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Motion of Electrons in Liquid Argon*t
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The scattering of electrons moving through nonpolar liquids is discussed. The Hartree Geld of an atom
is assumed not to change on passing from gas to liquid. The screening of the long-range polarization po-
tential is given by a self-consistent local Geld, which is found in terms of the pair correlation function. A
microscopic dielectric function follows as a byproduct. The overlap of atomic force fields in the liquid is
handled by the use of an eBective potential suggested by Cohen. Detailed calculations are made for electrons
in liquid argon. The principal result is that the Ramsauer minimum no longer exists in the liquid, The drift
velocity in a steady electric Geld is found from the solution of the Boltzmann equation given by Cohen
and Lekner. Agreement between experiment and theory is good.

I. INTRODUCTION

ARLY studies' ' of conductivity pulses produced by
ionizing radiation in liquid argon showed that the

negative-charge carriers had mobilities three or four
orders of magnitude larger than ionic mobilities. It was
concluded that they were free electrons. They are in
fact excited or excess electrons in the conduction band
of the liquid, and the purpose of this paper is to give a
microscopic description of their motion.

There are two main problems to resolve, namely (a)
what is the effective atomic potential scattering the elec-
tron; and (b) how to calculate the transport properties
when this potential is known. The latter has been
examined by Cohen and myself': A solution of the
Boltzmann equation was given which included exactly
the space —time correlations within the medium through
the use of sum rules of the Van Hove spectral function
S(K,ce). On the other hand, the question of the effective
atomic potential acting on the electrons has either been
left open, ' 4 5 or it was assumed that it is substantially
the same as in scattering within the gas. ' However, the
long-range polarization force between an electron and a
polarizable atom is screened by the presence of other
polarizable atoms. The screening of the polarization
interaction will be examined in Sec. III. There is con-
siderable overlap of the polarization force fields of
diGerent atoms, and to a lesser extent, of the Hartree
6elds of nearest neighbors. This problem is considered
in Sec. IV. A prerequisite for the discussion of screening
and overlap in the liquid is a knowledge of the interac-
tion between an electron and an isolated atom. A
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simplified discussion is given in Sec. II.The drif t velocity
of electrons in a steady electric field is calculated and
compared with experiment in Sec. V. Finally, a simple
extension of the results of Sec. III to the screening of the
electric force between an electron and a hole in the
liquid, which must be considered in the exciton problem,
is given in the Appendix.

The screening, the effective potential, and the mo-
mentum-transfer cross section required for transport
properties are all dependent on liquid structure through
the pair correlation function g(R) or the structure
factor S(X),

S(E)= 1+n d'8 e'"'aLg(R) —1j.
An approximate structure factor in closed form is pro-
vided by the solution of the Percus-Yevick equation for
the hard —sphere Quid7; it is compared with the neutron
data of Henshaw' in Fig. 1. For our purposes this theo-
retical S(E), and the g(E) obtained from it by inverting
(l), are sufficiently close to experiment and will be used
in the calculations.
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Fic. 1. Liquid-structure factor of argon at 84'K. The experi-
mental points are from the neutron data of Henshaw, Ref. 8.The
solid and dashed lines are theoretical structure factors for a hard-
sphere Quid calculated from the Percus-Yevick equation with
hard-sphere diameters of 3.44 and 3.25 A, respectively.

' E.Thiele, J. Chem. Phys. 39, 474 (1963);N, W. Ashcroft and
J. Lekner, Phys. Rev. 145, 83 (1966).' D. G. Henshaw, Phys. Rev. 105) 976 (1957).
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MOTION OF ELECTRONS IN LI QU I 0 Ar

II. SCATTERING OF ELECTRONS BY
GASEOUS ARGON

U (R) = ——'ne'/(R'+R ')' (2)

We have numerically'4 integrated. Schrodinger's equa-
tion using the same Hartree field as Holtsmark, "and
adjusting the parameter R in (2) to obtain the experi-
mental scattering length deduced by Frost and Phelps"
from their drift-velocity data. The presence of the long-
range polarization potential requires modifications of
the methods normally used in the extraction of phase
shifts and of the scattering length.

