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The amplitude for a reaction leading to three free particles is studied in the context of nonrelativistic
scattering theory with particular emphasis on the distribution of information about final-state interactions
of a given pair. We show that contrary to the simple notions often read into the Faddeev equations, terms
ending with the interaction of a given pair do not carry the major information about interactions of that
pair. When a coherent combination of all terms contributing to the process is taken, a factor clearly carrying
the features of a pair s final-state interactions appears multiplying the entire amplitude. This factor carries
the elastic-scattering phase of the pair. It will dominate the variation of the amplitude with respect to final-
state interactions of the pair if certain other terms vary slowly, and this seems plausible. Application of this
result to triangle singularities shows that the coherent combination of terms with and without final re-
scattering changes the singularity qualitatively. The assignment of a final-state interaction factor onto the
entire amplitude for each pair suggests a product-type final-state wave function for the process. The impli-
cations of this for overlapping resonances are discussed with particular reference to static models and the
absence of the Peierls mechanism. The case of two particles interacting independently with a fixed center, for
which the product wave function is exact, is discussed from the Faddeev viewpoint and shows that a multiple-
scattering approach can be misleading.

I. INTRODUCTION
' 'N states involving more than two strongly interacting
~ . particles, the interactions between the various pairs
are coherent. Thus for any process involving the par-
ticles, information about a given pair s interactions is
distributed over the entire amplitude. Since one of the
major motivations for the study of multiparticle states
is to obtain this information about pair interactions, it
is important to understand how it is distributed. In
this paper we study this question for nonrelativistic
three-body systems. It is usual in studying these to
separate the amplitude into parts according to which
pair interacts "last." Such a separation is particularly
natural in the three-body theory of Faddeev where it is
formally exact. ' It is often further assumed on physical
grounds that the major features of any pair's inter-
actions are carried predominantly by that term in which
the pair interacts last. We show that this is not so, and
that when the coherence of terms is taken into account
the entire amplitude carries the information. The way
in which the term with final rescattering combines with
those without this rescattering to distribute the in-
formation about the pair interaction over the entire
amplitude is closely related to the way the integral
term combines with the real Born term in the two-body
Lippmann-Schwinger equation to give the complex two-
body amplitude.

The impetus for examining this question came from
our exact three-body calculation of the reaction
e+d ~ n+rs+P 'This react. ion is of particular interest
for the information it can give on the strong low-energy
neutron-neutron interaction. We found numerically
that this e-e interaction showed up more clearly in the
entire reaction amplitude than it did in those terms

* Supported in part by the National Science Foundation.' I. D. Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960)
/English transl. : Soviet Phys. —JETP 12, 1014 {1961)].' R. Aaron and R. D. Amado, Phys. Rev. 150, 857 (1966).
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involving only a 6nal m-m rescattering. In static models
it is also known that the effects of each possible pair-
wise interaction on a three-body final state is carried in
the full amplitude rather than being distributed among
the various pieces. ' In this paper we show that this
effect, found numerically in the three-nucleon case and
known in the static model, is a general feature of three-
body states. In fact the result is easily generalized to
final states of more than three particles.

Our criticism of the usual argument that in a reaction
leading to three particles the terms ending with inter-
actions between a given pair carry the primary informa-
tion about that pair is based on showing that the part
of the amplitude coming before the final interaction is
not slowly varying in magnitude or phase and therefore
the variation of a term ending with a given pair inter-
action as a function of that pair's energy does not have
a simple interpretation in terms of the pair s two-body
t matrix. However, when the terms ending with inter-
actions between the other pairs are added in to form
the total reaction amplitude, a multiplicative factor
emerges on the entire amplitude that does have a simple
interpretation in terms of the pair s elastic-scattering
amplitude and phase shift. Furthermore, it seems reason-
able to assume that the terms coming before this factor
are now slowly varying so that the primary information
about a given pair s final-state interactions is carried
in this final factor on the entire amplitude. One of the
principal features of this factor is that, considered as a
function of the center-of-mass energy of the pair in
question, in a given partial wave for that pair, it has
the elastic-scattering phase of the pair. If the phase of
the rest of the amplitude varies slowly in this variable,
the variation of phase of the entire amplitude as a func-
tion of the pair energy will be that of the elastic two-
body scattering phase of the pair.

