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Mass Forrtiula and "Broken SU(3)" in an Associative Algebra
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An associative algebra, which contains the enveloping algebra of the Poincare group and the enveloping
algebra of SL(3,c), is considered. Its reduction with respect to irreducible representations of SU(3) is studied
and a mass formula is derived, which contains the mass formula for mesons of "broken" SU(3) as a special
case, The results are compared with experimental data.

I. INTRODUCTION

A TTEMPTS to understand the breaking of the
SU(3) symmetry as exhibited by the mass for-

mula have mainly been undertaken in the framework
of a large group G, containing the Poincare group (P

and the intrinsic "broken symmetry" group. The pro-
gram of the dynamical group approach' was to Gnd a
large group 6 such that an irreducible component of
its enveloping algebra h(G) describes various particles
and resonances as different states of one physical system
represented by an irreducible representation space of
h(G), and that the mass spectrum is a consequence of
the property of 8(G). The existence of such a group
has been disproved by the O'Raifeartaigh theorem' and
Aerie' was the first to suggest combining the algebras
of SU(3) and the Poincare group (P to an algebra A,
which was not a Lie algebra. The structure that "re-
mained of A in the rest frame" was however again a
Lie algebra, as a consequence of which he obtained a
mass formula, which was linear in the mass and the
intrinsic quantum numbers, whereas experimental data
favor quadratic mass formulas. "

Generalizing the original idea of a dynamical group,
we have studied in a previous work a simple associative
algebra of continuous operators in a rigged Hilbert
space, which contains h(6') and h(SL(2,c)), and gives
rise to a quadratic mass formula. This model was
simple enough to learn about the mathematical prob-
lems connected with such an approach. In the present
paper we shall investigate a more complicated and more
realistic model in the same mathematical frame as in I.'

II. DEFINING RELATIONS OF THE ALGEBRA

The algebra S of our model is a combination of the
enveloping algebra of the Poincare group B(6') with
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and the U. S. Atomic Energy Commission.
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to as I.

the enveloping algebra of the intrinsic spectrum gen-
erating (or noninvariance) group SL(3,c). Thus S is
generated by

[H,,H, 7=0,

[E.Ep]=& pEV

[H;,E ]=r;(cr)E,

[E,E ]=r'( )Hct;,

[G„G,]=0,

[G,,F.]= r, (cr)E., —

[F,Fp] = S,pE„—
[F.,F .]=—r'(~)H, ,

[H;,G;7= 0,

[H, ,F ]=r;(ct)F,

[E,Fp]=X pF~,

[E.,F .]=r'(~)G, ,

[G;,E ]=r;( )F .

[L„„,Hc]=0,

[L„„E]=0,
[L„„,G;7= 0,

[L„„,F,]=0,

[P„,H~]=0,

[P„,Ept] = 0,
' Notation (A,B)=AB+BA; PA, Bg=AB BA. —
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(3a)

(3b)

(3c)

(3d)

(4b)

(4c)

(4d)

(4e)

(4f)

(4g)

(4h)

(4i)

(5a)

(Sb)

(Sc)

(Sd)

(Se)

(5f)

M= (P„P&)'ts, tt, v=0, 1, 2, 3,
H;, Ep, i=| 2,
6;, Ii~, n=123,

where the multiplication is delned by the relations':

LP.,P.7=0, [L",P.]=s(g"P. g-P ) —(2)

[L„„L„]= s(g„,L„,+—g„.L„, g„.L„, g—„,L„,),—
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[MP„,E,M]=g(rs(n) (Hs,E )—3r1(n)(H1,E )
—3X 1 {Ep1,E 1)

—31V1 (E 1,E P1))P„,

[MP„,G~]=3g Q r1(n) (E,F )P„,
0!—+2,+3

[MP„,F M]=4grs(n)(Hs, F )P„

III. INVARIANT OPERATORS

(12)I'„XM—MXI'„=0

for every XQ h(SL(3,c)). In the same way as in I, one
Gnds Werle's equation

We see that relations (5) and (6) are built in analogy
to relations (7) and (8) of I.A consequence of relations

(6) and (Sa), (Sb), (Sc) is that

(Sh)

+3g Z & s(E-s E s) Pu-' (»)
P +2,+3 [P„/M,X]=0 (13)

Here g is a constant of the dimension (MeV)s (in the
units we use, b= c= 1), the value of which we determine
later from experimental data.

