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We investigate the constraints among helicity amplitudes which hold at the boundary of the crossed-
channel physical region, like the one discovered for nucleon-nucleon scattering by Goldberger, Grisaru,
MacDowell, and Wong, and we develop a general scheme for computing these rules with arbitrary external
spins. For equal-mass elastic scattering these constraints hold at s =0; a catalog of them for several low-spin

cases is presented, Complete knowledge of these conditions is needed to discuss, for a general scattering
amplitude, a question first raised by Gell-Mann et al. in connection with electrodynamics, namely, under
what conditions must a given expression for an S matrix (e.g. , the perturbation expansion of a field theory)
be analytic in the angular momentum? Mandelstam has argued that this "Reggeization" of the vector-
spinor amplitude is a consequence of kinematic constraints, and hence independent of the perturbation ex-
pansion. He discussed only the equal-mass, j=-, case. We generalize his argument to unequal masses and to
arbitrary spins and angular momenta, and discuss, case by case, the necessity of Reggeization of a list of
low-spin amplitudes. We find in particular that under rather general assumptions a spin-~ particle must lie

on a Regge trajectory in a large class of amplitudes, and that the ~+p amplitude is analytic in j in perturba-
tion theory.

I. I]INTRODUCTION

A FEW years ago, Gell-Mann, Goldberger, I ow,
Marx, Singh, and Zachariasen, ' ' in various

combinations, studied the conditions under which an
elementary particle in conventional field theory can lie

on a Regge trajectory for all values of the coupling
constant. Following their work, Mandelstam' obtained
further insight in a beautiful paper which set up a
simple criterion for studying this question independ-

ently of the perturbation expansion. In particular, his
work explained the "miracle" which occurs iD. electro-

dynamics, namely, the factorization of Regge residues

in low orders of perturbation theory for the spinor-
vector scattering amplitude. It also showed why the
miracle does not have to happen in some other cases,
such as scalar-vector scattering.

The essence of Mandelstam's argument is the count-

ing of kinematical constraints on the several amplitudes,
e.g. , the helicity amplitudes, which describe the scat-
tering. The result is diRerent for different processes be-
cause these kinematical constraints change with the
spins of the scattering particles. To simplify this
"counting, "Mandelstam simplified the kinematics by
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studying the special case in which the two particles,
e.g. , vector and spinor, have the same mass.

The motivation of our present work was to answer
the following question: Does the "counting" always
come out the same whether or not the masses of the
two scattering particles are equal? The answer, in

general, is that it does not. In the cases studied by
Mandelstam, however, it turns out that his conclusions
remain unaltered; but we must consider this a minor
miracle, for we do not known a general criterion for
this accident to happen.

Our technical point, which has other applications
also, concerns kinematical constraints on helicity
amplitudes T„,„,»„,(s,t) at s=0, s=(rrtt&sttv)', and
s=(rttv+rrt4)'. The number of poles or zeroes these
amplitudes may have at these points is well known;
they follow from the crossing relations, and are system-
atically documented, for example by Hara, 7 or, more
recently, by Wang. ' Equal mass scattering amplitudes
have further s=0 constraints, which take the form of
relations among several T„,„,.„,„4.The first example was
discovered by Goldberger, Grisaru, MacDowell, and
Wong (GGMW)' in their classic paper on nucleon-
nucleon scattering. In the present work we find the
analogous conditions for more general spin cases. W6
shall call all the relations we find generalized GGMW,
or GGMW-type conditions.

GGMW discovered their condition by writing out the
relations connecting the five scalar invariant ampli-
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tudes G,(s, t,u) which describe SX scattering to the 6ve
"parity-conserving" helicity amplitudes f,(s,s) T. he

f; have no singularities in s= cos8 (0 is the scattering
angle) and can be expanded in partial waves with
energy-independent coeScients. Therefore, constraints
among the f; imply relations among the partial waves.
Knowledge of these relations is needed in order to
count the number of free parameters, or subtraction
constants, in the theory. One of their rules is LRef. 9,
Eq. (4.33a)]

1 m2 g2
R=—fi+ fs —sf4 —s —fs—

E' p' m'

where E, p, and s are the center-of-mass energy, mo-
mentum, and cosine of the scattering angle. Because
E'= s/4 (equal masses), G~ will have a pole at s=0 for
fixed t unless the combination in brackets vanishes
there. This, therefore, it must do, since the 6; are
supposed to have only dynamical singularities.

Mandelstam' pointed out the existence of a similar
condition for equal-mass scalar-vector scattering. We
have exhibited this elsewhere" (also see Appendix)
and have shown that it comes similarly from the re-
quirement that a scalar amplitude have no kinematical
singularities.

As the external spins are increased, this procedure for
discovering generalized GGMW conditions, and hence
for studying the Reggeization of various theories be-
comes rapidly very complicated. For the interesting
case of spinor-vector scattering there are already twelve
independent scalar amplitudes. Few would care to work
out their expansion in terms of the twelve independent
helicity amplitudes and the partial waves. However,
these conditions are, in fact, just consequences of cross-
ing among the helicity amplitudes alone, and do not
depend on the identi6cation of the scalar functions.

We develop below a procedure for discovering all the
generalized GGMW conditions for any spins from the
helicity-amplitude crossing relations, and write them
down explicitly for several cases.

These conditions are interesting in themselves,
especially for identical-particle scattering where the
equal-mass restriction corresponds to the experimental
situation. Any dynamical model should satisfy them;
otherwise the Mandelstam representation for the scalar
amplitudes is violated. They are particularly important
in Regge-trajectory exchange models, where they seem
to require either bizarre behaviors of the Regge resi-
dues or the existence of other trajectories. "In Sec. II
we explain in detail the general scheme for discovering
these conditions, and work out the examples of great-
est interest in Sec. III.

0 K. Abers and V. Teplitz, Nuovo Cimento 39, 739 (1965)."E.Leader, reported by M. Gell-Mann, in Proceedings of the
Thirteenth International Conference on High-Energy Physics,
Berkeley, California, 1966 (University of California Press, Berke-
ley, California, 1967).

Our principal interest is in the application to the
counting of free parameters and the question of the
Reggeization of field theories, or, more generally, to
decide under what conditions an amplitude cannot diGer
from its analytic continuation in angular momentum.
We discuss the formulation of this problem and compare
the equal-mass and unequal-mass cases, in Sec. IV.
Several examples are tabulated in Sec. V. Among our
results we show that Mandelstam's conclusions about
vector-scalar and vector-spinor scattering hold even
when the equal-mass restriction is relaxed; and that
any amplitude for scattering of charged spin- —,

' particles
and neutral bosons of any spin must Reggeize, just like
the vector-spinor amplitude. We also show that mS
scattering is analytic in the angular momentum in any
channel which (like m+p) does not contain a nucleon.

Svsv4; ~its(p&pspsp4)

9 'V'a
2Z II3II4i Pl &

84(pi+ ps ps p4—), —(2.1)
(16EgEsEsE4)"'

which determines the normalization of our helicity
amplitudes T'. The superscript s designates ampli-
tudes physical in the channel for which s= (p~+ps)s
is the square of the center-of-mass frame energy, and t
and I are the direct and crossed four-momentum trans-
fers. Similarly, the helicity amplitudes for the crossed-
channel processes are denoted T' and T".