3 C. Goebel, Phys. Rev. Letters 13, 143 (1964).
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If the entire amplitude for a process leading to three
particles acquires a factor for each pair, we might
expect it to carry a product of factors. In fact it is not
possible in general to specify the angular momentum and
energy of each pair in a three-body state, and hence it
is not possible to assign a unique elastic-scattering state
to each pair simultaneously. Nevertheless, there are
special cases such as low-energy reactions or static
models in which only one partial wave dominates for
each pair and one can write the amplitude with a product
of phase factors. This product form would emerge
naturally if we wrote the three-body final state wave
function as a product of two-body wave functions. The
product wave function is a venerable approximation in
the three-body problem, but does not seem to arise
gracefully in the modern Faddeev formulation, which

begins with a sum of terms partitioned according to
sequential multiple scattering ideas. It has been found
recently by Day in the study of three-body clusters in
nuclear matters, for example, that a product type of
wave function is far superior to the sum of correlated
parts that seems to come naturally. from the Faddeev
approach. 4 That work and what we present here can be
taken as a note of caution against reading simple,
physical approximation schemes from the formally
correct Faddeev equations. In view of this, it is instruc-
tive to study the Faddeev equation for the case of two
particles interacting independently with a static poten-
tial and not with one another. This problem is exactly
solved by a product wave function. In the Appendix we
show how the Faddeev equations can also be made to
yield this result, but it is also clear that it is not a very
natural approach to the problem.

The study of coherence in three-body final states cari
also be made to shed light on the question of triangle
singularities. ' These occur when in a three-body final
state the particles can propagate on the energy shell

for large distances before the final rescattering. If this
Gnal rescattering is large, this should give an anoma-
lously large (singular) amplitude. This process is co-
herent with the same process without the final rescatter-
ing and the combination of the two terms changes
qualitatively the nature of the process.

Another question of considerable interest in multi-
particle states is overlapping resonances. The existence
of a product form for the three-body amplitude would

seem to reinforce the case for enhancement of the three-

body amplitude when two two-body resonances overlap.
In numerical investigations of exactly soluble static
models no such enhancement is found. ' We show how

this can be in spite of the product form which is exactly
applicable to these models.

' Ben Day, Phys. Rev. 151, 826 (1966).' I. j.Aitchison and C. Kacser, Phys. Rev. 142, 1104 (1966).
This detailed paper contains many references to earlier work.

' F. S. Chen-Cheung and C. M. Sommerleld, Phys. Rev. 152,
1401 (1966).

In Sec. II we show how the terms in the amplitudes
leading to three free particles combine coherently so
that the information about a given pair's interactions
seems to reside most naturally in the entire amplitude
for the process rather than in the terms ending with
interactions of that pair only. Section III discusses
triangle singularities and shows in particular that the
coherent addition of the rescattering term to the term
without 6nal rescattering gives a vanishing triangle
singularity for resonant rescattering. In Sec. IV some of
the consequences of a product form are discussed with
particular reference to overlapping resonances. An
exact solution of the Faddeev equation for a product
wave function is given in the Appendix.

II. COHERENCE IN THE THREE-BODY
AMPLITUDE

We now show that in a three-body final state, the
terms involving final interactions between the various
pairs combine coherently or interfere so that the infor-
mation about a particular pair's interaction is not
cairied by the terms that end with rescatterings of that
pair but by the entire amplitude.

For concreteness we will illustrate this result in the
context of a reaction in which two particles interact to
give three, all diferent. Labeling the 6nal particles 1,
2, and 3, the reaction is 1+(23) ~ 1+2+3, where (23)
stands for a bound state of 2 and 3 or an elementary
particle coupled to 2 and 3. In either case, we assume

(23) is stable against spontaneous decay into 2+3.
We shall use a Faddeev formalism to describe the
reaction. ' In such a formulation the complete amplitude

(1,(23) i T~ 1,2,3) is written as the sum of three parts

T= Ti+T2+T8. (1)

These satisfy the set of coupled equations

Ti (T2+ T3)G0328

T2 + GOt18+ (T1+T3)F0~181

T8=H~G412+ (T1+T2)GO~12 y (2)

where t,; is the two-body scattering amplitude in the
three-body space, 60 is the three-body free particle
Green's function, and II' is the interaction mechanism
for the coupling (23)~~2+3. These equations are
represented graphically in Fig. i. The two-body
amplitudes which appear are in general o8 the energy
shell, a typical term being in momentum space

(Pi,P2~P8I~»IP1 P2 P8)
=(Pi,P2l ~»(~—0») I

Pi', P2')~(P3 —P8'), (3)

where t is a solution of the ordinary two-body Lippmann-
Schwinger equation with energy variable E—e». E is
the total three-body energy variable and e» the energy
appropriate to momentum P8.

