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A formalism is developed that is useful for discussing the spin dependence of collinear reaction amplitudes
of hadrons. The formalism is applied to the potentials in meson-baryon states, where the mesons and baryons
are members of the SU (6)w supermultiplets 35 and 56. The simultaneous assumptions of SU (6)w symmetry
and dominant low partial waves lead to predictions concerning odd-parity baryon resonances very similar
to those of the quark model. If the potential corresponds to the SU (6)w representation 70, the set of pre-
dicted resonances corresponds to the (70, 3) representation of SU (6)&0(3). Effects are present that are
analogous to spin-orbit splitting and configuration mixing in the quark model. These effects are calculable,
so that the model leads to more predictions than the quark model. The predictions concerning the quantum
numbers, masses, and branching ratios of the resonances are compared with experiment. The over-all agree-

ment is good.

I. INTRODUCTION

F the nucleon octet and N* decuplet are associated
with the SU(6) multiplet 56, and the vector- and
pseudoscalar-meson nonets are associated with the
representation 35@1, the one-baryon-exchange forces
in M B(meson-baryon) states are most attractive in the
representation 56, and the meson-exchange forces are
most attractive in the representation 70.! Furthermore,
the baryon-exchange forces are particularly strong in
P states, while meson-exchange forces are strong in
states of both parities. Thus, the most attractive forces
in odd-parity states are associated with the representa-
tion 70. Although no theory exists that permits an
accurate comparison of forces in different orbital-angu-
lar-momentum states, it is reasonable to suppose that
S waves are important, since no centrifugal repulsion
exists in these states. A deduction that has been made
previously from the above considerations is that the
meson-exchange forces may produce a 70-fold multiplet
of odd-parity baryon resonances, associated with MB
S states.!?

If the M-exchange forces help produce such a multi-
plet, it is clear that the MMM interactions must exist.
However, the only form of SU(6) symmetry that
allows a simple M MM interaction is the SU (6)w form,
oranequivalent form.?* Thus, the postulated resonances
should be associated with the 70-fold M B multiplet of
SU(6)w, rather than SU(6). In principle, such an
interpretation is simple enough. The SU (6)w symmetry
applies to the forward and backward amplitudes; the
average of these two amplitudes corresponds to even
orbital angular momentum. Furthermore, if the domi-
nant even-/ potentials involve S states, the behavior in

* Supported in part by the National Science Foundation.

1 The meson-exchange forces are discussed by R. H. Capps,
Phys. Rev. Letters 14, 842 (1965).

2 See, for example, J. G. Koerner, Phys. Rev. 152, 1389 (1966);
E. Golowich, 3bid. 153, 1466 (1967).

3 The SU (6)w symmetric MMM interaction has been derived
from the hypothesis of invariance under the group M (12) by
B. Sakita and K. C. Wali, Phys. Rev. 139, B1355 (1965).

4R. H. Capps, Phys. Rev. 148, 1332 (1966).
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the collinear directions is sufficient to determine the
behavior in all directions.

One of the purposes of this paper is to point out that
the SU(6)w interpretation implies that the spectrum
of the postulated odd-parity resonance multiplet corre-
sponds to the representation (70, 3) of SU(6)®0(3),
rather than with the 70 of SU(6). The (70, 3) assign-
ment has been made previously on the basis of the
quark model, and corresponds to adding a unit of
orbital angular momentum to the 70-fold spin and
internal-symmetry state of three quarks.® This assign-
ment is consistent with the present experimental data.

The basic reason that this SU(6)®0(3) structure
occurs in an SU(6)w model is simple. We illustrate the
reason by considering a representation of SU(3)
®SU (2)w, corresponding to W spin w. The M B states
may be regarded as composites of four mathematical
quarks and one antiquark. [“Quark” is used here to
mean the fundamental sextet of SU(6); this picture is
used only as a simple means of extracting some of the
properties of the assumed symmetry.] Since the spin
and W-spin operators S* and W? differ only when
operating on wave functions containing both quarks
and antiquarks, the allowed spin values of the four-
quark part of the MB wave function are w+3 and
w—%.% In general, combination of these spin values with
that of the antiquark may lead to the total spins w1,
w, and w—1. These are the total angular momenta
that result from the presence of a unit orbital angular
momentum in the quark model. This point is discussed
in detail in Sec. IV B.

The above argument is not very significant for P-
wave amplitudes, since the total angular momentum
and total spin need not be the same for these amplitudes.
In fact, previous work has shown that forces in P-wave
M B states corresponding to the SU (6)w representation
R may produce composites corresponding simply to

5§ A. N. Mitra and Marc Ross, Phys. Rev. 158, 1630 (1967).
6 The SU(6)w symmetry is defined and discussed by H. J.
Lipkin and S. Meshkov, Phys. Rev. 143, 1269 (1966).
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the SU (6) representation R.7 It is seen that the roles of
P-wave and S-wave states in an SU(6)w-symmetric
model of M B composites are the transpose of the corre-
sponding roles in the three-quark model of baryon states.

Other purposes of this paper are to examine the
predictions of the SU(6)w-symmetric model in detail
and to make comparisons with experiment. The pre-
dictions of the present paper differ from those of a
previous work by the author in two important aspects.?®
First, one-meson-exchange forces are considered in Ref.
8, while no specific force mechanism is assumed here.
The second difference is that the potential is assumed
to correspond only to the SU(6)w representation 70
here, and to a superposition of representations in Ref. 8.

In Sec. II, a convenient formalism for analyzing the
spin dependence of any relativistic, collinear, multi-
particle amplitude is developed. The implications of
SU(6)w symmetry and the nonrelativistic limit are
discussed. In Sec. III, a dynamical model is described,
in which the properties of two-hadron composites pro-
duced by SU(6)w-invariant forces may be calculated.
In Sec. IV, several theorems are proved concerning the
implications of the assumption that the potential corre-
sponds to a unique irreducible representation of SU (6) w.
It is shown that effects exist in the S-wave M B model
that are analogous to spin-orbit splitting and configura-
tion mixing in the quark model. The specific assump-
tion that the potential corresponds to the representation
70 is made in Sec. V. A detailed comparison with ex-
perimental data is given in Sec. VI,

II. SPIN-EXCHANGE FORMALISM FOR
COLLINEAR AMPLITUDES

A. General Formalism

In this section a formalism for analyzing the spin
dependence of collinear amplitudes is developed, and
some implications of exact SU(6)w symmetry are
discussed.

We consider a general collinear amplitude involving
n initial hadrons i, ue---ms, and %’ final hadrons
g1 © -unr. The direction of interaction is taken as the z
axis. We consider first the helicity representation, in
which the 2z components of all the intrinsic spin vectors
are specified. The matrix elements of the components
Sz, Sy, and S of the total intrinsic spin operator are
defined in the usual way. The wave functions may be
rewritten in the representation in which S? is diagonal.
It should be noted that this mathematical formulation
is relativistically invariant, although much of the
terminology used (including the identification of S,
and .S, with components of the total intrinsic spin) is
nonrelativistic. In the S? representation, any component

7 This follows from an extension to SU (6)w of the SU (6) model
of R. H. Capps, Phys. Rev. Letters 14, 31 (1965), and of J. G.
Belinfante and R. E. Cutkosky, ibd. 14, 33 (1965). The extension
to SU(6)w is trivial and is described by R. H. Capps, Phys. Rev.
144, 1182 (1966) ; see especially p. 1188.