We define as usual A=pa —p4, p, =p~—p~. With our
normalization, the partial-wave expansion is"

T'»„, „,„,(s,s) = P(2j+1)1&,„&'(s)d„z&'(8—). (2.2)

With standard conventions for the d&, parity con-
servation implies"

= 7" . ( 1b(&—J4)
I 3I 4'y P'1P'2 I 3 P4t J 1 P2X

For elastic scattering, time reversal implies

( 13(&—y)
II3JI4i JIlP2 P1J12~P3Jx4% ~l

And for particle-antiparticle scattering,

( 1 l (&-J4)
II384e II lg2 P4P3r PlJ42% ~l

(2.3)

(2.4)

(2 5)

Thus, if the spins of the p'articles are s;, there are
(2s&+1)(2ss+1)(2ss+1)(2s4+1) helicity amplitudes,

's M. Jacob and G. C. Wick, Ann. Phys. (N, Y,) 7, 4' (1959).
The d),„&(8) are the rotation matrices.

II. GENERALIZED GGMW COIITIONS
Before developing the machinery needed to compute

the GGMW-type conditions, let us establish the nota-
tion and list some of the properties of helicity ampli-
tudes we shall need. The 5 matrix for scattering
1+2—+3+4, with momenta and helicities p; and p;,
respectively, is
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but in general they are not all independent because of
the above rules. We shall call a given helicity amplitude
even or odd according as X—p, is even or odd.

The even (odd) amplitudes T'„,„,„,„.are even (odd)
functions of W=gs for fixed t or I, and therefore the
sanie is true for the helicity partial waves normalized as
in Eq. (2.1). Since the partial waves connecting states
of given parity are of the form t/l„'+(s) = t/, „/(s)+ tl, „~'(s),

this property implies directly the generalized MacDowell
principle for fermion channels. 7 The amplitudes
T'„,„,„,„,(s,t) as functions of t exhibit the same behavior
near t=0, s,= 1 (even or odd functions of gt according
as ll —tl is even or odd). This follows from the crossing
relations. It has been shown' "that the amplitudes,

The angles are defined by"

m;q, „sin8,
sing, =

q&,.
(2 g)

We can now compute, for any spins, the generalized
GGMW conditions, which all come from requiring that

"F.Calogero and J. Charap, Ann. Phys. (N. Y.) 26, 44 (1964);
F. Calogero, J. Charap, and E. Squires, ibid. 25, 325 (1963)."T.L. Trueman and G. C. Wick, Ann. Phys. (N. Y.) 26, 322
(1964).

5 T. Muzinich, J. Math. Phys. 5, 1481 (1964).
&6 The sign of f; is also given in Ref. 14.

8
Is3I//4i tel ljt2

lQP4' Itt182 (2.6)
[1—s]l&—l I/2[1+s]l&+el/2

have no kinematical singularities in s. For elastic scat-
tering, 1—s= —t/2q', where q' is the center-of-mass
momentum. An identical rule holds, of course, in the t

channel near s& ——1. For elastic scattering in the t
channel (equal-mass-to-equal-mass scattering in the s
channel) s, = 1+s/2ql2.

Consider a t channel scattering amplitude T'»», „4„,.
Then X=@4—p, ~ and p, =p, 3—p, ~ are the total angular
momenta about the directions of particles 4 and 3. At
s= 0 (forward scattering), these directions are the same,
and angular momentum conservation requires the
amplitude to vanish unless X=p. This physical require-
ment is embodied in the t channel analog of Eq. (2.6).
Additional information is also included since this
relation says that the helicity amplitude must vanish
with s like s~" &~ ~'.

The crossing relations between the T' and the T'
were discovered by Trueman and Wick, '4 and by
Muzinich. " It is by using them that we avoid the
necessity of 6nding the Mandelstam scalar amplitudes.
The relation between the s channel process 1+2—+ 3+4
and the t channel process 4+2 ~ 3+1 is

~ PRPliP482 Z dgl Pl (~ 41)dP2 P2 (4'2)
Pl P2 P3 It4

Xd/13'P3 (PS) P4 f44 ( P4) P3'll4 ~ l6 Ill . (2.7)

the left-hand side of Eq. (2.7) vanish like the appro-
priate power of sl—1, as prescribed by Eq. (2.6). Then,
wherever the t channel X—p, is not zero, there is one re-
lation among the T'„,„,„,„,for each t, at that value of s
for which s&=1; that is, along half the boundary of the
t-channel physical region. In addition, if ~X

—/i~)3, T'
must vanish so fast that there are also relations like

P1 P2 Isa It4

s]g
~

82+ ~ 83
dI/tl I/tl ~ls2 Is2 ~F3 P3

X Pl'P4 Pl'P4', Pl'Pm' l ( )
etc.

When the t channel is elastic scattering, so that the
s channel describes equal mass into equal-mass scat-
tering, the point s&=1 is at s=0 for all I,. Then these
rules become constraints among the s-channel ampli-
tudes at s=0, and one can derive rules like the original
GGMW conditions connecting a finite number of partial
waves. For more general masses, s(sl ——1) depends on t,
and all we can get in the s channel are energy-dependent
rules coupling all partial waves, This will prove to be
the key point in Sec. IV, for it distinguishes the nature
of the conditions to be imposed on Reggeized theories in
equal-mass scattering from unequal-mass scattering. A
correct, complete theory, of course, must satisfy these
rules in all cases.

When all masses are equal, the crossing rule, Kq.
(2.7), is especially simple also. In fact, Eq. (2.8) becomes

sing;= 2m-
(4m' —t) (4m' —s)

(2.10)

so that at s=0, p;= lr/2 (independently of t). We there-
fore need to compute the rotation matrices at this one

point only.
Now in this case we can separate the crossing rules

into two groups. Recall" that dl, „'(lr/2)=( —1)' "
Xdi„(lr/2). This relation, together with the parity
conservation rule, Eq. (2.3), can be used to group the
terms on the right-hand. side of Eq. (2.7) into pairs. If
T' is odd (even), a simple calculation shows that the
even (odd) T' cancel out in pairs; therefore the rule
T'(s=0) =0 gives relations among odd (even) T'(s=O)
only.

Let e be the number of independent odd T'. Then
there are exactly e independent odd T' also. (This is
because the number of different parity rules Eq. (2.3)
is the same in both channels; whereas each time-
reversal rule in the s channel becomes, through the cross-

ing relations, a charge conjugation rule in the t channel. )
Since for an odd amplitude, ) —p/0, each of the e
odd T' must vanish at s=0. Thus there are e homo-

geneous linear equations among the m odd T'. The equa-
tions are independent, because the e T' are inde-

pendent, and therefore for each odd T', T'(s=O) =0.
This result uses up many of the possible relations we

can get in this way, and provides no new information, for
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the odd T' are already known to be odd functions of
W =ps; and since in the equal-mass case no amplitude
can have poles in W at s=0,' they must vanish there.

New conditions can be obtained from the even ampli-
tudes with XWp. When ~'A —

y~ )4, there will also be
derivative rules at s=O, since the amplitude must
vanish like some higher power of s. For high enough

spins, there are also new relations among the odd T',
for each T' with

~
X—p ~

)3. Remembering that the
odd T' vanish like 8' at s=0, the conditions for

( X—p ~

=3 have the simple form

We have no deep explanation for the fact that in
some instances the difference between the number of
s=s„, ms~/m~ conditions and the number of s=0,
m~ ——ns2 conditions is the same as the difference in the
number of kinematically allowed parameters, or sub-
traction constants in the two cases. This accident allows
the condition counting we perform in Sec. IV, and there-
fore the conclusions about the Reggeization of perturba-
tion expansions, to be independent of the equality of
the masses in those cases. In the Appendix, we illustrate
the difference between the two conditions in detail for
scalar-vector scattering.

at s=O. Note that for photon amplitudes, we may ex-

hibit GGMW-type rules simply by deleting from Kq.
(2.7) or (2.1) amplitudes for zero-helicity photons.