From (2) we can read off the significance of Ti, T2,
T3. T; is the sum of all terms contributing to T which
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(23)

(23)

(23)

3
2 +
I

2+ t 2+
I I T= (To+To) (1+Gotoo), (7a)

T= H Gptro+ (T1+To) (1+Go«o), (7b)

T=+ Gptlo+ (T1+T2) (1+Gott&) (7c)

shell t,l„which phase is the elastic j-k phase. For this
to be so what comes before this last t;I„ in particular
Gp must have a slowly varying phase. We shall show
that this is not so. To see this we note that using (2)
the entire amplitude can be written in any of three
equivalent ways.

2 +
I

FIG. 1.Graphical representation of the coupled Faddeev equations
PEq. (2)g for the reaction 1+(23) ~ 1+2+3.

end with t;0 (i' Wk) Fu.rthermore, on-shell for the
three-body state a given final t;», will be half-on-shell.
That is, the 6nal two-body energy will be equal to the
energy variable in the amplitude. An important prop-
erty of such two-body-half-on-shell amplitudes in a
given partial wave is that they have the elastic-scatter-
ing phase. That is, in the two-body center of mass the
scattering amplitude from relative momentum p to q
in the /th partial wave with energy e~ appropriate to
momentum q can be written

(pl«(t. ) lq)=~1(p q)t1(q) (&)

where t&(q) =(ql t&(eo) I q) is the on-shell amplitude and
A is real. This theorem seems not to be universally
known although it is in fact implied by the oG-shell

equation of Kowalski~ and Noyes. ' A simple proof of it
can be given from off-shell unitarity alone without
recourse to Lippmann-Schwinger —type equations. The
half-off-shell unitarity relation is

Im(PI «(") I q) =(Pl t1(")Iq)t1*(q)t (q), (5)

where p(q) is some real density-of-states factor. One can
always write (pit&(eo) Iq) in the form (4) with 2 arbi-
trary and hence (5) becomes

I~1(P,q)t1(q) =&1(P,q) I t1(q) I'p(q); (6)

since the left-hand side is real so A must be and the
theorem is proved.

In view of this result and of the interpretation of T;
given above, it seems tempting to assert that if in a
three-body Gnal state a given pair jk has a strong 6nal-
state interaction then that interaction will manifest
itself most clearly in T; and not particularly strongly in
T; or T~. We would expect this dependence to show up
most clearly in the dependence of the amplitudes on the
j-k relative energy, and of the three parts only T; seems
to have a simple dependence on this variable. We might
expect, for example, that the dominant variation of the
phase of T; as a function of the j-k relative energy is
given by the rapidly varying phase of the 6nal half-on-

7 K. L. Kowalski, Phys. Rev. Letters 15, 798 (1965).' H. P. Noyes, Phys. Rev. Letters 15, 538 (1965).

In each of these there appears a factor 1+Gpt,; with

t;;half-on-shell. 1+Got@ has nontrival dependence on the
relative momentum of i and j and is proportional to
delta functions in all the other variables. Its dependence
on the relative i-j momentum in a given i-j partial-
wave l can be studied from the Lippmann-Schwinger
equation for t;; in that partial wave in the two-body
center of mass

«= v1+v1Got1

Dividing by e», we get

v1 't =11 +1G t o, 1 (9)

where 1» is the partial-wave projection of "one."
Since t» has the phase 8» half-on-shell and since ~» is

real, e» 't» has the phase 5» and therefore so does
11+Gpt1. It is clear from (8) or (9) how this comes about.
The t» on the right has the phase ()», but Gp has an
imaginary part. Hence the phase of say v»Gpt» is not 6»

but is cleverly organized to cancel the real ~» term so
that the sum has the scattering phase. It is even clearer
in the form 1&+Got& that it is the imaginary or on-shell

part of Gp that wiQ combine coherently with 1» to give
the entire term the scattering phase. Put in terms of
magnitudes rather than phases we can say that if v»

is slowly varying but t» is rapidly varying in some range,
v1Gpt1 must have a slowly varying part organized so
as to cancel the slow variation of e». In the three-body
problem with Faddeev amplitudes, we do not expect a
j-4 final-state interaction to manifest itself strongly in

T; or T&. These then play the role of the potential, but
T; is analogous to v»Gpt» and has a part organized to
cancel the variation of T,+T anod put a factor con-

taining the variation of t, I, on to the entire amplitude.
This factor 1+Gpt occurs in each of the forms of T in