Momentum Transfer Cross section

Gaseous Argon

In order to calculate the scattering of electrons in the
liquid, we shall first give a simplified description of
scattering in the gas. In the original paper on electron-
argon scattering, Holtsmark' found phase shifts by
integrating the radial part of the Schrodinger equation.
The potential he used was the Coulomb potential of
the nucleus screened by the Hartree distribution of
electrons, ' plus a polarization potential which was
numerically adjusted" at short range to fit the data of
Briiche."The results presented here are essentially a
reworking of the same problem with one modi6cation,
which is that the exchange and correlation effects are
represented. by the potential '

Pro. 3. Local fields in
liquids. The field on the
atom at R is the sum of
the direct field plus the
dipole fields of atoms at
all other points t.

A. Scattering Length

At zero energy and for R'))R 2 the L=O partial
wave satis6. es

(d'/dR' jA'R 4)uo(R) =0, (3)

where the length A = (a/ao)'" is a measure of the
strength of the polarization force."The solution of (3) is

No(R) =R(b sin(A/R)+c cos(A/R)}. (4)

Comparing the asymptotic form of this solution with the
definition of the scattering length, No~ const(R —a),
gives a in terms of the coe%cients b and c of the k=0
solution:

a= —(k/c)A.

The scattering length for electrons in argon has been
obtained by O'Malley'~ by extrapolation of the Ram-
sauer and Kollath' data, and by Frost and Phelps, "
from drift-velocity measurements. We fitted the param-
eter R of Eq. (2) so as to obtain the Frost-Phelps
scattering length, e= —1.sao. The required value is
R =1.22ao, or 0.65 A.

NOo
b

B. Phase Shifts

The recent work of Levy and Keller" may be directly
applied to the extraction of phase shifts due to a long—

range potential. From Eqs. (40) and (46) of Ref. 19 it is

easy to show that if the J„th partial wave passes through
zero at a radius R, the phase shift 5'= 5'(~) is given by

kao

FIG. 2. Momentum-transfer cross section for electrons in argon
gas. The points are cross sections extracted from drift-velocity
measurements by Frost and Phelps (Ref. 15).

J. Holtsmark, Z. Physik 55, 437 (1929}.' Reference 9, Table I. The entry at r =0.02 a0 is misprinted; it
should read 2Zp =33.33."Reference 9, Fig. 1. Because of an error in units, the asymp-
totic value of the polarization potential used by Holtsmark was too
large by a factor of 2. This does not greatly affect the validity of
Holtsmark's results, since he did not calculate cross sections at
very low energies, where the polarization potential plays a major
role."B.E. Briiche, Ann. Physik 1, 93 (1929)."B.Kivel, Phys. Rev. 116, 926 (1959);Avco-Everett Research
Laboratory, Everett, Massachusetts, Research Note No. 129,
1959 (unpublished) .

' See Modern Computing Methods (Her Majesty's Stationery
Ofjice, London, 1961), 2nd ed. We have used the difference
equation (27), p. 86, which is correct to fifth-order differences

'" L. S. Frost and A. V. Phelps, Phys. Rev. 136, A1538 (1964).

tanbq(~) = tanbq(R)+ —
i

sec'8'(R)
6kR Rl

+O((kR)—'),

where tank&, (R) = j~(kR)/e~(kR), and j z„nz, are the
spherical 8essel and Neumann functions. At small
energies the phases for I ~&1 are determined entirely
by the long-range polarization force":

vr(kA)2

(2L—1)(2L+ 1)(2L+3)

"The polarizability is 11 u0' for argon, and A =3.3 a0. The
scattering length of a polarization potential cutoff for Z(R0 is
a= —A tan(A/Ro)."T.F. O' Malley, Phys. Rev. 130, 1020 (1963).

C. Ramsauer and R. Kollatb, Ann. Physik 12, 837 (1932).
9 B.R. Levy and $. B. Keller, J. Math. Phys. 4, 54 (1963).
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The phase shifts 6L, I.=0 to 3, were calculated from the
corresponding partial waves from Kq. (6). The integra-
tions of the partial waves uz(R) were carried out to
distances ranging from E.=250uo at low energies to
E=20ao at energies of an electron volt or higher.
Phase shifts determined from successive zeros of the
wave functions always agreed to 0.5%, and usually to
0.1%%uo. At zero energy 80 ——3n., 8i=2ir, and all higher
phase shifts are zero, since there were three nodes in
No, two in Ni and none in N2 and the higher partial waves.