We conclude this section with a discussion of a point
we long found confusing. Consider elastic s channel

scattering between particles of masses my and A&2.

De6ne s~=(m~+mp)' and s„=(m~—esp)'; s, is the
physical threshold. The center-of-mass momentum is

q'= (s—s,) (s—s„)/4$. (2.12)

For any given angular momentum j, the parity-
conserving partial-wave amplitudes tq„&+(s) are 'linear
combinations of matrix elements between states of
6xed orbital angular momentum L. The amplitudes be-

tween states with J-=L~ and L=L~ must vanish with
q' like q& '+». Therefore there are threshold conditions

among the tq„' (s) at s= s„and, when m~Wmp, at s= s„
also. When spins are present, this cannot happen unless

the corresponding combinations of the T' vanish

appropriately at s& and s„.
When m&=no&, q' vanishes at s=st, only, and the

s= s„constraints disappear. But we have seen that new

fixed-s constraints, namely the generalized GGMW
conditions, appear just in this limit. Since s„—+0 as

m& —+ms&, it is often thought that the GGMW-type
constraints are the equal-mass limit of the s=s„
threshold rules.

That this is not so is most easily seen by comparing

the partial-wave expansions of the two constraints. The
s= s rules connect states of the same j only, whereas the
the s= 0 rules in general connect amplitudes of different

j. In fact, the constraints are of quite di6erent nature.
The s=0 rules follow from crossing and angular mo-

mentum conservation in the crossed channel. These
conditions exist for unequal-mass scattering also, where,

however, we have seen that they occur at a t-dependent

value of s. They couple an in6nite number of partial
waves and are for our purposes less interesting. The
s=s„conditions simply disappear at m~=m2, like the
second zero of q'.

III. CATALOG OF LOW-SPIN GENERALIZED
GGMW CONDITIONS

In this section we derive the conditions at s=O in a
few cases. We consider only equal-mass elastic scat-
tering, a+b~ a+b, without assuming that the spins
s and sp are the same. The t channel is a+a~ b+5.
The relations (2.3), (2.4), and (2.5), together with
the rules

reduce the number of independent terms in each cross-
ing rule to the number of independent even or odd
helicity amplitudes.

To illustrate the procedure, the erst few cases will be
discussed in more detail than the subsequent ones.

A. S~=O; 8g=O

Scalar-scalar scattering is completely described by one
independent amplitude, Tpp pp($ t); there is no condition,
since X—p=O only.

B. s~= g ) sy=0

Spinor-scalar (e.g. , prS) scattering is described by
four helicity amplitudes, two of which are independent:

T ~o;~o= T —~o;—-', o,

T Lp. 1p= —T 1p. 1p ~

(3.2a)

(3.2b)

and are

(cos-,'8 —sin-,'8)
d'~'(8) =

/

(sin-', 8 cos-', 8 2
(3.3)

T i i pp= sin (pl()T't. p t.p

+cos (pl/)T &p &p+cosplP slllplPT xp; )p

+cosg sin-,'PT'=;p., ;p
——T';p., ;p, (3.4a)

T', ;,pp
—cos-',f sin-,'fT=';p, ;p-—-

+cos-',f sin-,'PT';p, =;p+ sin'(pf) T —,p &p

cos'( ',f)T' ~p, ;p= —T",p, ~p-. (3.4b)

The independent t-channel (e.g., pr+ pr —+ N+E)
amplitudes are T", ;.pp and T'~;;pp. Their relations to
the T' are obtained from Eq. (2.7) using
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From the vanishing of the left-hand side of Eq.
(3.4b) at s= 0 we obtain T', p ,p(=0 t) = 0; which,
as predicted in general in Sec. II, is just a consequence
of the MacDowell symmetry, and so contains no
new information.

C. s =I; sq=O

Scalar-vector scattering is the simplest case which
possesses a GGMW condition which is not just a
consequence of the oddness of some helicity amplitudes.
There are nine amplitudes T'), p, „p(s,t), of which four
are independent:

appear" in Eq. (2.2),

(3 9)

doo'=P~=L2j+1j '[P~+~' P~ ~'—j. (3.10c)

To write out Eq. (2.2) explicitly for the three ampli-
tudes appearing in Eq. (3.8), we need only

d»t=[j(j+1)(2j+1)$ '
X[j 'P;+&'+(2j+1)P (j+—1)'P; &'j, (3.10a)

d~-~'= —[j(j+1)(2j+1)r'
X[j'P;+)' (2j+—1)P,' (j+—1)'P &'j, (3.10b)

and

V's V's
10'10 —10 —10 p (3.5a)

~ 10;—10 T —10;10 p (3.5b)

T 10;pp T —10;op T 00;10 T oo;—10 1 (3 5c)

Therefore, when the three amplitudes in Eq. (3.8) are
expanded according to Eq. (2.2) using Eq. (3.10), the
condition can be written explicitly as an expansion in
derivatives of Legendre functions. Since such an ex-
pansion is unique, one may compare coeKcients of
each I' to obtain

(3.5d)T8
00; 00 ~ (i&)+ -t (j+&)+ (j —1/ j)t (t—&)

—(j+2/ j+1)t» "+" +[2j+1/j(j+1)]t(&'+ (3.11)The t-channel amplitudes are obtained by exchanging
the second and third subscripts. The 3-channel versions
of Eqs. (3.5a) and (3.5d) provide no rules, since
)),—t(=0. Equation (3.5c) is an odd amplitude, so gives
only T'),p., pp(0, t)=0, which is the boson version of a
MacDowell rule. The vanishing of T 1 1,00 at S=O

rovides the one eneralized GGMW condition for this

at s= 0. (For photons the left-hand side is zero. ) When
projected similarly into partial waves, the odd rule
gives, of course, 310+=0 at $=0.

1 ~ 1Dp S~=2) Sy=2
p g
problem. The crossing relation can be evaluated using This can be XE or EE scattering, for example, and

is the amplitude studied exhaustively by GGMW.
-'(1+cosg) —(sing)/v2 -'(1—cosg) There are 16 helicity amplitudes T»„4.,„,», of which six

d((g) — (s;ng)/v2 cosg (s;ng)/~g (3 6) are independent. The t(; may have the values &-'„so
&(1 cosg) (s;ng)/~ &(1+cosg) we can abbreviate these as T++,.++. In either the s or

the 3 channel, the independent amplitudes are"

Then, from Eqs. (2.7) and (3.5),

T')-); oo = -', sin'fT')o; )o

+ p (1+cos'f)T') o;—(o—2 s)n'PT'pp; pp,
' (3.7)

0'&= T++;++ )

2—T+—;+

0'3= T+—;+-~
0'4= ~+-;-+ ~

(3.12)

Hence, at s=0(f=s./2)

T 10;10+T 10;—10 T 00;pp 0. (3 8)

F5= ~++:+—~

0'6—~++;—+ ~

If the vector meson is massless, as in the electrody-
namics of scalar mesons, Eq. (3.8) still holds, but with
the third term on the left absent.