The root vectors are (in the normalization we use')

I'= —(P P~)-'I'„I's, I'„=—,
' s„„P"L~'

[I,X]=0

for every XQ h(SL(3,c)).
From (14) it follows that the spin operator I' is an

invariant operator of the whole algebra S. So an
irreducible component of S—and therewith the physical
system described by it—is characterized by one spin s.

From comparison with I we presume that the 4
generators of the center of 8(SL(3,c)), C1, Cs, Cs, C4,
are also invariants of S. That C; commutes with I.„„
follows from the relations (Sa), (5b), so that it remains
to show that [C;,P„]=0. The easiest way of seeing this
is with the help of the other central element of 8:

r;(1)= (1/V3) (1,0), r, (2) = (1/21t3) (1,43),
r;(3)= (1/21I3) (—1, VZ), (7a)

r, (—n) = —r;(n), (7b)

&-p=~V'o i«(n)+r(P)=r(V)
is also a nonvanishing root vector (7c)

=0 otherwise;

in particular,

(P„XM MX—;P„)=0 for every X;P(F,G,,E ). (6) for every X&8(SL(3,c)) and therefore for the spin
operator

+1,3 +3,1 +—3,—1 +—1,—3 +3,—2 Z=M' g(4Hss+3 —Q {E,E )). (15)=-& 2,3=& 2,1=-&1, 2=&2,-3
+—32 +—12 +2,—1 ~6 ~

/1 (7d) As Z is a central element it is in particular [C;,Z]=0
and therefore follows from (15):

[C;,M'] =0,

[C;,M]=0.

(16a)
and therefore

(8I'= 2H2
and the isospin is (16b)

In the normalization we have used here, ' the hyper-
charge is

Is ——43H1, (I1&iIs)= (go)E+1, (9a)

so that the isospin operator [Casimir operator of
SUr(2)] is

From Eq. (12) it follows immediately that

[P„,X]M= [M,X]P„ (17a)

I'=3(HP jE+1E,+E 1E+,1).

The second-order Casimir operator of SU(3) is

(9b) for every X&8(SL(3,c)), so that we obtain from (16b):

[C;,P„]=[C,,M]P„/M =0.

6=3(HP+Hs'+Q E E,). (10)

On the irreducible representation D(lj, r,Xs) of SU(3), 8
has the value

[Z,L„„]=0 (19a)

So it remains to show that Z is an invariant operator
of S.

in particular for those representations where X1=X2=X

(which we shall be mainly interested in)

e(X)= X'+2K. (11b)

As in I, we restrict ourselves here to those irreducible
components of 8 for which (f M' f) &mo'~~ f ~~s, ~o& 0

(19b)

= fE+1 [E-r,H'])+ (E-1 [E+1»'])=0

[Z,H;]=0

follows from relation (Sc), from (3a), and from

2 LH, ,E.E .]= LH', (E+.,E )]-—-
0.=+2+3

where the 6rst equality is a consequence of (10) and
Mod. Phys. 34, 1 (1962). the last a consequence of (3b) and (7b).
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(19c) it is sufhcient, because of (Se), to show that[Z,Egg= 0

follows from (Sf) and [H2,E+q]=0 and. Z L{E-E--) F.1=0.
t

Because of (17a) this follows from

Q [{E,E ),3II'j=0,
ix=2) 3

3 Z LE-E--,E"j=-3[(H"+H"+(E+~,E-.)),E.D
+2y+3

= —[I2E pl=0

which is a consequence of (9) and (10).To show that

(24)

[Z,E.j=0, n= a2, a3 (19d) which we now show. With (20) we obtain'

=r2(n)(H2, E ) —3«g(n)(Hg, E }
—3X g.{Egg)E~ ))—3Xg,{E g)E~pg).

Comparing (20) and (21), we obtain (19d). The relation

[Z,G,3=0 (19e)

is proven in the same way: From (Sh) we obtain with
(17a)

(22)[M',G'j=3g E «'(n)(E-, F=).