In evaluating the momentum-transfer cross section"

o i = (4ir/k') Q (2+1) sin'(8z —bed+i),
L=O

we have used the calculated phase shifts for L=O to 3,
together with 84 and 85 estimated from Eq. (7). The
resulting cross section is compared in Fig. 2 with the
data extracted by Frost and Phelps'5 from drift-velocity
measurements. Agreement is good up to about 2 eV.
The drift velocities recalculated with our cross section
are in excellent agreement (S%%uo or better) with the data
presented in Fig. 3 of Ref. 15 in the range K/N=10 2

to yP—"y cm'.

III. SCREENING OF THE POLARIZATION
INTERACTION

An electron at a distance E from an isolated atom of
polarizability oi induces on it a dipole of strength ne/R',
which in turn attracts the electron with a force of
magnitude 2ne'/R'. The interaction potential is there-
fore —ne'/2R'. Physically it is clear that the polarization
force does not increase without limit as E tends to zero,
and it must therefore be modified. This was done in the
preceding section, where the eGects of both exchange
and correlation (polarization) were approximated at all
distances of the potential (2). At small R this potential
represents mainly exchange, since the polarization part
goes to zero."At large R ())R ) Eq. (2) gives the usual
polarization term.

Now what is the polarization interaction between an
electron and a particular atom in a liquid? The answer
lies in finding the local field acting on the atom, which
consists of the direct field and the sum of all other Gelds
due to dipoles induced on neighboring atoms. In the case
of external fields, or of light traveling through the
medium, the induced dipoles are parallel in regions
containing many atoms. I.orentz22 has found the average
local Geld for atoms arranged in a cubic lattice, and for a
structureless Quid. For real liquids, Kirkwood23 and
avon'4 have solved the problem of dielectric polarization

'0D. R. Bates, Atorgic and Molecglar Processes (Academic
Press Inc. , New York, 1962), p. 645.

'R. W. LaBahn and J. Callaway, Phys. Rev. 135, A1539
(1964).

"H. A. Lorentz, The Theory of Electrons (Dover Publications,
Inc, New York, 1952), Sec. 117 and notes 54, 55."J.G. Kirkwood, J. Chem. Phys. 4, 592 (1936).

'4 Y. Yvon, Actualities Sci. Ind. , No. 543 (1937).

in a uniform external Geld. When the field is produced
by charges within the liquid the induced atomic dipoles
are no longer parallel. The screening is consequently
more complicated, and becomes a function of the dis-
tance between electron and atom.

The problem is simplihed by the fact that

where v&, e„and v&, are typical velocities of atoms in the
liquid, of the free electrons, and of the atomic (bound)
electrons. Thus the motion of the atoms can be ignored
in calculating the mutual screening eGect of neighbors,
and the motion of the free electrons can be ignored in
calculating the induced polarizations of the atomic
electrons.

Consider now a point charge —e in a liquid composed
of atoms of polarizability n. In the absence of other
nearby atoms, the electric field acting on an atom at R
would be e/R' (see Fig. 3). By symmetry, the average
local field acting on the atom at R is along R, and. a
function of E only. Call it

(e/R') f(R), (9)

f(R) =1—e ds s—'g(s)

Xe(R,s,t), (11)

where 8(R,s, t) denotes the bracketed quantity in (10).
The solution of the linear integral equation (11) then
gives the required self-consistent, ensemble-average
local field. In deriving (11)it is assumed that the average
eGect of the dipole at t is the same as the eGect of the
average dipole at t, i.e., that Quctuations are negligible.

