponential

to have exponential order in f greater than s, then A(x) It is a pleasure to recall discussion with K. Bardakci,
is an SLF in (P(g ).For instance, given any 0(e&1, an H. Epstein, K. Hepp, O. Lanford, A. Martin, I. Segal,
acceptable choice for g would be given by G. Velo, and A. Wightman.