The rules relating the partial waves may be found
by a procedure similar to that originally used by
GGMW. " The partial waves can be labeled by the
parity, angular momentum, and magnitudes of the
initial and 6nal helicities. ' There is a 2X2 matrix
t),„&+(s), with )(='1 or 0, and parity (—1)'; and a single
function tt (s) for parity —(—1)'. In terms of the
amplitudes between states of given helicity which

'7 Reference 9, p. 2269.

For SS or EX scattering, isotopic spin conservation
together with identical particle symmetry or charge
parity conservation implies pp=gp, so that only 6ve
amplitudes are really independent. '

The necessary vanishing of the odd amplitudes Pp

and Pp contains, as always, no new information. Only
the t-channel version of P4 has X—t(&0 and even, so
there is only one rule. Putting together the crossing

"Because of our normalization {2.2), the matrices t&+ are nor-
malized so that, in the elastic unitarity region, Imt&'+ = {q/W)t&+t&'+.

'9 For higher spins, the generalized GGMW conditions must be
expanded in higher derivatives of Legendre functions to obtain
the partial-wave rules.

"The @;are the p; defined by GGMW, Ref. 9, Eq. {4.8).
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rule (2.7), the parity and time-reversal rules (2.3) and independent even ones are
(2.4), and the spin--,' rotation matrix (3.3) evaluatedat
P=~/2, one obtains immediately, at s=0,

T'pp, ++ T. '+—p, =. T'p, ++. T'~, ~ 0,——(3.13)

which is relation (7.15a) of GGMW. Their partial-
wave rule [Ref. 9, Kq. (7.18)], follows by expansion in
terms of derivatives of Legendre polynomials.

T20= T02= Tp—2= T—20 &

T2—2 T—22)

T11 T—1—1 y

T1—1 T—21'

Tpp ~

(3.14a)

E. s,=2; sb ——0

The study of the Reggeization of graviton theories
suggests itself naturally as an extensoin of the study of
electrodynamics, so that the scalar-tensor rules are of
some interest. We can study spin-2 —spin-0 scattering in
close analogy to paragraph C. Let us suppress the scalar
helicity label, since it is always zero. There are 25
amplitudes Tq„, of which nine are independent. The six

The three independent odd amplitudes are

T21 T12 T—2—1 T—1—2 p

T2—1 T—1—2 T—21 T1—2 p

T10=—T 10
———Tp1——Tp 1.

(3.14b)

The crossing relation can be evaluated from these rela-
tions and the matrix

4 (1+cos8) '
—', sin8(1+cos8)

d"'(8) = xp(+6) sin'8
-,'sin8(1 —cos8)

4 (1—cos8)'

——', sin8(1+ cos8)
io (1+cos8) (2 cos8—1)

(V3/V2) sin8 cos8
—',(1—cos8)(1+2 cos8)

—,
' sin8(1 —cos8)

~+6 sin'8
—(K3/V2) sin8 cos8

-', (3 cos'8 —1)
(%3/K2) sin —8 cos8

i4(+6) sin'8

—pi sin8(1 —cos8)
ip(1 —cos8)(1+2 cos8)
—(V3/K2) sin8 cos8

—,'(1+cos8) (2 cos8—1)
—,
' sin8(1+ cos8)

i~ (1—cos8) '
——,

' sin8(1 —cos8)
4(g6) sin'8

o sin8(1+ cos8)
xi(1+cos8) '

(3.15)

The vanishing of T2p', T2 2', and T1 1' at s=0 provide
the following three generalized GGMW conditions
among the T':

(+6)T» +4Top'+(+6)Tu o
—(+6)Top=0, (3.16)

T +oo2+6T +ooT~,
+4Tii 4Ti i +3Tpp =0 — (3.17)

(g6) Too'+4Too'+ (g6) To o'—(g6) Tpp'=0. (3.18)

A relation among the derivatives of the even T' is
obtained by observing that T2 2' must vanish like s2:

T22 +(2+6)T20 +To 2 +4Tii

functions in the crossing relation for T'2, 1 at s=0.
Because d/dgsT'o i is an analytic function of s,
the left-hand side of Eq. (3.20) must vanish like s, so
that no new condition is obtained from requiring
d/dsT'o i O. The cro—s—sing relation from which Kq.
(3.20) follows is

T'o i(t,s) = y'sT»'+3y'T- „'
—2+6ys'Too'+ (1+3s')To i'
+ (3+s')ysT'o o+ 2sy'Tii' —+6y'Tip'

+4ys'T, ,' 3y'sTpp', (3.—21)

where s= [st/16q, 'q ']' ', and y'=1 —s'

i—i + pp

4m'(t —4m')

X[6To-o'—2Too' —STii' —6Too]=0, (3 19)

where the prime denotes differentiation with respect to
s at fixed t. The term in which t/(t 4m') appears corn—es
from differentiating the d functions in Eq. (2.7).

Finally, because T'2, 1 must vanish like s' ', there is a
fifth relation according to the general formula (2.11):

—1/2

[3T„'+Tp i'—(+6)Tio']-
8+s 4m'(t —4m')

X[ T» +3T2, 2+—2Tii 3Tpo—]=0 (320)'.
The second term comes from differentiating the d

F. s,=» sb=11 ~

This is the case studied by Mandelstam. ' We shall
find three generalized GGMW conditions, hence three
restrictions on the amplitude in addition to his six thresh-
old conditions. We shall see in Sec. V that this does not
alter the conclusion that the electron must lie on a
Regge trajectory. Our result is indeed needed to make
the counting of conditions come out the same in the
equal-mass as in the unequal-mass case.

There are 36 amplitudes T'»„4.,»„„ofwhich 12 are
independent. As in all fermion channels, half are odd
and half are even. The independent even ones are

T'~ 1.~ 1. The odd ones have opposite signs for p, 1 and

p2. The independent ]-channel amplitudes are labeled
similarly, simply interchanging p1 and p4.



REGGE IZATION OF SCATTERI N G AM P LI TUD ES

The crossing relations may be evaluated using Eqs.
(3.3) and (3.6). Four of the even T' have X—@=0.The
remaining ones have

~
X—

p~ =2, and give two general-
ized GGMW conditions at t/V=O:

T';i, *,i+2T';i, , i—2T', p., ;p+ T' , i; —;—-i—=0 (3 22a)

o

+2T'ip. x i—&2T'1 i, 1 i=0. (3.22b)

Finally, there is one derivative condition among the odd
T' from the vanishing of T';;. ~~ like s'~', which can be
evaluated simply using Eq. (2.11).It is

8
L
—2v2T';i, ;o+2T';i,=;i+T';i,.

8 s

T';, , ii ———2&2y'T';i; —,o+2y'T', i.,=;&

+2(1—s') T';i,=; i+2V2y'T';o. ;,
—2y'T' p. p+(1+3s')T'; i, ,i. (3.24)

&he derivatives of all coeKcients with respect to gs
vanish at s= 0. In Eq. (3.24), no even T' appear, whereas
in a boson relation like Eq. (3.21) even T' occur with
coefIicients vanishing at s= i.

G. s,=» Sq
——Any Integral Spin

We shall not work these out in detail, since the method
should now be clear. For sp ——2 (massive graviton-
electron scattering) there are 100 amplitudes T'„,„,, „,„„
of which 30 are independent, 15 odd, and 15 even. There
are clearly an enormous number of conditions.