From (4e) and (4i) it follows' that

[(4H2+3 Q {E,E .)),G,j
=3 2 L(E E-.) G']

=3 Q —(E,F,)r, ( n) {E„F )r;(n). — —
%=2,3

Comparing (22) and (23) we obtain (19e). In the same
way it is seen that

[Z,F.)=0. (19f)

To prove the last equation:

we 6rst calculate [M2,Ej. From (17a) we obtain

[MP„,XMj=[M',X]P„(17b)
for every XQ $(SI.(3, )c), so that we obtain with (Sg):

[M',E ]=g(rp(n)(H2, E }—3«g(n) {Hg,E,}
—3E i (E+i,E -i)—3)Vi {E-z,E +~}) (20)

With (10), (3b), and (3d) we have for

[EsE s,E-j-
P +2,+3

= —3(K,E.) r&( )—3«,( ) (H2, E.)—3[(E+,E ),E.l
=3(—(Hi, E-)«i(n) —{H2,E.)r~(n)

—{E~g,E g)X g
—(E g,E py}Xg ),

so that we obtain

[(4H«'+3 Q {E,E,)),E,]

Q [{E,E ),M'j
I

=g Z (—«2(—n){E- (H2E--))

+3«g( —n)(E, (Hg, E )})
=+g3 Z (&-i,--{E-,{E+~E---~) )

0;=+2,+3

+&i,--{E-,(E-~,E-~~))).
The 6rst sum on the right-hand side is zero, which
follows with (3b) from the property (7b). So we obtain
using (7d) and (7c):

Q [{E,E },M'j
0!~2,3

=3g(v'6) ((E (E2+-4E+ ))3{E2,—(E 4E 3-))-
—(E,(E,E }}+(E,(E,E )})=0

because of (3c) and (7d). Thus (19g) has been proven.
Therewith it has been proved that Z is an invariant

operator. '

IV. COMMUTING SYSTEM

The internal invariance group or the degeneracy
group of M' is the direct product of the isospin and
hypercharge group SU(2)r X U(1)r, which follows from
relations (Sa)—(5f). Therefore

I';, 53, I') I3) I'

together with the generators of the center C;, I', Z
belong to a system of commuting operators.

From (Sa)—(Sf), together with (24), it follows that
also the Casimir operator 8 of SU(3) commutes with
the elements of (26). In the same way one might be
able to show' that the third-order Casilnir operator 63
of SU(3) also commutes with (26); we shall not show
it here, because in those irreducible components of
which we are interested. in [which contain the de-
generate series representation (m=0, p) of SL(3,c)), 6s
will always be zero. So we have found in

C,, I', Z, F;, S3, I2, Ia, F', 8, By=0 (27)

[Z,P„]=0,
' L{A,B},Cj= {A,(B,Cj)+{B,(A,Cjl.

(19g) a commuting system.

' The relations (5) have been set up such that this is fu16lled.
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[MP„,X,M]=0

for X,Q{E+~,+3,F,G,) and therefore with (17b)

(28a,)

and with (17a)
LM', X~]=0

[P„,X~]=0.

(28b)

(28c)

To construct the representation space of S we start
with the representation space of (P and SL(3,c).

VI. RIGGED HILBERT SPACE OF SL(3,c)

The rigged Hilbert space of SL(3,c) is constructed in
complete analogy to the SL(2,c) case described in
Andersen et al. ,

' Sec. II C. To obtain the space 0' of
analytic vectors we use the prescription given in the
second part of Sec. II F of Ref. 9. For this purpose we
need to know the content of representations of the
maximal compact subgroup SU(3) in a global repre-
sentation of SL(3,c). This we obtain from the Gelfand
and Neumark theory of the classical groups. "

The unitary irreducible representations of the prin-
cipal and degenerate series of SL(3,c) are characterized
by the 4 numbers (mu, m3, p&,p3) and the 2 numbers
(m3, p~), respectively, where m& are integers and p& are
arbitrary pure imaginary numbers. Thus the Casimir
operators C, are on an irreducible representation func-
tions of these numbers:

C,=f, (mm, m3, p2, p3)

C;= f;(m3,p,),

(29a)

(29b)

respectively; in the last case only two of the four
Casimir operators are independent.

We consider first the principal series representation
characterized by (mm, mz, pm, pa). From theorem 5 and
theorem 6 of Sec. 10, part I of Ref. 10 follows the
theorem:

Let g ~ T, be an irreducible representation of SL(3,c)
characterized by (m~, m3, p2,p3); let T be the representa-
tion of its simple unitary subgroup SU(3) when SL(3,c)
is restricted to SU(3) in the representation g

—+ T,.
T contains an irreducible representation D(X&,X,) of
SU(3) if the representation space 3C(X&,X2) contains a
weight vector of the weight" ((1/2v3)m2, '-,' (2m3 —m, )).