8 R. H. Capps, Phys. Rev. 153, 1503 (1967).
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of the reaction amplitude 7" may be labeled Tas,orsr™,
where s and s’ denote initial and final values of the
total intrinsic spin, m is the (conserved) z component
of this spin, and & and o' are all the other quantum
numbers of the initial and final states.

Spin-exchange amplitudes X may be defined by
the equation

2041\
Xssz=( ) > C(s'As; mOm) Ty ™, (2.1)
2s+1 m

where the indices @ and o/ have been suppressed, and
the C are Clebsch-Gordan coefficients, defined with the
phase convention of Rose.® It follows from the sym-
metry of the C coefficients that X satisfies the sym-
metry condition

X8’3A= (_1)8,_8X33'A- (2.2)

One way of interpreting the spin-exchange A is to
consider the crossed amplitude 7, defined so that the
vacuum is the final state, while the initial state consists
of the n particles p;-:-un, and the #’ antiparticles
K1 kar With their spin components reversed. The
quantity A is the total intrinsic spin of the initial state
described by 7.

We now make use of one implication of SU(6)w
symmetry, invariance to W spin rotations of 180°
around the y axis. This invariance implies

W Tl =@ TI¥), (2.3)

where ¢,=exp(—irW,)¢. It has been shown that
W-spin rotation is related to ordinary spin rotation by
the equation®

exp(—irW,)=@ exp(—inS,), 2.4)

where @ is the intrinsic parity operator. This spin
rotation changes the sign of m; our phase convention
is such that

g (— 1) (2.5)

A simple way to establish Eq. (2.5) is to use Eq. (4.13)
of Ref. 9 to verify the relation for m=7, and then to
operate on both sides with .S,+4S,, using the relation

eABe—A=B+ [A:B]+ (2 f)_l[A’[:A 7B:|]+ ttt .

Combination of Egs. (2.3), (2.4), and (2.5) leads to the
relation

Tas,a'x’—m= (_1)8_8’ (Hz (Pi)Tas,a's'm, (26)

where J]; ®; is the product of the intrinsic parities of all
the particles. If one makes use of the Clebsch-Gordan
symmetry condition,

C(sAs’; m0)= (—1)=*+2C(sAs"; —m0) ,
Egs. (2.1) and (2.6) lead to the following limita-

® M. E. Rose, Elementary Theory of Angular Momentum (John
Wiley & Sons, Inc., New York, 1957), Chap. IIL.
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tion on A:
(=D2=IL: ;.

We now discuss the relation of this result to the non-
relativistic angular-momentum representation for scat-
tering at arbitrary angles. In addition to the #n+#»’ spin
variables, there are »—1 initial orbital angular mo-
menta and #'—1 final orbital angular momenta in this
representation. Again 7% is used to denote the corre-
sponding amplitude in which the final state is the
vacuum; the initial state contains all the orbital angu-
lar momenta -+ +logly-+-lw_y, as well as the spin
variables. The L-S coupling scheme for this initial state
may be denoted by the symbol

(2.7

(51 8a)a(lar - lwr)a, (2.8)

where the subscript A denotes that the angular mo-
menta within the parentheses couple to form angular
momentum A.

The collinear amplitudes in the z direction correspond
to the spin-wave function of those terms of the above
expression in which the 2 components of all the orbital
angular momenta are zero. It is a well-known property
of Clebsch-Gordan coefficients that (I,/5)z contains a
term corresponding to ;% only if (—1)f= (—1)uti,
It follows that (Lily---lw_;)a contains a term cor-
responding to all zero components only if (—1)4
= (—1)3%, This is the product of the orbital parities.
Parity conservation requires that (—1)%=]]; ®;, and
thus also leads to Eq. (2.7). Amplitudes in which the
A of Eq. (2.8) do not satisfy Eq. (2.7) exist, but they
do not contribute in the collinear directions.

B. SU(6),~-Symmetric B— B’'M and BM — B'M
Amplitudes

We now limit attention to the cases B— B'M and
BM — B'M, where B and B’ are two SU (6) multiplets
of the same parity. The most relevant case is that in
which B and B’ both denote the 56-fold baryon super-
multiplet. The B— B’M amplitude is the interaction
vertex. It is a straightforward procedure to write such
a vertex in a manner satisfying SU(6)w symmetry.
According to Eq. (2.7), the spin-exchange A is odd.
In the nonrelativistic limit, the vertex is a P-wave
vertex, so that the one orbital-angular momentum is
unity.’® Hence A is one.

In the case of the scattering amplitude MB — M B,
A is even and is restricted to the values 0 and 2. This
is obvious from the fact that the process MB — M B’
may be regarded as proceeding through one-particle B”
intermediate states. One can use the techniques intro-
duced in Sec. IV B of this paper to prove these limita-
tions on A formally.

. 10 The static limit of the SU (6)w-symmetric M BB’ interaction
is discussed by R. H. Capps, Phys. Rev. 150, 1263 (1966).
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III. THE DYNAMICAL FRAMEWORK

We now restrict attention to the M B — M B ampli-
tudes, where the B correspond to the multiplet 56. It
is assumed that the dominant singularities of the ampli-
tudes are one-particle-exchange contributions to the
left-hand cuts, and. the two-particle (unitarity) right-
hand cuts. The two-particle intermediate states associ-
ated with the unitarity cut do not preserve collinearity,
and hence may not preserve exact SU(6)w symmetry.
However, we will apply the symmetry only to the one-
particle-exchange cuts. The Born-approximation ampli-
tudes corresponding to these left-hand cuts are the
potentials of the model; the terms potential and one-
particle-exchange amplitudes will be used interchange-
ably. Meson degeneracy, baryon degeneracy, and exact
symmetry are assumed.

In the nonrelativistic limit, the potentials may be
written in the form of Eq. (2.8), i.e., (sa3u-; 5858/ )a (1) a.
The A=0 and 2 terms correspond to the central and
tensor potentials discussed previously by the author.!:!!
For example, the tensor force theorem of Ref. 11 im-
plies that the A=2 terms can exist in M B states only of
the SU (3) representations 1, 8, and 10. This theorem is
relativistic, although the interpretation in terms of .S
and D waves is nonrelativistic.

The assumption of SU(6)w symmetry for the col-
linear amplitudes does not determine the entire ampli-
tude. However, the two parities may be separated
cleanly. The linear combinations 3(7';24=T%) refer to
even and odd orbital-angular momenta, respectively,
where Ty and T, denote the forward and backward
amplitudes. For either parity, the relative importance
of large and small orbital-angular momenta is not
given by the symmetry, but depends on the details of
the potentials. There is no accurate theory that can be
used to predict this relative importance. However, we
make the reasonable assumption that for each parity,
the lowest partial waves are dominant, since the effect of
centrifugal repulsion is least in these states. The ampli-
tudes of the lowest partial waves are the P-wave ampli-
tudes in the even-parity states, and the S-wave and
S-D transition amplitudes in the odd-parity states.