IV. CON'DITION COU5TING AND
REGGEIZATIO5'

Mandelstam's criterion' for deciding when an ampli-
tude is analytic in the angular momentum can be stated
roughly as follows: Consider an elastic scattering ampli-
tude. It is completely described by the two partial-
wave matrices V+(s) for all j.The parities of the states
are +(—1)&. In general, t'+(s) is not an analytic func-
tion of j but under very general conditions, there always
exists an N such that there is a function which inter-
polates t'+(s) and is analytic in j for Rej)E."(There

2'M. Froissart, La Jolla Conference on Strong and Weak
Interactions, 1961 (unpublished). The existence of a Mandelstam
representation for the scalar invariants is apparently sufFicient.
We always refer only to the uniqueanalytic interpolation which
permits the Sommerfeld-Watson transform. For details, see, for
example, S. C. Frautschi, Regge Poles meed S-Matrix Theory
(W. A. Benjamin, Inc. , New Y'ork, 1963), or E. $. Squires,
Complex Angmlar 3&menta and Particle Physics (W. A. Benjamin,
Inc. , New York, 1963).

+2V2T'*, o;x—i 2T'&o;—', o+T'1—i;—&i7s p
——0. (3.23)

In Eq. (3.23) there are no terms proportional to deriva-
tives of products of d functions as there were in Kqs.
(3.19) and (3.20). The crossing relation for T', ; ii is

are really two distinct interpolating functions, one for
odd j and one for even j. This complication has no
effect on anything we have so say, so we shall ignore it
in order to avoid having to say everything twice. )
Similarly, for integral j)N, the size of the matrix is
independent of j, but for low j, some configurations
become nonsense, and the size of the matrix between
physical states is reduced.

For any "real" amplitude whose partial waves are
t'"(s), one can always define another theory which we
will call the Reggeized theory. Its partial-wave matrices
t'+(s) are defined to agree with the original t&+(s) f'or

j&N, and defined for j&N by analytic continuation.
By de6nition, then, the Reggeized theory is analytic
in the angular momentum variable. It is known' to
have kinematic branch points at those values of j and
of —j—1 for which it connects sense and nonsense
states. It presumably has no fixed poles, but only moving
(Regge) poles. It almost certainly also has moving
cuts, "which we at 6rst ignore. We shall indicate later
which of our results are independent of them.

Now the Reggeized theory will not, in general, satisfy
all the properties the "real" theory does. In particular,
it need not satisfy crossing symmetry, since we have
selected out one channel for Reggeization. How-
ever, the t&+ must satisfy some of the kinematical rules
which the t&+ do; and, when there are enough of these,
there will be so many conditions on the t&+ that they
cannot be other than the t&+. In those cases the original
theory must have been analytic in j to begin with, and
any particles which appear there must in fact lie on
Regge trajectories.

I.et us enumerate the conditions the partial waves
t&+ must satisfy, before deciding which of these hold for
the t&+ also. These follow directly from the properties
of the V»„,, »»(s), which, in turn, follow simply from the
properties of the T»„,»»(s, t), using the expansion (2.2).

First, ti„'(s) is an odd or even function of gs accord-
ing as X—p is odd or even. For unequal-mass scattering,
it may have kinematical poles at s= 0 of order

~
X—p ~

/2. 7

(There may be also a dynamical infinity at s=0, so
that the actual behavior of tq„& is faster than s ~"—&~~',

but this follows from the left-hand discontinuity, and
so is not "kinematical" in the sense we are using the
term. ) Thus the parity-conserving amplitudes
=3~„&Mt~ „& are allowed kinematical poles at s=0 of
order

) )X)+~@~ ~/2, but the residues of t&,„&+ and
are not independent. There are also the threshold

conditions at s= s& and s= s„.
Next there are all the detailed consequences of cross-

ing symmetry. We know in particular the generalized
GGMW conditions we have been discussing.

Finally, there is unitarity. For low enough s, .

I mt„„&+=P (q/gs) ti.&"*t.„&+

"S.Mandelstam, Nuovo Cimento 30, 1127 (1963); 30, 1148
(1963).
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For equal-mass scattering, these rules are slightly
modi6ed. No poles at s=0 are allowed, so the odd ampli-
tudes must vanish there. For boson channels, this im-
plies that tq„'+(s) is odd in gs for odd X—tt. For
fermion channels, tq„'+(s) is neither odd nor even, so
must be considered a function of W=gs. Then, the
oddness of the odd t~„& implies the generalized
MacDowell relation, t»'+(W) = t»t (—W). Thus equal-
mass fermion amplitudes have no further kinematical
condition of this type at s=0 once the MacDowell
symmetry is imposed.

The GGMW-type conditions still hold, with the
important difference that they connect only a 6nite
number of partial waves. Threshold conditions at s= s&

and unitarity are the same as for unequal masses, but
there is no constraint at s= s„.

Which of these conditions survive ReggeizationP
Evidently, only those which relate a 6nite number of
partial waves with a j-analytic rule. The threshold
conditions, the kinematic poles and zeroes at s=O,
and unitarity are all of this type. The GGMW condi-
tions are of this type only in the equal-mass case."
Therefore, f'+(s) must satisfy generalized GGMW rules
in the equal-mass case, but not otherwise.

Since these equal mass, s=0, conditions are not, as
we have pointed out, limits of unequal mass s =s„condi-
tions, the number of undetermined parameters, and
therefore the necessity of Reggeization, need not be the
same for equal and for unequal masses. However, this
number does turn out to be the same for several cases
of interest. We would like to know whether there is a
general criterion for this "minor miracle. "

Lastly we mention Castillejo-Dalitz-Dyson (CDD)
poles. For j&E, the Reggeized theory has no CDD
poles. For low integer j, t&+ will in general have e CDD
poles, where e is the number of nonsense channels at
that value of j.Since some of the residues may be zero,
the actual number of CDD poles may be any number
&e. CDD poles enter a theory analytic in j when an
E-channel problem is replaced by an X-m channel prob-
lem either because of the presence of nonsense channels

or from approximations. "
Now we can set up the general counting scheme. Con-

sider only the sense-sense part of any partial-wave
t&+. It has the same left-hand cut as t&+, may have as

many poles at s=O, and is unitary. Therefore, as
Mandelstam pointed out, it satis6es the same ED—'
equations, except for CDD poles and the values of the
subtraction parameters.

"Apparently these are the only crossing symmetry conditions
which couple 6nite numbers of partial waves with coefFicients
analytic in j.

'4 CDD poles in channels coupled to nonsense channels occur
in the same way they do when a many-channel problem is replaced
by a one-channel problem with a given inelasticity factor. See M.
&ander, P. Coulter, and G. Shaw, Phys. Rev. Letters 14, 270
(1965); D. Atkinson, K. Dietz, and D. Morgan, Ann. Phys.
(N. V.) 37, 77 (1966).

Since the permitted poles at s=0 are known, there
is a diagonal matrix p such that hz„r+(s) = pyt st»'+p„r s

has no kinematical poles or zeros at s=0, and is there-
fore the function to disperse. The great advantage of
parity-conserving helicity amplitudes is that pq(s)
is simple. In fact, p&,(s) = s~ ~~, for unequal-mass scattering.

The analytic amplitude h»'+(s) is therefore bounded

by a constant times s~ "+&~~', and has as many subtrac-
tion constants as there are constants in a polynomial in
s (or W for fermion channels) or in s' ' times a poly-
nomial in s (or W) bounded by this power in s."Let us
call the total number of independent subtraction con-
stants E~. For equal-mass amplitudes, no poles are
allowed and N, is just the number of independent even
amplitudes. It is obtained by adding up the number of
parameters in all the independent components of h&+.