(7); in addition (7b) and (7c) contain H'Gotro and
H'Gpti~. In this case, however, no additional phase
arises from the Gp since (23) is stable against spon-
taneous decay into 2 and 3 and that assures that the
intermediate state in H'Gpt;; cannot propagate on the
energy shell and therefore that Gp is always real and
slowly varying. Hence a term like H'Gptig has the phase
and variation in the 1-2 center of mass in a given 1-2
partial wave of 1-2 elastic scattering in that wave from
the half-on-shell factor ti~ and that is all. Therefore
each of the forms for Tin (7) shows that as a function of
thei- j center of mass energy in an i-j partial wave, the
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entire T acquires a factor that gives it the variation and
phase of i-j elastic scattering. This is so for each pair.

In multiple-scattering language one can see why this
arises by noting that each term contributing to the
amplitude that ends with a Got;; is fed by a term which
also appears without the Got;; and this is just the
combination needed to get a factor for the total
amplitude with the i-j scattering variation and phase.
Of course this feeding term is also complex and a func-
tion of the relative pair energy under study. Hence this
result by no means establishes precisely the phase or
variation of the entire amplitude in any variable. It is
possible to take the three relative pair energies as
independent variables and therefore to discuss the
variation of the amplitude in one of these while the
other two are kept fixed. (To stay on the energy shell
the total energy must vary as one pair energy does. )
What is hoped is that when the other variables are
kept fixed, the variation in phase of the amplitude due to
variation of the relative i-j center-of-mass energy in a
fixed / wave is dominated by the last factor and this
carries the i-j elastic-scattering variation and phase.
Although we cannot prove this in general, we see from

(7) that now the piece before the phase-bearing factors
has a chance to be slowly varying since it is made up of
terms ending with an interaction between a non-
dominant pair. It is also clear that in a reaction leading
to more than three particles one can again divide the
amplitude so that each term ending in Got;; is "fed"
by a term that appears without Got;;) so that again the
entire amplitude has a factor with the phase and varia-
tion of t;; in the appropriate variable.

These results imply that in the three-body case the
Faddeev separation of the amplitude into terms accord-
ing to which pair interacts last is misleading in the way
in which it distributes information about the final-state
interactions among the pairs. The term 1+Gpt;; which
occurs in the regrouping of the Faddeev amplitudes is
just the two-body scattering wave function. Since this
occurs for all pairs, the results arrived at above indicate
that in some sense a product of two-body wave func-
tions is a better approximation to the three-body final-
state wave function than the sum of terms, each
dominated by a given interaction as one might normally
expect from the Faddeev equation. Vnfortunately, it
does not seem possible to specify the relative pair
energy and the partial wave for each pair independently,
and therefore one cannot in general use a product form
directly. However, in some sense a product is better.
This has been noticed by Day in the study of three-

body correlations in nuclear matter where a product
type of approximation seems to do a much better job
than a sum of correlated two-body terms. 4 In Sec. IV
we conjecture a product form motivated by the results
of this section which may be valid in a broad class of
cases, and in the Appendix we discuss the case in which
the product is exact (two independent systems), and

FIG. 2. Typical triangle
graph for the reaction
1+(23)~ 1+2+3

(23)

show how the Faddeev equations, although formally
correct and capable of giving the answer, are misleading.

H'Gpt»Got» ) (10)

where H' is the mechanism for (23)-+ 2+3, and trs
and t» are two-particle t matrices in the three-body
space. They are appropriately off-shell. The graph itself
appears in Fig. 2. The point of the triangle singularity
is that although the energy denominator in the first
Gs of (10) cannot vanish because (23) is stable, it can
in the second. Hence that intermediate state can propa-
gate on the energy shell. If the masses of the particles
are right, this state will propagate a long way before the
final 2-3 collision. If further t» is big at that energy,
the contribution from this graph will be anomalously
large in the physical region. This is the triangle sin-
gularity. Experimentally such singularities have proved
very elusive. '

From the previous section it is clear that the con-
sideration of (10) above is not enough. If (10) con-
tributes to the reaction, so must the term without the
final t»)

We also saw in the last section that the argument that
this piece knows nothing of t» and therefore cannot
interfere with (10) is wrong. In fact the sum of the
two terms is

+ Gsils(1+G423) ~

It has the familiar 1+Gstss factor. We saw in the
previous section that this factor has the phase of t»
in a given particle wave, and in particular that the 1 is

' The effect of such a singularity may have been observed by
J. Lang, R. Muller, W. Wolfli, R. Bosch, and P. Marmier t Phys.
Letters 15, 248 (1965)], bnt in their case the final rescattering is
low-energy n-p scattering which has a large scattering length, but
is not resonant.