In the P-wave case, /=0'=1,and A may be 0, 1, or 2.
Since the A=1 term does not contribute in the collinear
directions, SU (6)w symmetry and rotational invariance
are not sufficient to determine the amplitudes com-
pletely. One needs to know the type of particle ex-
change. The P-wave MM and M B states are important
in the bootstrapping of the M and B; these problems
are discussed in previous references.!?

In the odd-parity case, the A=0and A=2 amplitudes
involving the lowest partial waves are the S-S and
S-D amplitudes, respectively. We assume that the S-S
and S-D amplitudes together satisfy SU(6)w sym-
metry. Since all S-S and S-D amplitudes contribute in

1R, H. Capps, Phys. Rev. Letters 16, 1066 (1966).
12 R. H. Capps, Phys. Rev. 148, 1332 (1966); see also Ref. 4.
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the collinear directions, this assumption, together with
rotational invariance, is sufficient to determine the
potential up to an over-all constant. Hence, the forma-
lism of Sec. II is particularly useful for these waves of
even orbital angular momentum. In the rest of the
paper we will limit attention to even /. Only the average
of the forward and backward amplitudes is considered,
and denoted by T

The assumption that only S-S and S-D terms occur
in the potential (Born-approximation amplitude) is
justified rigorously in the threshold limit, since these
are the only terms that can occur to order k2. The S-S,
S-D assumption is more general than the &2 assumption,
however. For example, in the discussion of the meson-
exchange potential in Ref. 10, it was shown that the
relative strength of any two S-D terms, or of any two
S-S terms, is independent of energy, provided that the
spin-wave functions of the scattering particles are
treated nonrelativistically.

The potential matrix of the model is a large matrix
in the space of many S-wave and many D-wave chan-
nels. The D-D elements are zero. We do not attempt
to calculate the relative importance of the S-S and .S-D
terms. Rather, the aim is to reduce the potential to a
set of disconnected 2)X2 matrices, each involving one
S-wave and one D-wave channel. As a first step, we
define the potential elements by the symbols Ugs,ars,a,
where (s,0) and (s’,@’) are the total intrinsic spin and
other quantum numbers of the states, and A is equal
to 0 and 2 for the S-S and S-D elements, respectively.
The first pair of indices of the S-D elements refers to
the S-wave states. The U are defined in terms of the X of
Eq. (2.1) by the relation Usya= (25s+1)"12X 44, €.,

Q2A+1)12
Z +1—Z C(s'As; mOm) T or g1 5™ .
S m

It may be shown that the S-S and S-D elements of U
are related to elements of the conventional .S matrix in
the partial-wave representation by the equation
U= (S—1)/(2ip), where p is a function of energy
common to all the amplitudes.

Since the two spin indices of the S-S amplitudes must
be the same, we shorten the symbols Upgs ars,0 and
Uas,arsr,2 10 Uas,ar and Ugg,arer, 1.€., only the first spin
index is given for the S-S amplitudes, and the values
of A are omitted. Since the coupling of the orbital
angular momentum in the S states is trivial, we use
the symbols yos to denote either states of spin and
internal symmetry only, or the corresponding .S states.
The symbol ¢aj; denotes a D-wave state of internal
symmetry «, total angular momentum j, and total
intrinsic spin s.

The calculational procedure is as follows: One de-
termines the collinear, odd-parity amplitudes Tos,arsr™
from the assumption that a particular SU(6)w repre-
sentation is involved, and computes the U from Eq.
(3.1). The S-S potential is diagonalized ; the eigenvalue

(3.1)

as,a’s’ A=
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corresponding to the eigenvector ¥,; is denoted by
U.;5. The normalized D-wave state vector ¢,;2 that is
coupled to a particular ¢,; may be defined by the
equation

S"aJD:ﬂZ: Udjs ﬁoﬂis/UajD ) (3-2)
Uai’= (X Uaj st (3.3)
Bs

The U,;” is the S-D potential element connecting
Yo; and ﬂoaJD'

In Sec. IV A it is proved that the D-state wave
functions coupled to orthogonal, S-state eigenvectors
are orthogonal. This theorem enhances the usefulness
of the approach described above, because it implies
that in the representation of the ¥u; and ¢4;?, the po-
tential separates into disconnected 2)X2 S-D-state po-
tential matrices. We do not attempt to calculate the
over-all S-state/D-state branching fraction of the
resonances. However, the S- and D-state eigenvectors
permit the calculation of the relative amplitudes for
S-state decays and for D-state decays, and the relative
sizes of the U,;® and (U,;2)? associated with different
composites lead to predictions concerning mass split-
ting of the supermultiplet. These results are not depen-
dent on the relative importance of U, and (U,;P)%.

IV. THE PARAMETERS OF THE POTENTIAL

A. Simplicity Theorems

In order to prove three theorems concerning the
simplicity of the potentials when only one SU (6)y ir-
reducible representation is involved, we consider again
the odd-parity collinear potential 7. The theorems
depend on the fact that the elements of U are related
to certain elements of 7T in a particular representation,
and on the fact that T is proportional to a projection
operator.

In the (S2,S,) representation of T, the basis vectors
are Ya,™. We define a new orthonormal basis X by
the equation

2A+1\112
Xasa= ( ) > C(sAs; mOm)ge,™, (4.1)
2541 m

where A takes on the integral values from 0 to 2s, and
[(2a41)/(2s+1)]2 is a normalization factor. In the
X representation, only those elements of T that involve
at least one state of the type X,.0 are of interest. If the
two spin values are the same, these elements are related
to the U of Eq. (3.1) by the following simple rules:

TaaO,a’sO= Uas,a’ ) (42)
TasO,a’s2= Uas,a’s ) (4.3)
TasO,a'xi=0 ) '1:'7"£0 or2. (4.4)

The T matrix is symmetric. It is a simple matter to
verify these rules by using Egs. (3.1) and (4.1) and the
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condition C(sOs;mOm)=1. The last rule, Eq. (4.4),
follows from the result of Sec. II B, that U, g,a vanishes
unless A is equal to O or 2.

If the spin values s and s’ of two states are different,
we are concerned only with quadratic sums of the type
2 i Taso,arsriT ps0,ar575- Such a sum is invariant as to the
choice of spin basis in the o's’ state; if one uses the S,
basis, it is easy to establish the relation

Zi Taso,a’s’iTﬂsO,a’s’i
= (25‘!’ 1)—1 Zm Tas,a's’mTﬂs,a’s'm . (4‘5)

It is pointed out in Sec. IT B that for s7s’,only potential
terms corresponding to A=2 exist. This implies the
proportionality relation Ty arsr™=KawC (s25"; mOm),
where the Kqq are constants. If this relation is used in
both Eq. (3.1) and Eq. (4.5), and the symmetry prop-
erties of the Clebsch-Gordan coefficients are used,® the
following equation results:

Zi Taso,a's’iTﬁaO,a’s’i= (S#S’) (4.6)

This equation is the analog of Eq. (4.3) for the
s#s’ case.