"If the charge is a free electron moving rapidly through the
Quid, the atoms do not have time to react to the electrostrictive
forces, and the Quid structure is unchanged by the presence of
the charge.

i.e., define a function f(R) such that the average local
field acting on the atom is given by (9). Now this field
is equal to the direct field e/R', plus the contribution to
the field due to all the other induced atomic dipoles in
the liquid. Given that an atom is located at some point
in the Quid, the probability of finding another atom in
the volume element dv- at distance s from the Grst is by
definition ng(s)dr, where e is the number density of
atoms, and g the pair-correlation function. "The field
acting on this second atom (Fig. 3) is (c/P) f(t), so that
it has on it an induced dipole of average strength
n(e/t') 1'(t). The component along R of the field at R
due to this dipole is

(n ef(t)/2Rs't') [,' s '(s'+ P R') (—s'+R' t')— —
+ (R'+P —s')j. (10)

Integrating over all space in bipolar coordinates s,
t (dr = 2rrsdstdt/R), the self-consistency condition gives
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For real liquids g(s) =0 for s(~ 0, where 0 is the "hard-
core diameter, "or specifically the distance at which the
repulsive potential energy between atoms becomes much
greater than k T. For such systems f(R) —+ 1 as R/0 —+ 0.
The local 6eld in a strlctlreless felid can be obtained by
setting

g(s) =0 s(o
S)0')

and taking the limit as 0 tends to zero. We have

9—

.8 —/
f {R)

7—

f(R) = 1—lim 7rnu ds s '
g~o

0 (a—e)

d~ t-'f(t)e(R, s, ),). .6—

Reversing the order of integration, we 6nd that all the
indirect contribution to the field at R comes from its
immediate neighborhood:

f(R) =1—(8/3) znu f(R) .
In the limit of a structureless Quid. we therefore recover
the Lorentz local 6eld,"

For a given pair-correlation function, the local-field

function can be found numerically by straightforward
iteration of the integral equation (11). The solution
corresponding to the 0.=3.44 A Percus-Vevick structure
factor of Fig. 1 is shown in Fig. 4.

The local held takes into account the screening of the
field producing the dipole moment on a given atom. Is
there any further screening of the electron-atom inter-
actions This question may be resolved as follows": The
total energy of the induced atomic dipoles is

U=-' Z p"/ —Z p' K'")—2 Z' p' '"y (13)

The erst term is the energy required to form dipoles of
strength p;, the second is the dipole-6eld energy, and the
third the dipole-dipole energy, with

p; %);; p;=r@ [3(y; r;;)(y; r@)/r, , —y;.p;].
The condition BU/Bp;=0 gives the magnitude of each
dipole,

.5

FIG. 4. Local-field function f(R) due to point charge, calculated
from the Percus-Yevick pair-correlation function g(R) corre-
sponding to liquid-argon density and a hard-core diameter
0- =3.44 L.

The form of the total energy in (15) shows that the
screening e6ects are contained entirely in the local held.
The polarization energy is the sum of energies

U;= ', nf(R—;)(e/RP)'

Up to this point the discussion of the screening has
been for the case of an electron moving among idealized
atoms with constant polarizability 0, , acting as point
dipoles. The point-dipole approximation does not lead
to large error, since atoms in the liquid have vanishingly
small probability of approaching closer together than
the distance 0 (i.e., g(R) in Kq. (11) is zero for R(0).
We expect exchange and correlation to be important
at distances of order R; by analogy with (2) the error
involved in treating the atoms as point dipoles will be
of order 2R '/a', i.e., about 5% for argon.

On the other hand, the distance between the electron
and a given atom in the liquid can be small, and the
polarizability cannot be taken to be constant for
R(R, : this is implied by the use of (2). Equation (11)
must be replaced by

y.—n (P .(0)+P!P...p.)—nK .(100)

Therefore the total energy may be written

(14)
+& R+e

f(R) =1—~n ds s 'g(s) dt t 'f(t)n(t)

~ P nF oao) .K (o) (15) &&8(R,s,t) . (17)

This expression is the microscopic equivalent of

1
U= —d.P.E«)

2

which is the energy of a dielectric body in a field whose
sources remain constant. '~

"l am indebted to Professor M. H. Cohen for this argument."J.A. Stratton, Etectrorgagrletic Theory (McGraw-Hill Book
Company, Inc. , New York, 1941), Sec. 2.10.