The irreducible representation DP &,X2) of SU(3) is
contained in the representation T„characterized by

' C. M. Andersen, A. Bohm, and A. M. Bouncristiani, Boulder
Lectures, 1966 (unpublished).' I. M. Gelfand and M. A. Neumark, Unitare Darstellungen der
Klassischen Gruppen, Berlin, 1957 (unpublished).

"Weight is the eigenvalue of the two-component "vector"
(HI,H2); weight vector is its eigenvector.

V. LIMITING CASE OF ZERO COUPLING

In the limit of coupling constant g
—+ 0, S goes into

the enveloping algebra of the direct product P&&SL(3,c).
Because then we obtain from (5g), (5h), (»):

(m2, m3, p2, p3) as many times, as the space 3'.(X&,X&)

contains linear independent weight vectors of the
weight ((1/293) m2, —', (2m3 —m2) ).

From this theorem we see that in any irreducible
representation of the principal series the irreducible
representation D(X~,X2) of SU(3) occur in general more
than once, so that the eigenvalues of (27) will not be
sufFicient to characterize the states of an irreducible
representation space, and we need additional quantum
numbers, labeling the diferent irreducible representa-
tions of type D(X&,X2) of SU(3). Though the introduc-
tion of new quantum numbers might be an interesting
aspect, we want to restrict ourselves here to the case
where the eigenvalues of (27) are sufhcient to char-
acterize the states, i.e., where (27) is a maximal commut-
ing system. Therefore we are interested in irreducible
representations of SL(3,c) which contain an irreducible
representation of SU(3) at most once. These repre-
sentations we find in the degenerate series.

In accordance with Sec. 15 of Ref. 10 we call a vector
f of the irreducible representation space X(X~,X2) of
SU(3) a weight vector with respect to the subgroup
SU(2)r if the subspace spanned by P is invariant with
respect to all transformations of SU(2)r, i.e., if p is an
eigenvector with eigenvalue zero of I2.

For the degenerate series representation (m3, ps) of
SL(3,c) the above-mentioned theorem is valid, if one
replaces weight vector" by weight vector with respect
to SU(2) " and the weight "((1/2%3)m2, 6(2ma —m2))"
by "(0 -'mp). "

Thus the problem of finding which representation
D(X~,X2) of SU(3) is contained in an irreducible repre-
sentation of the degenerate series of SL(3,c) (ma, pa), is
reduced to the problem of 6nding in which representa-
tion D(X~,X2) an isospin singlet with the hypercharge
I'=-,m3 is contained and how often it is contained

This is easiest found with the help of the Gelfand
pattern" of a basis vector of X(X,X2). From the Gelfand
pattern one sees by inspection that in the representation
D(X&,X2) only one isospin singlet I=O is contained,
which has the hypercharge I'= ~2(X2—X~). Thus in the
representation (m3,pa) of SL(3,c) those representations
D(lI, ~,X2) of SU(3) are contained for which m3= P.2—X~)

and they are contained exactly once. In particular in
the representation (ma ——0, p3 ——p) of SL(3,c) the repre-
sentations D(X)=D(X~——X, X~

——X) of SU(3) occur ex-

actly once; these are the 1-, 8-, 27-, and 64-dimensional

representations. Only in this representation of the
degenerate series the octet occurs. We want to restrict
ourselves therefore to this representation (O,p).

We can now construct the rigged Hilbert space of the
representation (m8 ——0, p) of SL(3,c) in complete analogy
to the SL(2,c) case described in Sec. II C of Ref. 9.

"L. C. Biedenharn, Lecture Notes CERN 65—41 (unpub-
lished); G. E. Baird and L. C. Biedenharn, J. Math. Phys. 4, 825
(1963);J.D. Louck, ibid. 6, 1786 (1965);I. M. Gelfand and M. L.
Zetlin, Dokl. Akad. Nauk. SSSR 71, 825 (1950).
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The space of analytic vectors 0' is

+=P X(X), (algebraic sum)
)i=p

(30)

where X(X) is the representation space of D() ) in which
the basis

of eigenvectors of
II,Ig, Y; X)

P, I3, F, 6

(31)

(32)

has been chosen. LIn all representation spaces X(X) the
third-order Casimir operator 63 is zero."]