Next, we show that T is proportional to a projection
operator by considering the basis (rz), where » and »
denote an irreducible representation of SU(6)w and
the state within the representation. In this basis, T is
given by Tpn,rn = Csppdnns, where the C, are constants.
If only one irreducible representation contributes, the
subscripts on @ may be dropped, and (7/@) is a pro-
jection operator, i.e.,

(T/e)=(T/e). (4.7)

In our model, where T is a potential, the constant € is
real. If the as0, BsO element of Eq. (4.7) is considered,
and Eqgs. (4.2), (4.3), and (4.6) are used to write the T
elements in terms of U elements, the results are

el Uas,,9= c2 (Z Uas,a' Uﬁa,a'

as,a’s’ Uﬂs a8 e

Z Z Uas,a’s’Uﬁs,a’s’) .

8'#s a’

+Z Uas,a’s Uﬁs,a’s—l_ (4.8)

The three theorems follow from this equation.

TuEOREM 1. If the S-S part of the potential is diagonal,
the D-wave state vectors connected to two orthogonal S-wave
etgenvectors are themselves orthogonal.

This is the theorem mentioned in Sec. III. It is
obvious if the spins of the two S-wave eigenvectors are
different, so we consider only the case in which the
spins are the same. The two S-states are identified with
the as and Bs in Eq. (4.8). Since the S-S part of U is
diagonal, the left side of Eq. (4.8) and the first summa-
tion on the right side vanish. The resulting relation may
be written Y yor Uas,ars'Ugs,arer=0. This is the re-
quired orthogonality relation, since the D-wave state
vectors ¢,:2 are defined by Eq. (3.2).

THEOREM II. The nonzero eigenvalues of the S-S po-
tentials are all of the same sign.

ODD-PARITY BARYON RESONANCES

1437

In order to prove this, we identify both as and Bs
in Eq. (4.8) with any one of the eigenvectors ¢.,; of the
S-S potential. The right-hand side of the equation is
non-negative definite, so the sign of the U,;,y on the
left depends only on the sign of @.

TrEOREM III. The S-S and S-D elements of the 2X2
U matrix associated with a particular S-state ¥.; are
related simply. This relation may be expressed in terms of
a parameter \y; in the following way:

CT,8=3(1+0),
G—2I U’YJD 2= (2/9) (1+%7\w'_ %)\7]2 .

This theorem also follows from identifying both as
and Bs in Eq. (4.8) with the state in question. One as-
sumes that the S-S part of U is diagonalized and uses
the definition of U,;2, Eq. (3.3). The significance of the
parameter N becomes clear in part B of this section.

Theorems I and III are both important, because they
imply that the predictions of the model are not de-
pendent on the relative strengths of the S-S and S-D
potentials. The theorems depend on the projection-
operator property of (7//@), and do not apply in the
model of Ref. 8, in which different representations of
SU(6)w are superposed with different strengths.

(4.9)

B. Effective Spin-Orbit Coupling and
Configuration Mixing

In this section, the potential corresponding to a
particular SU(3)®SU (2)w submultiplet of an SU (6)w
multiplet is considered. The W spin is denoted by w.
It is pointed out in the introduction that the spin values
that may be associated with this multiplet are w1, w,
and (unless w=%) w—1. We now show that if the
potential is parametrized by the € and X of Eq. (4.9),
the three A values are given in terms of one constant.

In this analysis, each MB state is pictured as a
composite of a four-quark state Q and a single anti-
quark 4. The S-state wave function of any M B state of
W spin w is a sum of two parts, in which the W spin
(and spin) of the Q states are w-+% and w—3%. The wave
functions corresponding to S,=m may be written

M= @ ™ (Quted)+ 0™ (Qu-124), (4.10)

where a,24-a_2=1. One may use ordinary Clebsch-
Gordan coefficients to write out the two parts, i.e.?

w1 —m\1/2
V" (Quyryed)=— (——) Q2412
2w+2

(w+ 1+m)1/2

2w+2 Qm+l/2A—]/2’ (4113)

w-t+m

1/2
¢m<Q.H,2A>=(—) Qrinaih
2w

w—m\'/?
—_ (_~___) Qm+1/2A—I/2 .

4.11b
” (4.11b)
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The relative signs of the two terms in Eq. (4.11a) and
in Eq. (4.11b) are opposite to those that would occur
if the spin value of each state were w. This results from
the fact that the matrix elements of the W-spin and
S-spin lowering operators are equal for the Q states and
opposite for the 4 states.®

One may use Eqgs. (4.11) to write Eq. (4.10) in the
S?% representation, i.e.,

Y=Ly 1™Ywr1™ (Qw+1/2A)
+Zo" "+ Z 1" 01" (Qu—1,24) ,

where the subscript is the spin, and the various quanti-
ties are given by the relations

Zpy1m=—a;[ (1) —m* ]2/ (w+1), (4.12a)
Zpa"=—a_[w—m*]12/w, (4.12b)
w"=mZ, Z={[a/ (@+1) P+ [a/wP}", (4.120)

_ a. a
‘pwm= Z_l[— _i'llfwm (Qw+ 1/2A ) +___¢wm (QW—I/ZA ) ]'
w+1 w

(4.13)
All the ¢ are normalized to unity.
In the representation of the Yu1™, Y™, and Yu_1™,
the odd-parity collinear amplitudes T are given by the
simple equation

Tyym=CZmZ ™, (4.14)

where @ is the over-all strength constant defined in
Sec. IVA. )

It is seen from Eq. (4.9) that it is sufficient to con-
sider the S-S potential elements in order to determine
the values of \; associated with the different angular
momenta. The S-S amplitudes may be computed from
Egs. (3.1) and (4.14). One needs Egs. (4.12a) through
(4.13) and the algebraic identity

> mi=kw(e+1) Qut1),
2

m=1/

where the index ranges through all half-odd-integral
values from 3 to w. The results of the computation are

e Vwn=%0,"(2w+1)/ (w+1),
e Wpa=%aQwt+1)/w, (w23%)
e Uw=3[aw/ (w+1) +5[a*w+1)/w].
It is convenient to define a parameter \ that is charac-

teristic of the SU3)®SU(2)w multiplets by the
equations

(4.15)

w

1
+ [14wA], a 2= I
2w+1

2w+1

The S-S potentials for the three spin values are func-
tions of the two parameters € and . It is seen from
Egs. (4.15) and (4.16) that the S-S potentials may be
written in the form of Egs. (4.9), i.e., €1U,=3(1+),),

[1—(@+DA]. (4.16)

a+2 =
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where the \; are given in terms of A by the equation
Ne=FA\[s(s+1)—w(w+1)—2]. (4.17)

This is just the relation that would be obtained in a
quark model, in which a multiplet of spin w is combined
with a unit orbital angular momentum, and the de-
generacy of the potentials is split by a spin-orbit term.1?
However, the A coefficients for different SU(3) @SU (2)w
multiplets are calculable in the SU(6)w model, as is
shown in Sec. V. It should be noted that if the splitting
parameter A is zero, the relative probability of the
Qui1/2 and Qu_ye states in Eq. (4.10) is the statisti-
cal value.