The function n(R) is not known. We cannot simply
de6ne it so as to obtain (2), because (2) includes the
effects of exchange as well as of correlation (polariza-
tion). We do expect n(R) to decrease rapidly for
E.(R, i.e., as the electron penetrates into the atom.
This will have a strong effect on f(R) for small R For.
example in a structureless Quid, instead of a constant
Lorentz 6eld we 6nd

f(R)=[1+(g/3) n f(R)3-'
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FIG. 5. Atomic po-
tentials in liquid ar-
gon. UD, Ui, and (Ul
are dered in the
text. U2 is the second
part of the right-
hand side of Eqs, (21)
or (22).
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We can use this result to estimate the error involved in
neglecting the variation of polarizability with distance.
At R=O the difference between (18) and fr, is about
30% for argon. But there the correlation and exchange
potential is swamped by the Coulomb potential, and in

any case the screening goes to zero. The error in the
total potential will be largest near R=R . There it is
of order ~na(U /U~, t,~)R, which is 3% for argon.

We conclude that the local-Geld function f(R) calcu-
lated from (11) will approximate the true local Geld

quite well for R~2R . At smaller distances the error in

f(R) can be large, but the error in the total potential
should be everywhere less than about 10%. In the fol-

lowing we shall neglect the (unknown) variation in

polarizability; by analogy with (16) we write for the
electron-atom exchange and correlation potential in the
liquid:

of the bulk refractive index'4 predicts a deviation from
the Lorentz-Lorenz formula of the same magnitude,
the change in electronic structure cannot be large.

Therefore, the single-atom potential seen by an elec-
tron in the liquid is the Coulomb 6eld of the nucleus
screened by the Hartree distribution of electrons, plus
the screened exchange and polarization potential U of
Eq. (19), with the sense R that was used in the de-
scription of scattering in the gas:

Ui ——Ull+U . (20)

In bipolar coordinates, with the notation of Fig. 3,.

(U(R))=Ui(R)+.ds sg(s) dt tU, (t). (22)

The effective potential U, ff is then defined as"

U ff= (U(R)) Uo R(R
=0 R&R„,

(23)

This potential is shown in Fig. 5. The trouble with
using it to calculate scattering in the liquid is that the
potentials of neighboring atoms overlap. The electron
therefore never is in free space, not even near the
boundary of the Wigner-Seitz'p sphere R=R„and we
cannot calculate phase shifts. Kohn and Rostoker"
deal with this problem by subtracting from the potential
its value at R, : the potential is nearly Qat there, and
the electron sees only differences in potential. Ziman"
adds in the overlap of nearest neighbors in a "mufBn-

tin potential. " A unique way of defining the effective
potential near an atom at R; is from the ensemble average

of the total potential:

(U(IR—R'I)) = Ui(IR —R'I)
+(2 ' Ui(IR —R I)) (21)

U~(R) = 2« f(R)/(R+R~ ) ~ (19) where R and Uo are defined by

where f(R) is found from (11).At small R this potential
should be the same as in the gas, and it is, since f(R) -+ 1

as R/o ~ 0. U becomes the dominant term for R)2R;
in this region the inaccuracy will come less from the
idealizations discussed above than from uncertainties
in the pair-correlation function, which are quite large
(10 or 20%).

IV. THE EFFECTIVE POTENTIAL IN
THE LIQUID

We shall assume that the change in the Hartree held
of an atom on pat sing from gas to liquid is negligible.
This is justi6ed in part by the fact that the atomic
polarizability of argon as determined from the Lorentz-
Lorenz' expression for the refractive index changes by
only 2% on condensation. "Since the molecular theory

~' H. A. Lorentz, Ref. 22, Secs. 123, 124.
"C.P. Abbiss, C. M. Knobler, R. K. Teague, and C. J. Pings,

J. Chem. Phys. 42, 4145 (1965).

[B(U)/BR]s„0, (U——(R ))= Up. (24)

For argon, R =4.0cp and Up= —0.157 Ry, or —2.1.3 eV
(see Fig. 5). The idea behind U,ii is that the electron
sees only diGerences in potential in its motion through
the liquid. It is necessary (and we believe correct) to
subtract out the constant part Up in order to calculate
phase shifts in the usual way. It is however not clear
that the momentum and energy transfers which the
electron undergoes on scattering in the liquid are cor-
rectly given by the sum rules of S(E,co), since U,ff

combines the potentials of many atoms. This is an added
assumption, which we are forced to make in order to use
the solution of Soltzmann's equation given in Ref. 3.