(Time-reversal symmetry requires It, like t, to be sym-
metric. ) Next, we can count the number of conditions

kg given by the threshold rules and, in the equal-mass
case, the generalized-GGMW conditions. Finally, there
is a certain number EgDD of parameters describing the
permitted CDD poles. If a given amplitude has e
sense channels, then m residues and one position
describe each CDD pole; if there are e nonsense states
for that value of j, the total number of CDD param-
eters which the keg geized theory may have is
Eorm ——tt(m+ 1).

If the number of CDD poles in t&+ is greater than n,
the two theories certainly cannot agree. If this number
is less than or equal to m, the two theories can only differ

by varying one of the XcnD+E„parameters. But there
are Ec conditions on them, so, if SQDQ+Xy Eo(0,
P'+=t&+. This is always true for su%ciently high j.
If it holds for all angular momenta and parities, the
entire amplitudes must be identical, i.e., the theory
described by P'+ Reggeizes.

This procedure, then, describes how to count the
conditions on the t'+. To conclude, we qualify the
applicability of this method by suggesting some ways
an amplitude might fail to Reggeize even though
EQQD+Sy fit @&0for all partial waves.

To begin with, it might be that the Reggeized theory
simply does not exist, i.e., that there is no analytic
function that interpolates properly the P'+ for Rej
greater than some E. We shall assume that this is not
the case.

Most obviously we have ignored cuts and other
singularities in the j plane. In their absence, the con-

tinuation of t'+ from high j down to the low physical

"This is not the way subtraction constants are usually counted,
but it always comes out the same. In the ED ' formalism, the
number of parameters is the number of subtraction constants in
the Z equations. Since ImNq„=p&L(Imt)D]z~, Eq„may grow
like s~ "~. The coefBcients of the subtraction polynomials must be
chosen so that ED ' is symmetric. The general relation between
parameters counted this way, and counted by simply adding on
polynomials to h),„&+ which do not violate the unitarity bound in
magnitude, can be seen by expansion in powers of any coupling
constant.
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values of angular momentum exists and is unambiguous,
so that the conditions must hold. But a full amplitude
has moving cuts, and what sorts of monsters, such as
6xed branch points, lie hidden in the impenetrable
jungle to the left of Rej=X is not known. %e do not
know to what extent these will invalidate the applica-
tion of our conclusions to a complete scattering amp¹
tude, but clearly something remains to be proved be-
fore we can be sure that our condition counting really
does imply Reggeization.

However, for amplitudes such as renormalizable 6eld
theories which have perturbation expansions, each term
of which satis6es the unitarity bound, our counting pro-
vides unambiguous statements about the low-order
terms. These are known" not to have j-plane cuts, and
therefore when the parameters are determined by the
conditions, their Reggeization is a rigorous conclusion.
Thus, for example, the famous factorization of the
residues of the vector-spinor Born term' ' is really
proved by these methods, whereas the Reggeization of
the spin-~ particle to all orders in the coupling constant
is only suggestive.

Since the conditions which determine the parameters
are not necessarily linear in them, there might be more
than one solution. This does not seem to happen in the
principal cases of interest, and of course can be checked
explicitly in any given problem, but must be borne in
mind in general.

Finally, the number of CDD pole parameters E~DD
depends on the number of nonsense channels, which in
turn depends on the total number of communicating
channels considered for high j. In a model, or to a
given order of perturbation theory, these are 6xed and

few, but a "real" amplitude is coupled to an inhnite
number of channels, and therefore the correct t&+

might have an arbitrarily large number of CDD poles.
For convenience, in the next section we include only
those channels containing the initial particles in all

possible helicity configurations.
Thus we do not know whether any of our results in

the next section are statements about anything more
general than a few low-order graphs or specific models,
such as XD with elastic unitarity. All these limita-
tions on the range of applicabibty of the present work
would well bear further investigation. "

In the next section we study, case by case, the same
amplitudes treated in Sec. III.

'6 The hope that considerations like the present ones might
have wider validity than we can prove comes principally from the
explicit perturbation-theory computations of Gell-Mann ef al.
(Refs. 1-4) and especially the sixth-order calculation of Cheng and
Wu (Ref. 5). They show that the electron in electrodynamics
I'with massive photons} lies on a Regge trajectory up to sixth
order, where already there are graphs with three-particle inter-
mediate states, so that our enumeration of CDD pole parameters
(see Sec. V Fl does not necessarily hold. Perhaps the answer is that
only two-particle nonsense states generate COD poles in the
sense channels.

V. CONDITION COUNTING IÃ
LOW-SPIN AMPLITUDES

A. s =0; sq=0

For scalar-scalar scattering, ECDD= 0 for all j,
since there are no physical j for which there are non-
sense states. Thus a theory with CDD poles, like qP
coupling, certainly cannot Reggeize.

There is one state for each j, and consequently E„=1.
The orbital angular momentum is I.=j, and there are
no generalized GGM% rules, so X~=j. Hence the
number of free parameters Xcnn+1V„—Xo is positive
only for 8 waves. Therefore, P(s) and t'(s) can differ by
one constant parameter, so the theory need not Reggeize.
The free parameter is of course the famous 8-wave sub-
traction constant, or Xp' renormalization, which is not
determined by the left-hand cut.

There are no helicities, so ) =p, =0 always, and still
lV„=1 for each j. There are two thresholds, so the
number of conditions doubles for each j:X~——2j.
(This is a general relation; the number of threshold
conditions for unequal-mass scattering is always just
twice this number for equal masses. ) E„So is s—till
positive only for j=0, so again there is just one free
5-wave parameter. Notice that E„—X~ is not inde-
pendent for general j of the equality of the masses,
but that the total number of free parameters in the
theory nevertheless is.

In scRlal'-spllloI' sca'ttellllg, we may consider 0 (W)
only, remembering that P (W) =P+( W) so that 'th—ere
are threshold conditions for both positive and negative
8'. Depending on the charges of the two particles,
i'I'+(W) may or may not have to have a CDD pole at
the mass of the spinor. There are no nonsense channels,
so that t"'+(W) cannot agree with 01 (Ws+) when the
quantum numbers require the CDD pole" (unless the
CDD pole in Fl'+(W) is provided by coupling to other
cllallIlels wlllch Rre I1011sense at J s).

l. st~=tÃy

Just as for scalar-scalar scattering, E„=1 for each j.
There is an I.= j~-,' threshold at W = +gs1, both conCh-

27 This is true only if the spin-y object is an "elementary par-
ticle, " that is to say, when it occurs for all values of the coupling
constant. If it is a "bootstrap" particle, then the amplitude exists
only for one value of this coupling constant. Then the two ampli-
tudes may agree, and we shall even show that there are no free
parameters. However, it is just in this case, where we must con-
sider the whole amplitude rather than the Born term, that all
the ambiguities discussed in Sec. IV raise their heads. %'e would
like to think that it makes no di8erence, but cannot prove it.
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tions restrict the same amplitude, so N„= (j+-,')
+(j——,) =2j. Therefore, N„N—&=1—2j, which is
never positive, even for j=o. Therefore, t'+(W) must
be t'+(W) for all j, and the theory must Reggeize.