In the cases considered in this article, the sign of €
is such that the S-S potentials are attractive, and the
composites are assumed to exist. It is seen from Eq.
(4.9) that to first order in \;, the deviations from the
mean of the S-D elements |U,?|? are proportional to
Nj, and a large |U,?|? is associated with a large U,S.
Hence, if the \; are not large, the presence of a spin-
orbit-type mass-splitting term is not dependent on the
relative importance of the S-S and S-D potentials.

If more than one SU(3)QSU(2)w multiplet of a
particular SU(3) representation exists in the SU(6)w
multiplet, the S-state wave functions of a particular
spin corresponding to the different multiplets may not
be orthogonal. In such a case, an effect similar to con-
figuration mixing of the quark model occurs. In the
SU(6)w model, it is straightforward to calculate the
effects of the mixing. The potential elements corre-
sponding to the different SUB)QSU(2)w elements
must be superposed, and the S- and D-wave eigen-
vectors found. The M\ parametrization of Eq. (4.9)
remains valid, but the simple spin-orbit splitting rela-
tion of Eq. (4.17) does not remain valid.

V. CALCULATED RESULTS FOR SU(6)w
MULTIPLET 70

The formulas contained in this section are necessary
for readers interested in duplicating, extending, or
understanding thoroughly the results of the model.
Other readers may skip to the next section.

The simplest mechanism known to provide strong
forces in the odd-parity M B states is the one-meson-
exchange mechanism. As pointed out before, the M-ex-
change force is most attractive in the SU(6)w repre-
sentation 70.# Hence, we assume that the potential
corresponds to the 70, and that the S-state potentials

18 For a recent review of the quark model, see R. H. Dalitz,
in Proceedings of the Second Annual Tokyo Institute of Theo-
retical Physics at Oiso, Japan, 1966 (to be published). For an
earlier review, see R. H. Dalitz, High Energy Physics (Gordon and
Breach Science Publishers, Inc., New York, 1965), pp. 251-323.

14 The potentials are discussed in Ref. 1. In configuration space,
each S-S potential contains a Yukawa term and a contact-inter-
action term of opposite sign. The contact term contributes in a
region where the nonrelativistic approximation is not justified, so
the sign of the potential has been equated with that of the
Yukawa term.
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in the eigenstates are attractive. (See theorem II
of Sec. IVA.) The results will depend only on this as-
sumption, and not on the detailed exchange mechanism
that provides the forces. The convention is used that a
positive U,;. denotes attraction; thus the over-all
strength constant © of Eq. (4.9) is positive. Since we
do not calculate the absolute strength of the potential,
it is convenient to set €=1 for the remainder of
the paper.

The SU3)@SU (2)w structure of the representation
70 is (1,2w)®(10,2%) ® (8,2w) D (8,4w), where the
numbers indicate the multiplicities. Thus, the reso-
nance multiplets expected are

(1,2)+ (1,44 (10,2)+ (10,49)+(8,2)
+8,2)+ 8,49+ (8,4)+(8,6) .

We present the results by first neglecting the con-
figuration mixing that exists in the octet states, and
listing the S-state wave functions (in terms of the M
and B) and the \ parameters of Eq. (4.17). It is easy to
compute these by making use of a table of SU(6)
Clebsch-Gordan coefficients.!s The symbol ¥; is used to
denote an S-wave state vector of angular momentum
%14, while P, Py, V, V1, N, and D denote the P-meson
octet, P singlet, V octet, V singlet, nucleon octet, and
N* decuplet, respectively. The equations are:

(1,2w) Multiplet (A\=0)
31/3: (VN) ’
b= PRV QU (PN)

(5.1)
(5.2)

(10,2w) Multiplet (A\=1%)
¥s= (10/21)'*(V D)+ (5/42)"*(V1D)— (2/7)*(PD)

—(1/19'2(PD)— (1/21)"2(VN), (5.3)
1= (1/3)*2(VD)+ (1/12)42(V,D)
— (25/48)12(VN)+ (1/16)'2(PN) . (5.4)

(8,2w) Multiplet (\=1%)

¥s= (1/13)'°[— (25/6)'*(V D)
+(5/2)'"*(PD)+ (10/3)"*(VN)a
+8/3)2(VN) 4 (1/3)*(V.N) ], (5.5)

Y1=(1/6)"2(VD)— (1/48)"*(V'N)a+ (49/240)'2(V N) 4
+ (2/15)"2(V.N)— (1/16)"*(PN)q
— (5/16)"2(PN);— (1/10)"2(P:N) .  (5.6)
(8,4w) Multiplet (A\=7%)

¥s=(VD), S.7)

15 Convenient tables of SU (6) Clebsch-Gordan coefficients, and
of SU(3) Clebsch-Gordan coefficients, are given, respectively, by
C. L. Cook and G. Murtaza, Nuovo Cimento 39, 531 (1965), and
by P. McNamee, S. J. Chilton, and Frank Chilton, Rev. Mod.
Phys. 36, 1005 (1964).
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V= (1/24)2(V D)+ (5/8)2(PD)— (5/24)"2(VN)q

+(1/24)'*(VN) 4 (1/12)*(VaN) , - (5.8)
Yi= (1/7)"*[— (5/3)"*(VD)— (5/6)"*(VN)a
+(1/6)"2(VN) s+ (1/3)2(V1V)

— (5/2)2(PN)a+ (1/2)"*(PN)s+ (P1N)].  (5.9)

The symbols in parentheses denote normalized state
vectors of the proper spins and internal symmetry,
and the subscripts  and f denote symmetric (d-type)
and antisymmetric (f-type) octet-octet-state vectors.
The conventional f/d ratio is given in terms of the
coefficients Cg and C; of the two types of octet terms
by the formula f/d= (5/9)"2C;/Cq. It must be empha-
sized that exact SU(6)w symmetry has been assumed,
and that the nonzero values of the mass-splitting
parameters result entirely from SU (6) Clebsch-Gordan
coefficients.

If no configuration mixing is present, the spin-wave
functions associated with the D-state wave functions
are also the ¥; of Egs. (5.1)-(5.9). However, states of
different total intrinsic spin contribute to the D-state
wave function ¢,;? associated with a composite v;.
One can find these state vectors from Eq. (3.2) and the
following formulas for the S-D elements of the U
matrix associated with a particular SU3)®@SU(2)w
multiplet. The two indices are twice the total angular
momentum, and twice the total spin of the D-wave state.

w=1 case
Uso=—c.2 Uau=—1 2o ),
33 : G+; 31 2f;+(0+ +c¢-?) (5.10)
e?=3(14+3N), cr=1-4\.
w=3% case

Usi=—§(14)1%0,2, Use=— @), e+ c2),

U51= 26+C_ ) U33= C+2+C__2 y
Usi=—3%c_(c;24c )12, (5.11)
=1+, c2=31-5N).