Two cross sections are needed in the evaluation of

g0 E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933).
"W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).
3~ ].M. Ziman, Proc. Phys. Soc. (London) SS, 387 (1966).
3g M. H. Cohen (private communication); M. H. Cohen and

J. Jortner (to be published),
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transport properties'. I

~ ~ 0

op(p) = 2pr d8 sin8(1 —cos8) p. (p, 8)

op(p) = 2s d8 sin8(1 —cos8)a(p, 8)S(2k sinp8). (26)

Here o (p,8) is the differential cross section, p=k'k'/2 m,

and S is the structure factor given by (1).When there
is no correlation among the scattering centers, as in a
gas, S(X)=1 and pp and p.q are the same as the cross
section a.~ of Sec. II. In Fig. 6 we show the cross section
00 calculated from phase shifts with the unscreened

potential, the screened potential U», and the effective
potential defined above. The scattering lengths are,
respectively, —1.48, —0.79, and +1.44ap. The removal
of overlap in the average potential changes the sign of
the scattering length. The effective potential still binds
three s states and two p states, but is not attractive
enough to give a Ramsauer minimum.

V. DMFT VELOCITY OF ELECTRONS
IN LIQUID ARGON

The most recent data on the drift velocity of electrons
in liquid argon is that of Swan' at high fields and of
Schnyders, Rice, and Meyer' at low 6elds. There is a
considerable gap in betweeen (see Fig. 7). The solution
of Boltzmann's equation for electrons moving in a
liquid is known. ' The results may be written in terms of

IO—

O.I

D.
(cm/re. sec )

O.OI

Io I
02 IO

E (V/cm)

IO4 IO'

FIG. 7. Drift velocity of electrons in liquid argon. Squares:
Swan's data at 90'K (Ref. 5); triangles: data of Schnyders, Rice,
and Meyer at 85'K (Ref. 6); line: theory at 84'K. The line is
dashed above 10 V/cm to indicate that the cross sections used
are not accurate at these energies.

functions fp and f~, where

fp(e) =exp—
p+kTb(p)

fg(e) = eEAgd fp/d—p,

b(P) = ~~ (eEAp) (eEA.g)/(2m/M) (kT) P

(27)

=S00, hy =SO y. (28)

The mean energy and drift velocity are given in terms
of fp and f~ by

Here h.0 and A.~ are "mean free paths" which deter-
mine the rates of energy and momentum transfer,
respectively:

(p)= dp p'IPfp(p)

1 2 'l"
'VD= —— d6 6 1 E.

dp p fp(e) q

d ""i()).
0

(29)

0 0 .I

47I.O~
0

In the weak-field region, the electrons have a Maxwellian
distribution of energies, fp(p)=exp( p/kT), —and the
drift velocity is proportional to the field. In this region
o q 4ra'S(0), where a is the scattering length; the drift
velocity is

.OI 2 2 '" eE

3 prmkT n4pra'S(0)
(30)

OleV .IeV leV

l
.2

kaO

4eV

l

.6

Pre. 6. Cross sections for electron scattering. The curves are
labeled by the appropriate potential: Ug~, U&, and U, ff. The cross
sections are calculated from phase shifts, determined as in Sec. II.
The near coincidence of the Ug and U, ff cross sections at zero
energy is fortuitous: The scattering lengths have opposite signs.

This equation is equivalent to the expression (3.8) of
Bardeen and Shockley'4 for the mobility of electrons in
nonpolar crystals.

'4 j.Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).The
formula (30) for electron-drift velocity in liquids is certainly not
new. It follows on substituting the Einstein-Smoluchowski
scattering coeKcient into the Lorentz (1905) formula (Ref. 22,
p. 274). See also K. S. Krishnan and A. B. Bhatia, Nature 156,
503 (1945).
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TmLE I. Theoretical drift velocities in argon at 84'K. 8 is
field in U/cm; e~ the drift velocity in cm/@sec; (e) the mean elec-
tron energy in eV; ), h.0, and h.1 are the de Broglie wavelength, the
energy transfer, and momentum-transfer mean free paths, all in A.