ln 0 we introduce, besides the Hilbert-space topology
given by the scalar product ()p I P), &p, PQ%', with respect
to which the elements of Z(SL(3,c)) are symmetric,
the nuclear topology by the countable number of scalar
products

(~l4)~= (~I (~+1)'l0) (33)

The completion of 0' with respect to this topology gives

P),.This topology is obviously equivalent to the topology
given by the scalar products (AA1) in the Appendix of I
Lbecause As'. &s,.&=28+C2(0,p)j. Thus by the results
of Appendix AA of I, we have in )t)),( X2( $2x the
rigged Hilbert space in which h(SL(3,c)) is an algebra
of continuous operators.

representation spaces X(X), X=O, 1, 2, of SU(3).
Also it contains one spin s. The irreducible component
of N N ( 3

—p p) which describes one physical sys-
tem —we obtain if we choose out of the space (35a) the
subspace with eigenvalue s of the operator Z:

yC.X(z)s)(m8 ——0 p))( y" (35b)

One concludes the nuclearity of P in the same way as
in I, so (35b) is the rigged Hilbert space of $.,..&o,». In
P we obtain a basis by the direct product of the basis
vectors (31) and (28) of I. However, as we have seen
in I, the result does not depend upon the choice of this
basis or the basis of generalized eigenvectors of the
maximal commuting system (27). Because of the
nuclearity of p and the assumption that (27) is a com-
plete system of commuting operators, we apply the
Dirac spectral theorem to obtain the basis of generalized
eigenvectors

II,Iq, Y,),p;,s3, (O,p), s, z&, (36)

where (m))
——O,p), s, and s are 6xed.

We obtain the mass formula and therewith the re-
duction of N, , (p p) with respect to irreducible repre-
sentations of the Poincare group, if we take the ex-
pectation value (eigenvalue) of (15) in the states (36):

m'=(l~'I &= s+g(I4H2'+3 & (E-,E--) I &;
A=2) 3

VII. REPRESENTATION SPACE OF THE ALGEBRA
AND MASS FORMULA if we use (8), (9), and (10) we can write this

To obtain the rigged Hilbert space for N we proceed
in the same way as in I. Let. &)( X&( gP again denote
the rigged Hilbert space for (a reducible component of)
8((P). Then we form the direct product of linear spaces
P&3)1)2 and equip it with the countable Hilbert-space
topology given by the scalar products

m'=z+g( I4Y' —I'+t'I )

and obtain with (11) the mass formula

m'= z+gL~ Y'—I(I+1)+X'+2Xj. (37)

Using the reduction of X()) with respect to U"(1)
XSU'(2),

(~II)~= (v 0'0) q, WGAym,
where

0=8+5(p=3(H)2+H)2+ Q E E )
ex=+1 ) +2)+3

(34a)

X(X)=Q (X"QxX')
Y,I

)& Y&—), 1-$Y&I&$Y
(XrQxX')), (38)

+(1/g)I' '+(1/g) P'+N'+M'. (34b)

The completion of )t»&2 with respect to this topology
gives the space )))) in which m is an algebra of continuous
operators. "Thus we have in

which one obtains immediately from the Gelfand pat-
tern we can write X(z,s, (0,p)):

X(z,s, (0,p))

))))( X)gX2( ))))X (35a)
=pQ+(X(m, s)QxX(X))

(39)
the canonical triplet of spaces" for the algebra S.
Again 8 is not irreducible in (35a). However, it contains
one irreducible representation of h(SL(3,c)) character-
ized by (ma

——0, p) and therefore the direct sum of the

"8)(44)= (4—4)L(2/9)(4+4)'+(1/9)44+)L)+4+1j.
'4The proof of this statement carries through in complete

analogy to the proof of the continuity of the algebra 8, in Appendix
A of I.

"XISX2 is the completion of the direct product of the spaces
X& and X2 with respect to the Hilbert space topology.

Oo (X)
=P gO+(X(m, r. ,s)OX(X"OXXr),).

))M Y,I

Thus, we have obtained in (35b) the irreducible
representation space of N, describing our physical sys-
tem, which contains according to (39) a discrete number
of irreducible representation spaces of the Poincare
group X(mr, r, )„s), where mr, r, ), is given by the mass
formula (37).
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VIII. COMPARISON WITH EXPERIMENTAL DATA S=2 27-piet resonances:

The result of our model S is worth comparing with
the experimental data.

