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this becomes
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The following identity is easily verified for the
Lippmann-Schwinger equation":

t(a)[(a—h)-' —(b —h)-'$t(b) =t(a) —t(b). (A17)

'9 The proof is

~(~) —~(&) =~(~) (~—h) '~ —~(&—h) 'll(&) =~(0}(~—h) '~(&)
—$(g) (g—Ig) Ip($ —h) 1$($)—$(g) (y —h) 1$($)

+t(a) (a —h)-'v (b—h) 't(b) = t(a)[ (a—h) '—(b—h)-'gt(b).

Therefore (A14) becomes

tl(E h2) (E kl —k2) t2(e2) (E kl —k2) tl (el)

tl (E—k2) (E kl k2) t2(E—kl)

X (E—hl —h2)-'tl(el) . (A18)

The second term cancels the second term of (Ag). The
irst term of (A1g) and the erst of (A8) combine again

using the identity (A17) to give (A13). Hence the

product form is the solution even though the equation

naively does not seem to want it to be. This shows that
in problems for which the product form is a good first

approximation, simple interpretation of the Faddeev

equations is particularly dangerous,
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It is shown that a quasipole plays an important role in low-energy meson-baryon scattering. The influence

of this quasipole, which exists on the second Riemann sheet just below the elastic threshold and has a
residue of the same order of magnitude as that of the nucleon pole, is analyzed by extrapolation of the data of
the pion-nucleon scattering amplitude. Since the residue of the quasipole is related to the pion-nucleon

coupling constant, this extrapolation gives an independent possibility for determining the coupling constant.
The result is g'/4n = 13.9.

INTRODUCTION
' 'UST below the elastic threshold, the pion-nucleon

scattering amplitude has a quasipole with the residue
of +0.77(gs/4tr) for 2'=

2 on the second sheet. ' Neglect
of this fact has so far hindered a simple description of
low-energy pion-nucleon scattering in terms of the
nucleon poles and the 3-3 resonance pole. The purpose
of this paper is to examine the inQuence of the quasipole
on this scattering amplitude by analyzing the low-

energy data of pion-nucleon scattering. We shall erst
repeat the definition of the quasipole and then compute
its residue. It is to be noticed that this computation
can be performed without making any approximation,
solely by means of the unitarity condition and the
spectral representation of the scattering amplitudes.

QUASIPOLE

Let us consider pion-nucleon scattering, with masses

p and m, respectively, first neglecting the spin of the
nucleon; the results for actual physical case will be
given later on. We will assume the following two
conditions:

' T. Sawada, Phys. Rev. Letters IS, 567 (1965).

(i) Spectral representation.

For t&1.

g' tr ttt2+2tss —Sq g' 1 1
«l 1+ l+ &t,v+

2q' & 2q' ) rtt2 —s 2q' sr

ct'A, (t', )Q, l
1+

2qsf 2q'~

(~e) '

and for 0&l&i-

( 2rrts+2tss —I'—s)
tEN'A. (I',s)Qtl 1+

2q' f
'

(1)

gs 212+2
«(s) = — Qt 1+ I+f1(')

2q' 2q'
(2)

Sg
at(s)-alt(s) = «(s)«'(s)

S
(3)

where ft(s) is an analytic function of s regular at
s= rrts+2ts2, and I. is a finite positive integer.

(ii) Unitarity condition.
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co]ab—p (Mey)
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0.183+0.003
0.198+0.003
0.213&0.003
0.221~0.003
0.252+0.003
0.293+0.004
0.314~0.004
0.293+0.003
0.219~0.004
0.179&0.004
0.040~0.003

m'+2ts2 —s

Then we can prove the following theorem concerning
the second-sheet amplitude A" (s, cos8), which is defined

by the analytic continuation through the elastic cut.
Theorem: In a small neighborhood of s= s+=ms+ 2122,

for (m+ts)2&st (m+2ts)' Since we are concerned with TABLE I. LReB'~2(s 1l/4~raj minus the nucleon Pole contribution.