Those elements not given may be determined from
the formula

U= (=1)=L2+1)/ 2+ 1)]"Us.  (5.12)

The octet state vectors ¥;1(8,2w) and ¢;(8,4w) are
not orthogonal, and the vectors ¥3(8,2w) and ¥3(8,4w)
are not orthogonal. Thus, the configuration mixing
effect discussed in the last part of Sec. IV B occurs.
This mixing, for either j=3 or §, leaves unchanged the
sum of the two \; values for the spin in question, but
increases the difference between them. The subscripts
a and b are used to denote the composite of larger and
smaller \; values, respectively. It is a straightforward
procedure to diagonalize the S-S parts of the super-
position of the (8,2y) and (8,4w) U matrices, and to
compute the eigenvectors. These eigenvectors are
linear combinations of the corresponding eigenvectors
of the two SU3)®SU(2)w eigenvectors. The coeffi-
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cients of these combinations, and the A; values, are
listed below.

Na=0.14, Agp=—0.22,
¥3.=0.90¢3(8,2w)+0.34¢5(8,4w) , (5.13)
¥so=—0.47Y3(8,2w)+0.95/5(8,4w) .

o= —0.14, Ap=—0.44,
Yie=—0.94y1(8,2w)+0.25¢1(8,4w) , (5.14)

Y1o=0.3701(8,2)+0.9841 (8,4) .

In order to compute the D-wave state vectors in the
configuration-mixing cases, one first computes the S-D
elements of the U associated with the unmixed state
vectors, and then uses the superposition equations,
Egs. (5.13) and (5.14), together with the basic defini-
tion of ¢,;2, Eq. (3.2).

VI. COMPARISON WITH EXPERIMENT

A. Resonance Quantum Numbers and
Branching Ratios

The calculations of Sec. V lead to a predicted super-
multiplet of odd-parity baryon resonances that corre-
spond to the (70, 3) representation of SU(6)Q0(3).
In this section, we compare the experimental data with
the predicted set of resonances, and with the predicted
S-wave and D-wave branching ratios. Mass splitting is
discussed in Sec. VI B. .

The experimental information concerning baryon
resonances changes rapidly with time. Except where
otherwise noted, we will take as an experimental
standard the recent compilation of Rosenfeld et al.l®
All of the odd-parity baryons listed in Ref. 16 may be
associated either with members of the (70,3) multi-
plet, or with Regge recurrences of these particles. The
particles (but not the recurrences) are listed in Table I,
along with their SU(3)®SU(2) assignments. The four
multiplets (1,2), (1,4), (8,4)s, and (8,6) are nearly
complete. In addition, strangeness-zero particles have
been found that may be members of the (8,2),, (8,2)s,
and (10,2) multiplets. The SU(3) assignments of these
latter three particles are speculative, but any other
assignment would require a representation other than
1, 8, or 10. Hence, of the predicted nine multiplets,
only the (10,4) and (8,4), are absent. Furthermore,
some tentative evidence for the (10,4) exists, as is
discussed later in this section. In our model, there is no
ambiguity in assignment resulting from the presence of
two (8,4) and two (8,2) multiplets. The predicted
forces are most attractive in the (8,4), and (8,2),
multiplets, so these are identified with the observed
(8,4) and the lighter of the observed (8,2) multiplets.

16 A, H. Rosenfeld, A. Barbaro-Galtieri, J. Kirz, W. J. Podolsky,
M. Roos, W. J. Willis, and C. Wohl, University of California
Radiation Laboratory Report No. UCRL-8030, August 1966
revision (unpublished).
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TaBLE I. Calculated and experimental partial widths (in MeV) of
the odd-parity baryon resonances.

S- or D-
state
prob- Calc. Expt.
ability partial partial
Particle Mode %) width width
(1,2) multiples
Yo*(1405) Er)s 28 35 (input) ~35
(1,4) multiplet
Yo*(1520) NK 9.4 2.9 4.6
zr 14.1 8 9
(8,40 multiplet
N*(1518) N= 8.6 69 ~40
(N*r) s 35 69 $40(s40)
(N*r)p 30.5 10
Y1*(1660) NK 0.07 0.2 ~17.5
A 0.8 3.7 ~2.5
I 7.0 17 ~15
(Y*r)g 5.8 10.5 $10¢s4p)
(Y*r)p 5.1 0.8
E*(1820) AK 142 2.8 ~10
ZK 0.31s 0.2s Unseen
Em 0.31s 0.8 ~1
(8,6) multiplet
N*(1688) Nx 1.42 24 ~35
N*g 20.0 39 (I'r=100)
Y1*(1765) NK 3.8 26 ~42
Ax 1.42 12 (input) 12
p7 s 0.95 5 <3
Yi¥r 3.3 2.5 ~8
(8,2)a multiplet
N*(1570) (Nw) g 12.8 52 ~39
(Vqg)s  7.5(11.6)>  15(23)b Seen
N*r 10.3 5 (rr=~130)
Y,*(1670) (NK) s 20.0 67 Seen (I'r~18)
Er)s 0.52 2 Unseen
(An) s <1 Seen
(8,2)s multiples
N*(1700) (Nw) s 17.6 84 5220
@m)s 33061 11(17)® (I'r=~240)
N*r 8.1 17
(10,2) multiples
N*(1670) Nr) g 3.13 14.5 ~80
N*r 14.2 25 (I'r=~180)

& Calculated numbers for E* computed on basis of decuplet-octet mixing
[see Eq. (6.4)].

b The n-mode parameters outside and inside parentheses are calculated on
the basis of #-X mixing angles of 0° and —104°, respectively.

The S-wave and D-wave partial widths are assumed
proportional to the products of the phase-space factors
and the probabilities of the states in the S-wave and
D-wave state vectors. No dependence of the decay
amplitudes on the M\ factors has been assumed. The
predicted probabilities and partial widths are shown in
Table I, and compared with the experimental partial-
width data. The S-wave modes are distinguished with
the subscript .S. The subscript T' indicates an experi-
mental total width. The calculations were made by
taking the ¥¢*(1405) — 72 and ¥,*(1765) — 7A as the
input S- and D-state decays, and using the following
phase-space factors, ps=k, pp=Fk°/M*: where M is the
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mass of the composite, and % is the decay momentum.
A correction for a finite radius of interaction may be
appropriate, especially for the D-wave decays. How-
ever, since the data are tentative and the effects of
symmetry breaking are not small, such a correction
would depend sensitively on the modes chosen as input,
and so is not made in this paper.

The f/d ratios of the (PN) decay modes of the octet
resonances are especially interesting. The D~wave, PN
wave functions of the predicted spin-§ and -} octets
are listed below:

¢P(8,6)= (4/35)\*[(5/8)"*(PN)a
— (1/8)Y2(PN);— (1/4)V2(P.N)],
©P(8,4),=0.415[0.472(PN)4
+0.783(PN)4-0.405(P:1N)],

P (8,4),=0.221[0.129(PN)4
—0.790(PN);—0.600(P,N) ],

6.1)
6.2)

(6.3)

where the numbers outside the brackets are included
so that the entire D-state wave functions, rather than
the (PN) parts, are normalized to unity. The predicted
f/d ratios of the observed (8,6) and (8,4), multiplets
are (—3%) and 1.24, respectively.