Z. m +my

This is physically more interesting, since it cor-
responds to prN scattering. Now ~X~ =-,', so one kine-
matic pole in 8' is allowed, and E„=2.There are two
thresholds on the right and two on the left, so %&=4j.
Again, X„—Ez= 2—4j&0 for all j, and the theory has
no free parameters. The rigorous consequence, then, is
that low-order terms of, say, pr+p scattering must be
analytic in the angular momentum for all values of the
pion-nucleon coupling constant.

C. S,=l; S~=O

The partial waves for vector-scalar scattering are de-
scribed in Sec. IIIC. The t+(*) matrix connects a
sense and a nonsense state, so the sense-sense amplitude
fop'+(s) may have a CDD pole. Thus there is a chance
that a theory like neutral vector-charged scalar scatter-
ing, which has a 0+ CDD pole, namely the charged
scalar itself, can be proved to Reggeize.

1 ml=m2

This example was considered by Mandelstam for
j=0. For other j, t& ( +)sha's three independent com-
ponents, 3 +o,ohio'+, and tn&+, and t&' (s) has one. To each
of these we may add a subtraction constant, but the one
added to t~p&+ is not free, since the t~p&+(0) =0. (This is
always true for odd amplitudes in boson channels. )
Therefore, E„=3for each j&0.Now we know that for
high enough j, t&'+= tj+, so the generalized GGMW condi-
tion (3.11) is satis6ed. Consider the highest j for which
P'+ is suspected of differing from tj+. There is one condi-
tion (3.11) (there is one for each j); t&'+ couples L= j+1
to L= j—1, and t& has L= j, so there are 4j threshold
conditions. Thus N„Nc=3 (4j+1) w—hich is n—ega-
tive for all j&0, and there are no free parameters. Only
top + remains. E„=1,there is one generalized GGMW
condition (3.11), and one I' wave threshold c-ondition.
There are two CDD pole parameters, and so the total
number of parameters by which the Reggeized theory
can differ from the original is Noon+No No=2+1-
—2=1, and we cannot conclude tj+=t'+ for all j.

Z m QmQ

For j)0, there may be 1/s poles in tn&'+ and a 1/W
pole in tlo&+, in addition to the constants. But the poles
in tllj+ and tll~ are not independent, so Ã„=5. The
number of threshold conditions is Sj, so E„—Sz
=5—Sj&0, and there are no free parameters. For
j=0, E„=1and there are two P-wave thresholds, so
Ncnn+Ny Nc ——2+1—2= 1. Again there is a free
parameter, and the amplitude need not Reggeize.

=I ~ =1D. Sa=2) Sb=g

Spinor-spinor scattering has a 2X2 matrix t'+(s)
with components t~+;;.;;, P+;;,;=;, and P+;=;,;=;; and,
for EE or i' scattering, two uncoupled amplitudes
t~;;,;; and t~;=;., ;=;. The parities of the states are
&(—1)~' for NN scattering and W(—1)' for NN scat-
tering. At j=0, t&+ has a nonsense channel coupled to
the sense channel. A scalar CDD pole in the SEchannel
therefore has a chance of Reggeizing, but not a pseudo-
scalar one like the pion. The condition counting is very
similar to case C above.

1. m, =m~

There is one GGMW condition for each j.For j&0,
E„=4; t&+ connects L= j&1, whereas both t& are
L= j, and so there are 5j threshold conditions. Therefore
N„Nc 4—(5j—+—1—)(0.When j=0, only the I' wave-
t'+;;, ;;and the S-wave t';;.„..„are physical amplitudes.
E„=2, there is one GGMW condition, one threshold
condition, and one possible CDD pole, so Ncnn+N~

Nc 2—+2———2= 2. The theory need not Reggeize.

ma'am/

The additional kinematical poles allowed bring Ã~
up to 6 for each j/0. Therefore E„—X&=6—10j&0.
At j=0, neither t'+;;,.;;has poles at s= 0, there are two
threshold conditions on to+;.;, ; *„so Ncnn+N~ —Nc
=2+2—2 = 2 as before.

This unequal-mass case is really not of much interest
unless the spin conservation rule characteristic of SN
or EX scattering is relaxed. Therefore, let us consider
two different spin--,'particles, so that P is also a 2)&2
matrix, with off-diagonal element t&;;,. ; ~. At j=0,
this matrix element now couples a sense to a nonsense
state, so the Reggeized theory may have two CDD poles,
one of each parity. For j&0, we now have X„—S~
='I—12j(0.For j=0, Ncnn+N„=4+2 —2=4, which
as before, is positive.

E. S,=2; sq=0

Ke suppress the scalar helicity index, and use the
notation of Sec. IIIE. For high j, the amplitude is de-
scribed by a 3/3 matrix t&+ and a 2)&2 matrix t' .
At j=1, t&+ has only two sense states, and t& only 1.
At j=0, only tpoj+ is sense, and there are two nonsense
channels. This is the channel of interest, since if the spin-
2 particle is neutral, e.g., if it is a (massive) graviton,
the scalar particle appears as a CDD pole in the 0+
amplitude, and we wish to know whether it Reggeizes.

We may label the matrix elements tz„~+, where X

and p, are the magnitudes of the helicities of the tensor
particle. When X or p, are 0, only t~+ exists.

ma= mQ

For j&1, %~=6, the number of independent even
partial waves. t&'+ connects L= j, j+2, and t~ connects
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L= j&1, so there are 9j threshold conditions; and we
have discovered 6ve generalized GGMW conditions.
So N„N—o=6—(9j+5)&0.Whenj =1, there may be
a CDD pole for each parity, described by 4 parameters.
N„=3; t'+ is coupled P and Ii wave, while t' is D
wave only. Thus, there are 5 threshold conditions. The
partial-wave projection of the GGMW-type rules will
not give 5 independent rules, among the elements of
t'+, but there are at least 3, so Ncnn+N~ No&—0.
Finally consider t +. The only amplitude is too+, which
couples to two nonsense channels; therefore, N~DD=4.
There are 2 (D-wave) threshold conditions. Three
rules, Eqs. (3.16), (3.17) and (3.19) contain Tpp, so
barring some accidental identity, there are 3 GGMW-
type conditions. Thus Ncnn+N„—No=4+1 —5=0.

Z. mar mb

For j)1, there are 7 pole residues permitted. "
Thus, N„=7+6=13. No 18j, an——d so N~ No&0.—
When j=1, there are two poles, "and N„=5.The num-
ber of undetermined parameters is Ncnn+Nr No-
=4+5—10&0. Only Tpp contributes to tppP+, so this
amplitude may have no poles. Therefore, Ncnn+N„—No=4+1 —4=1; i.e., there is a free parameter.

Thus, the minor miracle has ceased functioning, and
the necessity of Reggeization seems to depend on the
nonequality of the masses. An example would be
interesting. "

F. S~= g,' Sb= 11 ~

This is the case studied in detail by Mandelstam, '
and exhaustively in perturbation theory by Gell-Mann
et al. ' ' We can now extend Mandelstam's arguments to
unequal masses, and to all j.There is one 3)(3 matrix
t'+ for parity (—1)' ' '. The matrix V need not be
considered separately, because of the generalized
MacDowell rule tq„'+( W) =tq„~(W—). Therefore, it
suffices to study t&+. When j= ~~, one state for each parity
is nonsense, so there may be one CDD pole in t' '+.
There are two j= ~~sense states, so the CDD pole is
described by three parameters.