III. TRIANGLE SI5GULARITIES

Much attention has focused in recent years on a
particular subclass of three-body final states, those
having triangle singularities. ' In this section we show
that the coherent combination of the triangle graph
with other lower-order graphs acts to change qualita-
tively the nature of the singular contribution and in
fact to remove it in many cases.

We study the situation in the example of the previous
section, the reaction 1+(23) ~ 1+2+3 in which
particle 1 is incident on a bound state of 2 and 3, (23),
to give three particles 1, 2, and 3. A typical triangle
graph comes from a term in the total amplitude of the
form



1418 R. D. AMADO 158

1Vofe added its proof; The argument of the preceding
paragraph is incorrect. The principal-part term is also
singular in the case of a triangle singularity. As Schmid
shows, " the leading singularity then is proportional to
exp(2ib) rather than exp(i5) cos5 as in (16). Thus the
cross section as a function of p' only will show no egect
of the singularity for any b. In a Dalitz plot there may
be effects of the triangle graph, but a correct account
of these still requires a study of the triangle graph @ed
the coherent nonrescattering graph.

coherent with the energy-conserving part of Go. Since
it is jpst that part that plays the key role in the triangle
singularity, we must be particularly suspicious of
leaving the 1 out.

In order to see explicitly how this coherence arises
and how the factor 1+Gsf» acquires the 2-3 elastic-
scattering phase we pass to the 2-3 center-of-mass
system, and factor out the delta function on the
momentum of particle 1 and the center-of-mass mo-
mentum of 2 and 3. Thus the factor 1+Gsfss in the
2-3 /th partial wave for going from relative 2-3 mo-
menta k to p is

IV. DISCUSSION —OVERLAPPING
RESONANCES3(k- p) (kl & (p') IP)

4sr ps 2srs (ps —ks+ se)
(13)

We have seen in Sec. II that coherent combination of
the terms contributing to a three-body amplitude will

give the entire amplitude as a function of the center-of-
mass energy of a given pair in a given two-body partial
wave, a factor with the phase appropriate to two-body
elastic scattering of that pair in that partial wave. Since
the three-body amplitude gets a phase factor from each
pair, it is tempting to assume that the entire amplitude
carries a product of three-phase factors exp(i5), one
from each pair. This is generally not the case since we
cannot independently specify the energy and angular
momentum of each pair in its own center of mass. It is
true, however, that for a given three-body momentum
and angular momentum, the relative energies of the
pairs in their own centers of mass form a set of inde-
pendent variables. This follows from the work of
Omnes, "who showed that in the three-body center-of-
mass system, with the three-body angular momentum
and its components 6xed, the state of the system is
specified by giving the energy of each of the particles.
These three energies are linearly related to the three-
pair energies, and therefore these form a perfectly good
set of independent variables. It is not possible in general
also to specify the angular momentum of each pair.
However, there are many interesting cases in which the
angular momentum is 6xed for dynamical reasons. For
example, in three-body reactions or decays at low
energies each pair is predominantly in a relative s state,
or sometimes because of selection rules a p state. In
these cases in which each pair angular momentum is
dominated by one partial wave, the conclusions of
Sec. II would lead us to try to write the full amplitude
with a product of factors carrying the two-body varia-
tion and phase of each pair. We could then assume that
the remaining variation of the three-body amplitude
depends only on the total energy.

where we have taken A= 1 and the reduced 2-3 mass=-,',
and used the fact that the center-of-mass energy is
p'. The normalization and phase conventions are those
of Merzbacher. "We now separate the Green's function
into principal part and delta function to give for (13)

&(k—p) . & (kl& (p') lp)
(1+ p«(p'))-, (14)

4srP' 2srs P' —k'

where fr(P') is the on-shell amplitude and in this
normalization is

sin5~(p')
«(p') = exI Ls~~(p')), (15)

and therefore (14) becomes

~ &klf ( )lp)
costs(p') e"«+'& — — . (16)

4srp' 2srs P' —k'

Since the half-on-shell amplitude has the phase 8 and
since the principal part factor is real, the form (16)
shows explicitly that 1&+Got& has the scattering phase.
Furthermore, the terms are now incoherent in the sense
that there is no cross-term since 5(x)P(1/x) =0.