the neighborhood of a point s= ms+ 2tss, it is convenient
to introduce a new infinitesimal variable p2 defined by

—I/m- (in units of pion mass; ]M, =1)

g oo Qi(1+~')A" (s, cos8) = — g (2]+1)
&+a Qi(1+ ) )

where

1
X&i(cos8)+0 —!, (5)

! in&[2)

g2

a 2ip/s

The proof is given in Ref. 1. From this theorem we
see that the information about the spectral functions
A2(t', s) and A (se', s) is not needed in order to obtain
the value of A" (s, cos8) in the small neighborhood of
s=m2+2ts2. If we use the formula relating Qi to the
Bessel function E„,

called the quasipole which is characteristic to the
second-sheet amplitude. '

When the nucleon spin is taken into account, the
pion-nucleon scattering can be described in terms of
two independent amplitudes, A and B. As usual, let
us introduce two other independent functions, fr and fs,
which are more convenient for the partial-wave
expansion':

fr L(8+m——)/82r W]LA+ (W—m) Bj,
f2 [(E—m)/——SsrW]$—A+ (W+m)B j (12)

If we fix cos0=1, the pole and the quasipole of the
second-sheet function in the small neighborhood of
s=s+ are given by

/1 —ts2/4m2) "'
(fr+f2)"= —t!

&1+2t 2/ms/

where
+0(t 2), (7)-

$—$+a s—s+

1 1 r(a)
X— —+ +0(1), (13)

and change the summation of Eq. (5) into integration
over $, then we have

p, 3m 1—ts2/4m2) '"
f2 —1

2 (m'+2ts2)"' 1+212'/m')

i 1+rt2
P (21+1)

1+a-'Q (1+212) where

1- 1 r(a)
X— + +0(1), (14)

8 S—$+ $—$+

with

d$,
1+a 'Ko($)

(10)

=—Z„yC,+0! !, (9)
E!inst! 2/

and
2g2 ts ts2 )—'~2

a—'=+
42r 2m 4ms/

for Z =2y

" E(&o(t))'
r(a) = —— d$,

a o 1+a 'Eo($)
(15)

and a similar expression for C+. Sy combining Eqs.
(4), (5), and (9), the forward scattering amplitude
becomes

g'(W —1) g'
A (s, 1)= + +C'+0(!ln21! 2) (11)

$—$+ S $+

The second term of the right-hand side of Eq. (11) is
the nucleon I pole g'/(m' —I), while the first term is

g2 p p2 )—1/2

a—'= —— 1——!
42r 2m 4m2)

for Z =g.

In Eqs. (13) and (14) the first term in the square
brackets is the nucleon I pole which also exists in the
Grst sheet of the scattering amplitude, while the second
term is the quasipole characteristic to the second-sheet

2 M. I, Goldberger and K. M. Watson, CotHssosr Theory (John
Wiley 8z Sons, Inc. , New York, 1964).
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Pro. 1. The extrapolation of the
low-energy pion-nucleon scattering
amplitude for T=-,' versus labor-
atory energy. F(s} is related to
ReB(s,1) by Eqs. (19) and (18).
s+=eP+2y' is the position of the
quasipole.

0.'0

singularity. In this paper the low-energy data of the
pion-nucleon scattering will be compared with the
predicted values of Eqs. (13) and (14) for the case of
isospin ~3. For the case of isospin ~~, a little more elaborate
analysis is needed, since the denominator of the inte-
grand of Eq. (15) vanishes, which corresponds to the
appearance of the series of poles. This case will be
treated elsewhere.

The pion-nucleon scattering data are cited from the
article by Hamilton and %oolcock.' Let us consider an
analytic function of s,

(17)

which is regular at the threshold s=(rN+p)s and
coincides with ReBr(s, 1) when s takes a physical value.
The quantity deined by

I(s) ReB(s,1) 1 2gs 1

o, 3

is given in Table I.' In order to eliminate the singularity

Tax,z II. Predicted values of the residue of the quasipole E. for
various values of the pion-nucleon coupling constant g'/4s'.