1. ma

For j)—„the 3)&3 matrix t&+ has six parameters, one
for each independent component. There are 6j+1
threshold conditions on the left, and 6j—1 on the right.
For each j, there are three new generalized GGMW
conditions, from the partial-wave expansions of Eqs.
(3.21) and (3.22). Therefore, N„—No=6 —(12j+3)&0
for j)2. For j=-'„N„=3, N~ ——6, so NGDD+Ny Nc
=3+3—9= —3 so the Reggeized theory is completely
determined, and must agree with the original theory.

"t»'+ and t10'+ have first-order poles in s and W, respectively.
The residues in t11'+ and t11' are not independent.

'9 Unfortunately, there is no example. Perturbation theory with
some kind of tensor-scalar coupling violates the unitarity bound.

Ze mQ+mb

Ten poles are permitted in the W variable" for
j~ —',. Therefore, N„N—o 16———(24j)&0. For
each component has ~X~ =

~p~
= ~» and there may be

three poles. Hence NQQQ+N~ No—=3+6 12—= —3
as before.

Thus we can state rigorously that to low orders in
the coupling constant, vector-spinor scattering with
conserved-current coupling" is analytic in the angular
momentum.

6. S~= 2) Sb= S—1

The above result can easily be generalized to the
scattering of any neutral boson of integral spin s and a
spin- —', particle; s= 2, of course, is of particular interest.
Remember, however, that this is useful only if there
exists to begin with an amplitude which satishes the
criteria. The one that is hard to satisfy is the unitarity
bound. Nonrenormalizable 6eld theories, which will

certainly include 6rst attempts at high spin-spin- —,

amplitudes, have Born terms which violate unitarity.
If the divergence of the Born term is known, the cal-
culation can nevertheless be made with a slight change
in rules, and a statement made about its Reggeization.
We shall not do this, but assume we start with an
amplitude bounded by unitarity. Then it is easy to
show, subject to our standard qualifications, that the

j= —, amplitude t' ' is the same as t' ', i.e., that the spinor
particle Reggeizes, as follows.

Unless s=0, the scattering is described for j)s by
two (2s+1)X(2s+1) matrices t&+(W), related by the
MacDowell symmetry. There are always, however,
only two physical j=-', states of either parity, with L=s
for ~+ and with L=s&1 for 2 . Therefore, at j=~,
there must be 2s—1 nonsense channels; hence 3(2s—1)
CDD pole parameters in the Reggeized theory.

1. m;=m2

If there are NGoMw generalized GGMW conditions
the number of unconstrained parameters in t' '+(W) is

Nonn+N„No= 3(2s 1)— —
+3 (6~+NG GMW) NGGMW &0.

Z. m~+ mb

The only difference is that N«Mw=0, the threshold
conditions double, and three poles are permitted. Thus,
Noon+ N „No=3(2s 1)—+6 12s=3——6s& 0—.

It is amusing to conjecture that the number NGGM&
of generalized GGMW conditions which give inde-

"We may label the amplitudes ty;. ~;&+, where i and j are the
vector-meson helicities, and abbreviate this to t;;&+. Then X=—,—i,
p=-', —j, and each of the six independent elements may have a
pole of order ((X~+[p[( in W at W=O."For another coupling the Born term may violate the unitarity
bound.
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pendent conditions on the elements of tlt'(W) is just
3—6s, as it is for s= i.

Pote added iii Proof S.ince the submission of this paper
for publication, a few remarks which are incorrect or
misleading have come to our attention. As far as we can
tell, none of the calculations or conclusions is affected.

(i) Generalized GGMW conditions do not exist for
unequal-mass scattering. This is a consequence of
Appendix 8 of Ref. 8. (ii) The constraints at the un-
physical threshold s can apparently also be derived
from crossing. For inelastic fermion-fermion amplitudes,
the number of threshold rules at s„ for a given j may
differ from that number at the physical threshold s~.
(iii) In the scalar-vector amphtude discussed in the
Appendix, T'oo may have a pole at Q'=0, and therefore
Eq. (A6) is incorrect. The correct rules must of course
imply the correct partial-wave conditions, which is all
we have used in Sec. V.

We wish to thank J. Franklin, L.-L. C. Wang, and
S. Frautschi for discussing these points with us.

T00 T00' 00 p

Toi = Too Io/sin8
&

T10;10 T—10;10

1+s 1—s

(A2a)

(A2b)

(A2c)

the expansion of the T; into helicity amplitudes is"

8' A. C. Hearn, Nuovo Cimento 21, 233 (196k).
» In Ref. 10, Kq. (A6), the factor (1—s') in the second term on

the right-hand side of the first line should read (1—s)2.
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APPENDIX

Here we write down the kinematics of elastic vector-
scalar scattering in some detail to illustrate the di6er-
ence between the equal-mass and the unequal-mass
cases.

Let e and e' be the polarization vectors of the initial
and final vector mesons, and p, p', q, q' the 4-momenta
of the scalar and vector particles. Let E=q0=q'0,
q'= m', and p'= t4'. The polarization vectors satisfy the
Lorentz condition, e q=e' q'=0, and the center-of-
mass momentum is Q=[E'—m'fit'. Then the most
general form of the Tmatrix is'o "(for real polarizations)

T= Tie 'e+ Toe'q e 'q

+ ', To(e pe' q+e q'e-' p)+T4e' p'e p (A1)

In terms of the amplitudes (Eq. 2.6), which contain
no kinematical singularities in a=coso, and which are
in this case

Ti———Tii+—(1+t/2Q') Tii,
To —T——ii /Q',

(A3a)

(A3b)

[42mTol'+E(TII +TII+)j,
Q'w

1 V2EmtTol
m'Too'+—

(A3c)

Tii—(s„)=0.
From (A3c),

V2Tol'(s )+Tii+(s„)=0.

(A4)

(AS)

The quantity inside the brace in (A3d) must also vanish
at s= s„. In order that this expression not have a pole
there,

(A6)2v2Tol'(s„)+ Tii+(s„)=0.

(AS) and (A6) together imply that Toi'(s„) and Tii+(s„)
are both zero. The remaining condition is then for
all t,

moToo (s )

+t lim —[v2EmTol'(s)+-', E'TII+(s) j=0. (A7)
S~&u

These rules, then, which are consequences of the
analyticity of the T; at s=s„guarantee the correct
partial-wave threshold behavior.

Now let the masses be equal. It is clear that the 6rst
three relations (A3a—c), give no constraints on the
helicity amplitudes. Neither E' nor Q' is singular at
s=0. In fact, E=W/2 vanishes there. Rules analogous
to (A4—7) still hold at s=s&, of course, guaranteeing the
correct behavior at the physical threshold. However,
the quantity in braces in (A3d) still must vanish at
s=0, since 1/s appears as a factor. This rule is

TM' ru++ —l)&u =o. —
2m2

Since at s=0, t=2m'(1 —s), and. (A8) becomes

T00; 00 T10;10 T10;—10

which is precisely the condition (3.8).
We see then that the equal-mass, zero-energy condi-

tloll (A9) and tile 1111eqllal-lllass, llllpllysical tllleshold
conditions, although not entirely unrelated, are quite
d16erent ln form.

E't
+ —m' ~TII++(-', t—m') Tii . (A3d)

2Q' )
These relations hold whether or not m=p, , and from
them we can get both the s= s„rules and the GGMW-
type condition by requiring that the scalar functions
T; have no poles in s for 6xed f.

First consider the unequal-mass case. %e require the
T; to be 6nite at s= s„.From (A3a) or (A3b),