The Y * particles of the (8,6) and (8,4), multiplets
are ideal for measuring f/d ratios, since the k° phase-
space factors corresponding to any two of the wA, 72,
and KN modes of either of these particles are within a
factor of two of each other. It is seen from Table I that
the measured 7A/72 and KN/(wA+xZ) branching
ratios are quite different for the Y;*(1660) and
Y,*(1765), and that these differences are in the same
directions as the theoretical predictions.!’'® Qur pre-
dictions are also in accord with the phase-sign analysis
of K—n— Ax~ amplitudes by Kernan and Smart, which
indicates that f/d is less than one for the ¥Y*(1765)
and more than one for the ¥*(1660).18.19

The £*(1820) is a bit of a problem, because of the
experimental fact that the KA decay rate is much
greater than that of either the 7% or KX mode. It may
be seen from an SU(3) Clebsch-Gordan table that this
behavior is inconsistent with an octet assighment and
any f/d ratio, and is also inconsistent with a pure
decuplet assignment.!® One possible way out of the
dilemma would be to assume that the E* is associated
with the representation 27, but there is no experimental
evidence for any of the other members of the multi-
plet. An alternative possibility, not in conflict with the
model of this paper, is that the particle is a mixture of

17 Decay data from the Yl*(1765) recently have been analyzed
by R. P. Uhlig, G. R. Charlton, P. E. Condon, R. G. Glasser,
G. B. Yodh, and N. Seeman, Phys. Rev. 155, 1448 (1967). These
authors conclude that the best value of f/d for this multiplet is in
the range —0.25<f/d<—0.1.

18 The relation between f/d and the parameter « used by many
authors is f/d=a/(1—a).

9 Anne Kernan and Wesley M. Smart, Phys. Rev. Letters 17,
832 (1966).
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an octet and decuplet particle.® In order to illustrate
this possibility, we have computed the branching ratios
that would result from the following admixture of
(10,4) and (8,4), states:

Y (E*)= (c0s24.9°)¢ (10,4)+ (sin24.9°)¢ (8,4).. (6.4)
The mixing angle was chosen so that the % and K=
amplitudes of the f-type octet state would cancel those
of the decuplet. It is seen from the calculated branching
ratios of Table I that this mechanism can explain the
KA dominance. If this octet-decuplet mixing hypothe-
sis is correct, the other decuplet states, and another
spm-g,':'* should be found.?

It is instructive to trace the origin of some of the
predicted f/d ratios. The Clebsch-Gordan coefficients of
SU(6) are such that the f/d ratios associated with the
PN states of the (8,4) and (8,2) multiplets of the
representation 70 are (—3%) and $§, respectively.’® The
predicted f/d ratio for the physical spin-§ octet is the
same in the quark model and SU (6)w model, since this
multiplet arises from the (8,4) states of the 70 in both
models. On the other hand, the quark model does not
lead to a definite prediction for the f/d ratio of the
physical spin-§ octet, unless a specific additional as-
sumption concerning configuration mixing is made.

The (8,2) and (10,2) multiplets are interesting, al-
though the experimental data concerning these are
meager. The experimental widths of the Ny,*(1570),

* N12*(1700), and N32*(1670) are determined from

phase-shift analyses and are not known accurately.
However, our calculations agree with the experimental
facts that the N*(1700) is the most elastic of these
particles,? and that the #N* mode of the N*(1670)
decay appears to dominate the 7N mode.?

Frequently, it has been conjectured that the n-baryon
octet decay modes of all particles of the (8,2), multi-
plet will stand out experimentally. If this occurs, and
if the n-X mixing is not extremely large, some strong
SU (3)-breaking mechanism must be present. A candi-
date for such a mechanism has been proposed by Mitra
and Ross.® We do not assume an SU (3)-breaking mech-
anism, but have calculated the nN decays of the
N*(1570) and N*(1700) from the S-wave state vectors
determined from Eqs. (5.6), (5.9), and (5.14). If these

20 This possibility has been suggested by Mitra and Ross, Ref. 5,
and by the author, Ref. 8.

2L A new ¥1* of mass about 1680 MeV has been discovered by
M. Derrick, T. Fields, J. Loken, R. Ammar, R. E. P. Davis, W.
Kropac, ; Mott and F. Schwemgruber, Phys Rev. Letters 18,
266 (196 ). The _spin and parity of this particle have not been
measured. The K"p/-;r*A branching ratio is 0.340.2. The upper
limit on the = *2° mode is given by »*2%/x*A <0.25. If this reso-
nance is associated with the (10, 4) multiplet of the present model,
and k% phase-space factors are used the predicted branching ratios
are 7TA:K%:rt20=1:0.44:0.18. Thus, this assignment is con-
sistent with the data.

22 C. Michael, Phys. Letters 21, 93 (1966).

23 P, Bareyre, C. Brickman, A. V. Stirling, and G. Villet, Phys
Letters 18, 342 (1965).
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¥ are normalized to unity, the PN parts are given by

¥(8,2),=0.713[0.131(PN),
+0.828(PN);+40.546(PN)+-- -],

¥(8,2),=0.724[—0.931(PN)4
+0.087(PN)+0.357(P.N)+---].

The N decay amplitude depends on the #-X
mixing angle 6, and is given by the formula
1 (cost)[(})12C4—C; ]+ (sind)C;, where the C are the
coefficients of the d-type, f-type, and P; terms in the
S-wave state vectors. The assumption that the Gell-
Mann-Okubo sum rule for the squares of the P-meson
masses is exact leads to the condition |6|~10%°. We
choose the sign of 6 from the quark model, ie., the
mixing is such as to decrease the sum of the probabili-
ties of the A quarks and antiquarks in the wave func-
tion of the lighter meson. This leads to the choice
6= —10%°; the sign is opposite to that of the V-meson
case because the octet probability exceeds the singlet
probability in the wave function of the lighter P
meson. The calculated 7V partial widths corresponding
both to =0 and = —104° are shown in Table I.

The existence of the Y¢*(1670) is somewhat un-
certain. However, if the particle exists, future measure-
ments concerning the branching ratios will be extremely
interesting. The 7= and KN modes are of comparable
phase space, and are of pure d type and predominant
f type, respectively. The KN /xZ ratio is a good measure
of f/d. Furthermore, the nV mode is also pure d type
in the absence of 7-X mixing, so the n/V/xZ ratio may
provide evidence concerning the mixing.

B. Average Masses of the Multiplets

We now consider the mass-splitting of the (70, 3)
supermultiplet, placing particular emphasis on the
possible effects of the mass-splitting parameters \s.
Since SU (3) breaking is not considered in this paper,
we discuss only the average masses corresponding to
the nine SU(3)®SU(2) multiplets. Only one or two
members of four of the octets and decuplets have been
identified; in these cases the average experimental mass
is taken to be 130 MeV heavier than that of the strange-
ness-zero member.

It is clear that the mass splitting should not depend
on \; alone, for in the SU(6)w-symmetric bootstrap
models of the meson and baryon supermultiplets no
parameter analogous to \; appears, yet appreciable
splitting occurs. In baryon bootstrap models, an as-
sumption that has been quite successful in fitting the
experimental masses is the assumption that the mass
(or mass squared) is a linear function of the average
meson mass and average baryon mass in the wave
function. Using this as a guide, we try the following

24 See R. H. Capps, Phys. Rev. Letters 14, 456 (1965). This
paper contains references to pre-SU (6) papers in which a similar
assumption is made.
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TaBLE II. Contributions to the formula for the average masses of
the SU (3)QSU (2) multiplets, in MeV.