10
1P
103
104
10'

0.0039
0.037
0.21
0.47
(0.25)

&~)

0.011
0.011
0.028
0.51

(2 4)

116
116

73
17
(8)

A.p

6.6
6.6
6.7
8.7

(9.0)

136
136
140
140
(60)

The results obtained for the drift velocity and mean
energy of electrons in liquid argon at 84'K are shown
in Fig. 7 and Table I. In the calculation we have used
the potential U, if defined in Sec. IV. The cross section
oq was evaluated with the o.=3.25 A S(E) of Fig. 1,
since this has the correct long-wavelength limit,
S(0)=0.048. The results will be discussed in the next
section. First we need to estimate the effect of impurities
in the liquid on the drift velocity.

The fractional energy loss per collision is of the order
of m/M in elastic scattering, and. of order unity for
inelastic collisions. The fractional energy loss per unit
path distance is therefore roughly m~0.* for inelastic
collisions, and (m/M)moo for elastic collisions. Here e
and 0~ are the impurity number density and inelastic
cross section. If impurities are to have negligible eGect
we must therefore have

~*o*«(m/M) ~o, (31)

To sum up, we have considered the motion of electrons
in nonpolar liquids, specifically, liquid argon. The elec-
tron-atom potential is modi6ed to include the effects of
screening and overlap of the atomic force fields. The
principal result is that the Ramsauer minimum no
longer exists in the liquid. The drif t velocity is calculated
for electric-6eld strength varying by four orders of
magnitude. The agreement with experiment is good
except perhaps at very high fields. There both theory
and experiment are uncertain; the former because the

g' K.Takayanagi and S.Geltman, Phys. Letters 13, 135 (1964).
"G.J. Schulz, Phys. Rev. 135, A988 (1964).

A likely impurity in liquid argon is N2, which can
inelastically scatter electrons by excitation of the rota-
tionaP~ and vibrationaP' levels of the molecule. Rota-
tional excitation can be important at low fields, when
the electrons are thermalized. Vibrational excitation
can only be important at high 6elds. In both cases the
inelastic cross sections are of the order of A' and thus
the impurity level should be at about 10 ppm or less if
the drift velocity in "pure" argon is to be measured.
Swan's data is therefore on the borderline, since his
argon contained about 50 ppm of impurities, which were
primarily N&. Schnyders, Rice, and Meyer purified their
argon, and estimate their impurity level to be less than
1 ppm.

vr. MSCUSsrom

theoretical cross sections are inaccurate at electron
energies above about 2 eV, and the latter because of the
presence of impurities.

The results do not in any sense represent a 6.t to the
data: The one adjustable parameter in the calculation
(Rn) was fixed by the scattering in the gas. Therefore
the comparison of theory with experiment gives a test
of the assumptions we have made. Of these the main
ones are: (1) that fluctuations in the screening and in
the effective potential may be neglected. This is equiva-
lent to assuming that the average over many events of
scattering by a Quctuating potential is equal to the
scattering by the average potential; (2) that the effect
of multiple scattering is negligible; and (3) that the
solution of the Soltzmann equation given in Ref. 3 is
applicable when the scattering is calculated from the
potential U,qq. The conclusion can be drawn that either
the statements (1), (2), and (3) are correct, or that the
errors involved partially cancel. We shall see that in
fact multiple scattering -effects are strong but largely
self-cancelling for electrons in liquid argon.

An estimate of the effect of multiple scattering can be
made with the Wigner-Seitz" condition that the ground-
state s wave function have zero gradient at R=R,. The
wave function calculated from U,gg satis6es this bound-
ary condition at kp =0.35ap .The electron at the bottom
of the conduction band therefore has the energy
Uo+h ho'/2m= —2.13 eV+1.67 eV= —0.46 eV. This
energy carries a large uncertainty however, since it is
obtained as the difference between two larger energies,
neither of which is known to better than 5%. We can
therefore conclude only that the electron affinity of
liquid argon will probably lie between 0.3 and 0.6 eV.
This is in contrast to helium, where approximately 1 eV
is needed to inject electrons into the liquid. Bardeen"
has extended the Wigner-Seitz approach to the calcula-
tion of the effective mass at the bottom of the conduction
band. It is determined by the gradient of the p wave at
R=R,. Using the p wave function calculated at k =k,
we 6nd m, fr=0.50m, which is in good agreement with
the exciton effective mass deduced by Baldini' from
exciton spectra in the solid i.e., m, „~, =0.43m.