According to the reduction of the representation
space of our physical system K(z,s, (0,p)) with respect
to irreducible representations of SU(3):

X.(z,s, (O,p))=QO+3C(X)=R 0+BC Q+SC Q+. ~ ~, (40)

F=O,
F=O,
F=1,
F=1,
F=2,

I=1,
I=2,

2)

m'= 2.46 BeV'
m'= 1.8 BeV'
m'= 2.7 BeV'
m'= 2.22 BeV';
m2= 2.62 BeV'.

we should have a singlet, octet, 27-piet, etc., of the same
spin s in which the mass increases according to the mass
formula (37).

In Ref. 16 the problem of the mass spectrum was
reduced to the problem of the simpler spectrum of
n'=n'(I, Y ) resolving it with respect to the spin
(cf. figure in Ref. 16). There we saw that the same
regularity of the masses appeared for every spin s=0,
1, 2, i.e., the dependence of n' and herewith of m' on
the internal quantum numbers I, F should be the same,
a fact reflected by (37) if g is—as it should be according
to this model —independent of s. To check (37) we
might therefore choose any of the spin values, e.g.,
s=2, where the regularity (40) shows up best, for the
other spin the situation should be roughly the same
according to Ref. 16.

For the singlet we choose fs with the mass approxi-
mately'r tttfs=1.6 (BeV)', so that z in (37) will be
z= 1.6 (BeV)'. For g we choose g= 1/2R= 0.142 (BeV)',
where R is the radius of the miniature de Sitter world
of the model in Ref. 9. We have no other reason for.
this choice than that this gives good agreement with
the experimental data 's

With these values of z and g, (37) predicts masses
for the members of the octet, which are in complete
agreement with the experimental masses of A s, E*(1400),
and E.That the spin of As and Z*(1400) is 2+ has been
recently conhrmed; there are no experimental data
against the conjecture that the spin of E(Y=O, I=O)
is also 2.

For the neutral member of the 27-piet (I=O, Y=O),
(37) predicts a mass of m'=2. 78 BeV'; recently there
has been found a new I=O, Y=O resonance gs(1670)
with this mass. Our model predicts further the following

"A. Bohm, in Proceedings of the Seminar on Elementary Par-
ticle Physics, Boulder, 1966 (to be published).

'7 The experimental data have been chosen from A. H. Rosen-
feld, A. Barbaro-Galtieri, W. H. Barkas, P. L. Bastien, J. Kirz,
and M. Roos, Rev. Mod. Phys. 37, 633 (1965); G. Goldhaber,
in Proceedings of the Thirteenth International Conference on High-
Energy Physics, Berkeley, 1966 (University of California Press,
Berkeley, California, 1967)."It should however be interesting to investigate, whether there
is a deeper reason behind this experimental connection of the
constants g and 1/E.' by perhaps combining the model of Ref. 16
with the present model.

None of these masses has been observed. "The recently
discovered E*(1800) resonance has a too high mass
compared to our predicted value m'=2. 7 BeV' and
seems to fit the scheme of Ref. 16 reasonably well with
a spin predicted to s=3.The new F=0, I= 1 resonances
have all too high masses compared to our prediction
m'=2. 5 BeV'. The other members of the 27-piet are
dificult to observe.

Ix. BROKEN SU(3) AS SPECIAL CASE

We conclude with the same remark as in I. Instead
of the irreducible representation space X,(ms ——0, p) with

p imaginary, of a unitary representation of SL(3,c), we
could have chosen an irreducible representation space
X(etta=0, p= r= real) of a nonunitary representation of
SL(3,c). In that case the representation of the Lie
algebra of SU(3) would still be symmetric and there
would be no reason why this kind of representations
should be unphysical. The foregoing consideration would
remain the same with the only difference that instead
of (39) we would obtain a finite sum over lt;

n(r)
X(z,s, (0,r)) = P Q+(K(rttr, r, &„s)QxBC(X)), (39')

where e is determined by the choice of r. In that case
the irreducible component of S would contain only a
finite number of SU(3) multiplets, i.e., we would have
a Gnite mass spectrum. In particular one can choose a
nonunitary representation (of the degenerate or prin-
cipal series) of SL(3,c) such that it contains only one
SU(3) multiplet, so that "broken" SU(3) is contained
in this model as a special case.
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"Note added in proof. Recently there has been observed an
1= 2 resonance with the above predicted mass PR. Vanderhagen
et al , Phys. Letters .248, 493 (1967)g.