Sum of
Multi- b ¢ (abc) Calc. Expt.
plet  term term terms A mass mass

1,2) 39 0 1405 0 1405 1405
1,4) 154 0 1520 0 1520e 1520
(8,4)a 87 314 1767 0.14  1660s 1660
(8,2), 103 124 1593  —0.14 1700 ~1700
(8,6) 154 498 2018 025 1820 ~1820
(8,2)s 85 56 1507 —0.44 1845 ~1830
(84, 107 256 1729 —0.22 1901 Unseen
(10,2) 147 208 1720 —033 1976 ~1800
(10,4) 113 475 1954 0.17 1826 ?

a Input masses used to determine the parameters.

formula for the average masses of the SU(3)@SU(2),
odd-parity baryon multiplets:

Mi=a+b({u)i—pp)+c((m)i—my)—d\i,

where (u); and (m); are the rms meson and baryon
masses of the S-wave state vectors corresponding to the
multiplet 7, and up and my are taken for convenience
to be 410 MeV and 1159 MeV, the rms masses of the P
octet and N octet. The parameters \; are those of
Egs. (4.9). The constants @, b, ¢, and @ are to be de-
termined phenomenologically; if Eq. (6.5) is sensible
they should all be positive.

In Table II the experimental masses of the multi-
plets are compared with those calculated from Eq. (6.5),
and also to the masses calculated when the d term is
omitted. Since the ¢ and d terms both vanish for the
two SU(3) singlets, these multiplets are used to de-
termine ¢ and b. The average of the A parameters for
the (8,4), and (8,2), multiplets is nearly zero, so the
average of these masses is used to determine ¢, and the
(8,4), mass is then used to determine d. The values of
the constants are

a=1366 MeV, b5=0.34,

(6.5)

¢=215, d=1770 MeV.

The predicted masses are of the right order, though
that of the (10,2) multiplet is somewhat too high. It is
seen from those rows of the table after the (8,4), row
that the sign of the difference between the experimental
mass and that calculated from the @, b, and ¢ terms
alone is always opposite to the sign of A, as it should be.
Thus, there is some evidence for the effect of the A
term. This ‘“‘spin-orbit” splitting term helps explain the
fact that the 1405-MeV Y¢* stands out experimentally
more than any of the other spin-} particles, since the
splitting parameters vanish for the SU(3) singlets, and
favor the larger spins for the other multiplets.

VII. CONCLUSIONS

The SU(6)w-symmetric composite model of the
hadrons, in which the constituent particles are the
lighter mesons and baryons, is an attempt to understand
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SU(6) symmetry. The quark model also may be re-
garded as an attempt to understand SU(6) symmetry.
It is natural that results that depend directly on the
symmetry are common to the two models. One of the
main points of this paper is that many predictions that
go beyond SU(6) symmetry are also common to the
two models. One such prediction is the limitation of
meson resonances to the SU(3) representations 1 and
8, and of baryon resonances to the representations 1,
8, and 10. It was pointed out previously that the spin-
dependent potentials in an SU (6)w-symmetric theory
are limited to these representations, so that the experi-
mental absence of other representations may be ex-
plained by the assumption that spin-dependent po-
tentials are crucial’! In the present paper we have
elucidated three other features of an SU (6)w-symmetric
model of baryon resonances that exist in the quark
model: a spectrum classifiable by the group SU(6)
®0(3), a mass-splitting term with a spin-orbit-type j
dependence, and configuration mixing. The existence of
approximately SU (6)w-symmetric M BB and MMM
interactions may be one of the reasons that the quark
model works so well.

The SU(6)w model leads to more predictions con-
cerning these baryon resonances than does the quark
model, since the several spin-orbit-type splitting and
configuration-mixing parameters are calculable. It is
shown in Sec. VI that the extra predictions, as well as
those common to the quark model, are in satisfactory
agreement with experiment. )

It is worthwhile discussing briefly the intrinsic
symmetry-breaking that is present in this model. The
potential (Born approximation) satisfies exact SU(6)w
symmetry in the collinear directions. However, be-
cause of the nonzero A parameters, the potentials in the
different states are not all the same. These potentials
are expected to lead to composites of different masses.
It is clear that if we had calculated scattering ampli-
tudes, in which poles associated with the nondegenerate
composites existed, the amplitudes would not satisfy
the exact symmetry. This is not a contradiction, be-
cause the right-hand, unitarity cut must be included
in a calculation in which the poles appear, and the
momentum of each virtual particle associated with this
cut need be in the direction of the collinear amplitude.
Hence, the cut violates collinearity, and also SU(6)w
symmetry.

The assumptions of this paper are different from those
of a previous paper by the author on odd-parity baryon
resonances.® The principal difference is that the po-
tential is taken to correspond to the SU(6)w repre-
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sentation 70 in the present paper, and to a superposition
of representations in Ref. 8, the coefficients of the
superposition being determined from the assumption
that meson exchange supplies the forces. One motiva-
tion for the modification of this paper is the fact that
other forces may be important. For example, the forces
resulting from exchange of the resonances themselves
may be important. If the resonances correspond to the
70, these forces are such as to increase the attraction in
the SU(6)w state 70, and decrease it in the state 56.25

The experimental data favor the present model over
that of Ref. 8. In Ref. 8 the strongest potentials corre-
spond to the representations 70 and 56; for this reason
it is not surprising that the spectrum corresponds to
the sum of the SU(6)®0(3) representations (70, 3)
and (56, 3). Experimentally, there is no evidence for
the (56, 3) resonances.

Many undiscovered particles are predicted by the
model. If the assumption that the E*(1820) is an octet-
decuplet mixture is correct, another nearby 5*, and the
other decuplet members should be observed. In par-
ticular, Nj* and YV,* particle should be found with
masses on the order of 1600 and 1700 MeV.2 The
N*(1570) and N*(1700) particle should belong to octets
with (PN) couplings that are predominantly f type
and d type, respectively. Another spin-§ octet should
be found, with (PN) coupling predominantly of the
f type. It is interesting to note that the predicted
coupling of the undiscovered (8,4); multiplet to PN
states is comparitively small, as seen from Eq. (6.3).

The techniques of this paper may be applied to other
systems, such as MM and B(MM) systems, where
(MM) denotes a multiplet of even-parity meson-meson
resonances. We shall make a few comments about even-
parity MM systems. If the MM potential is taken to
correspond to the representation 35, the theorems of
Sec. IV A apply. However, the arguments concerning
the spectrum and spin-orbit interaction of Sec. IVB
do not apply, since the MM states contain two mathe-
matical antiquarks. One can show that an MM,
SU(3)®SU (2)w multiplet of w spin 1 contains spin-1
and -2 states, in general, while a w-spin-0 multiplet
contains spin-0 and -2 states. Thus, the assumption of
a 35 potential will lead to a set of particles similar to
that predicted from the quark model, except that the
SU(3) singlet states are limited to spin-1 and
spin-2 states.

26 The 70-exchange column of the 56&)35, SU(6) crossing
matrix is given by V. Singh and B. M. Udgaonkar, Phys. Rev. 139,
B1585 (1965).