2.0
2.1
2.2

g'/4s-

13.44
14.10
14.76

—0.2'Q
—0.291—0.311

1,0
0.0 0.5' t, o

I

Lg

g-Osofs)2

' J. Hamilton and W. S. Woolcock, Rev. Mod. Phys. SS, 'B7
(1963).

FIG. 2. Plot versus laboratory energy of the low-energy data on
pion-nucleon scattering for T=$ with the nucleon pole and the
quasipole subtracted. G(s) is related to ReB(s,t) by Eq. (21).
The dashed line is the subtracted quasipole.
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the nucleon u pole and. the quasipole subtracted, i.e.,
the function

of S*,a function defined by

1 I(s)
(s—sn) (s—so*)

s—(m+p) s 7r

F(s)= (s—sg) (s—sg*) ReB(s,1)
G(s) =

4m'p' 4gmI(s)-'
(s—sg) (s—sg*) (19) 2g2 f $ g2 0.77

(21)
m 4g s—s+ 2m4+ s—s+

—s=(m+p) s

will be analyzed, where S& is the position of the 3-3
resonance, QSg=8.66+i0.41 in units of pion mass.
Sz is determined by the 3-3 partial-wave fit done by
Noyes and Edwards. ' The residue of the quasipole is
obtained, just as in the usual extrapolation, by plotting
the function (s s+)F(s—), which is shown in Fig. 1.
From this extrapolation we have as the residue

For comparison, the contribution of the quasipole to
G(s) is indicated by the dashed line. Notice that the
plot of Fig. 2 becomes a straight line, which corresponds
to the vanishing of the background term. This shows
that the low-energy value of 8""&(s,1) comes solely
from the nucleon pole, the 3-3 resonance pole, and the
quasipole. The reason that the existence of the quasipole
has been overlooked for such a long time is that this
singularity can be found neither by the perturbation
expansion of finite order nor by the summation of the
partial-wave functions up to a finite /; furthermore it
exists on the second sheet of the scattering amplitude
although its position is very close to the physical region.

(~—~+V'( )
A= lim = —0.285' '+ 4m'p'

in units of pion mass, (20)

while predicted values are given in Table II for various
values of the coupling constant. These two values
become identical, if g'/4s = 13.9. This reasonable
agreement definitely shows the existence of the quasi-

p
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Ke investigate the perturbations of tensor operators due to symmetry breaking and consequent repre-
sentation mixing. A group-theoretical stability principle, valid for an arbitrary (simple, compact) group is
formulated, which in many cases assures the vanishing of the erst-order perturbation when it is constrained
to leave a certain component unaltered. The physically interesting case of unitary symmetry is discussed in
detail. All previously known results are recovered and several new results are deduced. As an application
we discuss the conditions under which the universality of the Cabibbo angles for leptonic decays is valid.

IÃTRODUCTIOH
' "IGHER symmetries of strong interactions that

~ ~ ~ ~ have been proposed in recent years have been
remarkably successful in the organization of the data
on particles and resonances. But they all share the

property of being broken appreciably, either by virute
of interactions of lesser strength which violate these
symmetries or by virtue of some other mechanism. In

* Supported in part by U. S. Atomic Energy Commission.

t On leave of absence from Tata Institute of Fundamental
Research, Bombay, 'India.

the case of unitary symmetry and the spin-dependent
symmetries these symmetry violations as manifested
by the observed mass diBerences are appreciable.
Nevertheless, it is remarkable that a considerable
remnant of the symmetry survives in the observable
features like supermultiplets and mass and coupling
constant sum rules. Thus, for example, the identification
of the sources of electromagnetic and weak interactions
to be octet currents seems to be in quantitative agree-
ment with experiment in spite of the large representa-
tion mixing expected in view of the departures from
unitary symmetry. We should therefore search for a