We see from (16) that the effect of combining the
terms is to make the coef6cient of the on-shell part
cosb rather than the sinb one would expect from (10)
alone. This qualitative change in the nature of the
contribution of the 6nal 2-3 scattering to the triangle
singularity is particularly important if the 6nal re-
scattering is resonant, since in that case cosh=0, and
the amplitude of the singular term is zero. This may
account for the difhculty in observing triangle singu-
larities since examples with resonant final scatterings
have usually been chosen in hopes of making the e6ect
big ll

generally known result. )Cf. G. Chew, M. Goldberger, F. Low,
and Y. Nambu, Phys. Rev. 106, 1345 (1957); C. Goebel and H.
Schnitzer, fbi. 123, 1021 (1961).g So far as I know it has not been
previously applied to triangle singularities. However, criticism
of the usual triangle-singularity discussion has been given recently
from a different point of view by C. Schmid [ibid. 154, 1363
(1967)g. I would like to thank F.Low for bringing an unpublished
report of this work to my attention.

u R. L. Omnes, Phys. Rev. 134, I31358 (1964).

"E.Merzbacher, Qgaatssra Mechanics Qohn Wiley 8rSons, Inc., ,

New York, 1961), Chap. 12.
"The fact that terms with and without 6nal rescattering com-

bine coherently in this way, and that in particular the on-shell
part is zero for resonant rescattering seems to be an old but not
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We are, of course, more interested in the dependence
of the magnitude of the amplitude on the pair energy
than the phase. The most likely candidate for carrying
information on both the magnitude and the phase of
the two-body scattering is the Fredholm denominator
function or the D function of the two-body t matrix.
It is D ' that has the scattering phase in the two-body
case. Hence, in the reaction leading to three particles
with total three-body angular momentum J where each
pair is mostly in one partial wave, we conjecture an
amplitude of the form

Ej(els) els) esp p E)
)

+j(E)D12(els)Dls(els)D2$(ess)

where D,, (e;,) are the two-body D functions, each a
function of the relative pair energy e;;. hz(E) is the
irreducible three-body part of the denominator. It
contains the three-body bound state poles of angular
momentum J and any genuine three-body resonances.
E is the total three-body energy. It is not linearly
independent of the e's, but we write the amplitude this
way to indicate which combination of variables plays
a role where. Ez is a real function and is slowly varying
if the form (17) is to be useful. An amplitude with the
product of D functions like this was previously obtained
by Blankenbecler on different grounds. '3

Forms such as (17) also arise naturally in the three-
body sector of static models, where the restriction of
pair angular momentum is a natural one. ' In particular
these forms have been used to discuss overlapping
resonances in these static models. In these it is usually
assumed that mesons, free to propagate, interact with
a static source in some partial wave, but that there is
no meson-meson interaction. Then the form (17) emerges
exactly, but with only two final D functions. If each of
these two-body D functions has a resoriance at some
particular energy, then at the three-body energy
appropriate to both on resonance, the three-body
amplitude given by (17) should be enhanced and per-
haps resonant. This is the Peierls mechanism in this con-
text. ' This mechanism has been investigated in a solv-
able version of the three-body sector of the Lee model.
The model is complicated so as to introduce a resonance
in the $-8 sector' " and the three-body (V-0) sector
solved numerically. ' In fact, no such complication is
necessary to discuss the problem since as Fonda,
Ghirardi, and Rimini" have shown the ordinary Lee
model admits a stable V particle and an g-0 resonance
by a choice of the source function. In the numerical
calculation no enhancement emerges in the three-
body system at the double resonance energy. This can
also be seen to be the case analytically in the simpler

'~ R. Blankenbecler, Phys. Rev. 122, 983 (1961).' R. F. Peierls, Phys. Rev. Letters 6, 641 (1961)."T.M. Luke, Phys. Rev. 141, 1373 (1966)."L. Fonda, G. C. Ghirardi, and A. Rimini, Phys. Rev. 133,
8196 (1964).