These renormalization effects of multiple scattering,
the ground-state energy and the effective mass, give a
mobility which is also in good agreement with experi-
ment. The single-scatterer mobility, 370 cm'/V sec, is
about 20% below the experimental mobility, 450 cm'/V
sec. The momentum-transfer cross section 0.~ increases
by 1.37 in going from k=0 to k=kp. The combined.
change in effective mass and cross section gives a mo-
bility of 540 cm'/V sec, which is about 20% above the
experimental value.
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F(R)=1 s.&in— ds s—' g
&'& (R,s, t)

dt t 'F(t)
g(R)

X8(R,s,t) . (A1)

Here g&'&(R,s, t) is the triplet correlation function, for
which the simplest approximation is the Kirkwood
superposition product" of pair-correlation functions:

g."'(R s t) =g(R)g(s)g(t)

The local field F(R) is similar to f(R), except that the
screening decreases more rapidly at small distances.

Consider now the 6eld at a general point in the liquid
at distance E from the atom with charge q. Denote this
held by

(q/R') z-'(R), (A2)

where &i(R) is the microscopic dielectric function.
Summing over the 6elds at R produced by all the in-

"J.C. Kirkwood, J. Chem. Phys. 3, 300 (1935).

APPENDIX: MICROSCOPIC DIELECTRIC
FUNCTION

In Sec. III we found the local field f(R)t,'/R' acting
on an atom in the liquid at distance E from a free elec-
tron. Here we shall consider 6rst the local Geld acting
on atoms in the liquid due to charge q oe u giver atom,
and then the 6eld of this charge at an arbitrary point in
the liquid, i.e., the dielectric function. As in Sec. III we
make the point-dipole and constant polarizability as-
sumptions. The extensions necessary to describe screen-
ing in the exciton problem will be brieQy discussed.

In Fig. 3, replace the electronic charge —e by an
atom possessing a charge q, and define a function F(R)
such that the average local Geld acting on another atom
at a distance R is (q/R')F(R). By the arguments of
Sec. III, F(R) satisfies the integral equation

duced dipoles in the liquid, we find

&i '(R)=1—m-nn dss ' dt t-'F(t)g(t)e(R, s,t).

The integrand is singular at s=0. To obtain the electric
6eld we exclude from the integration a small cylinder
centered on s=0 with axis parallel to R, and take the
limit as the cylinder volume tends to zero. A straight-
forward calculation of the integral gives

where 1 and p are the (infinitesimal) length and radius
of the cylinder. As in the classical prescription for the
average electric field in a dielectric medium, ' we take

l))p. Therefore

K '(R) = 1—4n.&toF (R)g(R) . (A3)

Tbe same result is obtained by adding the potentials of
the charge q and of all the induced dipoles, and dif-
ferentiating with respect to E. For a structureless Quid. ,
F=[1+(8/3)m Nn] ', so that we regain the Clausius-

Mossotti dielectric constant, "
1—(4/3) s.&tv

K

1+(8/3) ~nn

In the exciton problem, the charge q is a "hole, " due
to the absence of an electron in the atom, and the 6eld
to be found is that sampled by the electron at R. If
the exciton mobility is low, the liquid structure will be
changed in its neighborhood. This can be taken into
account by appropriate changes in the correlation
functions. The electron also polarizes the medium but,
in the linear approximation, where p=n(K&,.i." &

+E,&„i„"' the vector components of the atomic
dipoles due to the electron all point toward the electron,
giving a zero average Geld at the electron. The net field
at the electron is therefore (e/R')~ '(R).

4' R. P. Feynman, R. B.Leighton, and M. Sands, The Iieyernan
Lectures orI, Physics (Addison-Wesley Publishing Company,
Reading, Massachusetts, 1964), Vol, II, Sec. 11.4.