Lee model" with resonances produced by the sources.
This absence of Peierls mechanism occurs even though
the form (17) is exact in these cases. How this comes
about can be seen by considering the unitarity relation
for elastic scattering in the three-body sector (V-8
scattering in the Lee model case). This relation is

(18)

where T22 is the elastic-scattering amplitude and T23
is the breakup amplitude, which is asserted to have the
form (17). ps and ps are phase-space factors and 6(E)
is an energy-conserving delta function. Inserting (1'/)
for Tss in (18), we get

ImT22(E) —
I
&22(E) I ps(E)

1 ~ 1V(e,E—e E) '
+ p(e,E «)d», —(19)

I A(E)
I

p, D(e)D(E e)

where e is the energy of one of the mesons produced and
we have assumed they have the same D function for
simplicity. If E is slowly varying and D(E) has a
resonance at e„, it is easy to see that the integral on the
right of (19) will resonate at E= 2e, . Hence if 1/ I

6 (E) I

'
is smooth, ImT22 will resonate at E=2e„and so will
T22. But the usual arguments would lead us to hope
that a resonance in Tss should show up in 1/6 (E), since
that is the three-body part of T». We would expect the
three-body D functions of T» and of T» to have the
same resonances and bound states. But if 1/5 resonates
at E=2e, and the integral does as well, the contribution
of Tss to (18) will be a double resonance, contrary to
assumption. The way out is that 6 has a term in it
proportional to the integral so that at E= 2e„, 6 grows by
just the amount needed to cancel the enhancement from
the integral and the entire term does not resonate. "
This is precisely how the Peierls enhancement is
cancelled in the Lee model. Since this is not a resonance
in the three-body part of the production-amplitude D
function, we need not expect it to show up in the elastic
scattering. It seems likely that all this happens in
general.

If such an interplay of two- and three-body parts
occurs in the general case, the situation with overlapping
resonances is quite complicated. The discussion of Sec.
II shows that we cannot write the amplitude as a
simple sum of parts each with one of the resonances,
but this discussion indicates that the straightforward
interpretation of the product form is also too simple.
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fu = 1u+gu(ou)4(&u) ~ (A2)

APPENDIX

In this Appendix we study the Faddeev equation for
three-body problems in which two particles interact
independently with a fixed scattering center and not
with one another. This problem is trivially solvable in
the Schrodinger-equation form since the Hamiltonian
is a sum of two commuting parts and therefore the
wave function is a product. Since, however, the Faddeev
approach insists on starting by writing the solution as
a sum, the problem is not trivial in that formalism.

Since the idea of a scattering amplitude is not very
natural for this problem, let us study the wave func-
tion. The scattering wave function for particle 1 on the
fixed center may be written

41 11+gl(&1)~1(&1) (A1)

where 1i is the plane wave and g~ is the free-particle
Green's function for particle 1, 1/(oi —ki) where ki
is the free-particle Hamiltonian for 1. t~ is the scattering
amplitude and e& is the energy eigenvalue. Corre-
spondingly for particle 2

where G,= 1/(E —ki —ku) is the full free Green's
function and the t matrices now appear oG-shell. +2
can be eliminated to give an equation for 4&. If w' e
define Ti by Ti——t~(E—ku)G&u(E —ki)%, then Ti
satis6es

T—Ti+ Tu ) (A9)

where T2 is defined like T~, then we see that T is the
connected part of the scattering amplitude for this
problem, and (AS) is the Faddeev equation for that
amplitude. We did not write it down first since it is
not the natural thing to study in this problem. Equation
(AS) is represented diagrammatically in Fig. 3. We
note that each term in Ti begins with ti(E—ku) so we

might expect Tj to begin that way. On the other hand,
looking at (A9) we see that

T= Ti+Tu= Go gi(oi)gu(ou)4(oi)4(ou) ~ (A10)

The problem is how to split this into T~ and T2. This
can be done by noting that 0 satis6es"

so that
+= 1i1u+Go(oi+~u)+,

+i= 1i1u+Go&8',

(A11)

(A12)

Ti——ti(E—ku) Go4 (E—k,)
+ti(E—ku) Go4 (E—ki)Goti(E —hp)

+4(E-ku)Go4(E-ki)GoTi. (AS)
If we call

Then the full solution of

(ki+ku+oi+vu)%= &I

may be written

(A3)
and since we have 0, C~ can be constructed. Alter-
natively, one can guess at Ti and Tu from (A10). The
correct ansatz is

ol
4141 E oi+ ou (A4) T,= 4(oi)Gotu(ou) . (A13)

In the Faddeev formalism we write

+=+i+To—1i1u,

and the Faddeev equation becomes

@i——1i1u+Go(E)4(E—ku)@u )

eu= 1i1u+Go(E)4(E—ki)+i )

(A6)

(A7)

+= 111u+11gu(ou)4(&u)+ 1ugl(ol)fl(ol)

+gl(o1)~1(ol)gu(ou)4(ou) ~ (AS)

In (A13) if E= oi+ ou, the final t will always be on the

energy shell. Then the difference between the answer

(A13) and the first term of (AS) is only that the first

t~ is put on the final energy shell. There does not seem

to be any way to represent this term graphically. Pre-
sumably it represents the fact that both particles are
interacting at the same time with the scattering center,
whereas our graphical language is sequential. That
(A13) is the solution is not obvious from the form of
the equation. To show that it does satisfy (AS) we

study the last term of (AS) with (A13) inserted for Ti.

$1(E ku) (E kl ku) 4(E kl) (E kl ku)

X4(oi) (ou ku) '4(o—u) . -(A14)

We have written out the Go terms and used the fact
that E= oi+ou so that particle 1 is on the energy shell

in the next to last intermediate state. Now since we

have

FIG. 3. Graphical representation of Eq. (A8} for a Faddeev
amplitude in the case of the independent scattering of two
particles (represented by wavy lines) from a axed center (solid
line).

(A15)

's This method of constructing $1 and p~ is due to I.Alexandrov,
I am grateful to him for explaining it to me.
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this becomes

—tl(E—hs) ts(E—hl)
E—h1—h2

1 1 y 1
X l lt2(es) tl(el) . (A1&)

kE kl ——k2 e2—k2) el kl

The following identity is easily verified for the
Lippmann-Schwinger equation":

t(a)[(a—h)-' —(b —h)-'$t(b) =t(a) —t(b). (A17)

'9 The proof is

~(~) —~(&) =~(~) (~—h) '~ —~(&—h) 'll(&) =~(0}(~—h) '~(&)
—$(g) (g—Ig) Ip($ —h) 1$($)—$(g) (y —h) 1$($)

+t(a) (a —h)-'v (b—h) 't(b) = t(a)[ (a—h) '—(b—h)-'gt(b).

Therefore (A14) becomes

tl(E h2) (E kl —k2) t2(e2) (E kl —k2) tl (el)

tl (E—k2) (E kl k2) t2(E—kl)

X (E—hl —h2)-'tl(el) . (A18)

The second term cancels the second term of (Ag). The
irst term of (A1g) and the erst of (A8) combine again

using the identity (A17) to give (A13). Hence the

product form is the solution even though the equation

naively does not seem to want it to be. This shows that
in problems for which the product form is a good first

approximation, simple interpretation of the Faddeev

equations is particularly dangerous,
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It is shown that a quasipole plays an important role in low-energy meson-baryon scattering. The influence

of this quasipole, which exists on the second Riemann sheet just below the elastic threshold and has a
residue of the same order of magnitude as that of the nucleon pole, is analyzed by extrapolation of the data of
the pion-nucleon scattering amplitude. Since the residue of the quasipole is related to the pion-nucleon

coupling constant, this extrapolation gives an independent possibility for determining the coupling constant.
The result is g'/4n = 13.9.

INTRODUCTION
' 'UST below the elastic threshold, the pion-nucleon

scattering amplitude has a quasipole with the residue
of +0.77(gs/4tr) for 2'=

2 on the second sheet. ' Neglect
of this fact has so far hindered a simple description of
low-energy pion-nucleon scattering in terms of the
nucleon poles and the 3-3 resonance pole. The purpose
of this paper is to examine the inQuence of the quasipole
on this scattering amplitude by analyzing the low-

energy data of pion-nucleon scattering. We shall erst
repeat the definition of the quasipole and then compute
its residue. It is to be noticed that this computation
can be performed without making any approximation,
solely by means of the unitarity condition and the
spectral representation of the scattering amplitudes.

QUASIPOLE

Let us consider pion-nucleon scattering, with masses

p and m, respectively, first neglecting the spin of the
nucleon; the results for actual physical case will be
given later on. We will assume the following two
conditions:

' T. Sawada, Phys. Rev. Letters IS, 567 (1965).

(i) Spectral representation.

For t&1.

g' tr ttt2+2tss —Sq g' 1 1
«l 1+ l+ &t,v+

2q' & 2q' ) rtt2 —s 2q' sr

ct'A, (t', )Q, l
1+

2qsf 2q'~

(~e) '

and for 0&l&i-

( 2rrts+2tss —I'—s)
tEN'A. (I',s)Qtl 1+

2q' f
'

(1)

gs 212+2
«(s) = — Qt 1+ I+f1(')

2q' 2q'
(2)

Sg
at(s)-alt(s) = «(s)«'(s)

S
(3)

where ft(s) is an analytic function of s regular at
s= rrts+2ts2, and I. is a finite positive integer.

(ii) Unitarity condition.


