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The kinematic parameter g=arctanh (P cos8) for a secondary of a jet transforms from the laboratory
system (LS) to q* in a frame of reference moving with a velocity P, with respect to the LS in the direction
of the incident primary, according to the relation q =q*+arctanhP, .Then the velocity Pz of a "symmetric
system, "of a group of produced secondaries for which the mean value of p statistically vanishes, is obtained
from the formula arctanh ps=(v), which usually reduces to lnvs= —(Intans) —(Int (1+x')'" x 'g),
where x= pq/m. For the usual situation where only the emission angles of a subset of charged secondaries of
a jet is known, a parameter p(8)=0.46—ln tan&, which depends only on 8 but which is consistent with the
de6nition of q, is introduced, and the rather well-known distribution of the transverse momentum of pion
secondaries is used in place of knowledge of values of P to calculate results based on the use of q. The E(8)
method, in which one substitutes (v (e)) for (s) to find the velocity of the symmetric system, Ps, is an im-
provement over the spectrlra independ-eat formula by Castagnoli et a/. , in yoe, t = —(in tens), for estimating
the primary energies of jets. This is shown with accelerator-produced jets with energies ranging from 17 to
30.9 GeV and cosmic-ray jets with energies around 10' GeV. Also studied are the magnitude of the statistical
error in using the B(8) method and various aspects of the problem of multiple production of particles which
have been determined by examining the g(8) distributions of jets and their dependence on the primary
energy.

I. INTRODUCTION'

~OR a jet, let P denote the velocity and 8 the emission
angle of a secondary in the laboratory system (LS)

where the emission angle is measured with respect to the
direction of the incident primary. Then the kinematic
parameter, ri=arctanh(P cos8), has a simple property
with respect to Lorentz transformations, ' namely, if
P* and 8* are the secondary's velocity and emission
angle, respectively, in a frame of reference which moves
with a velocity P, with respect to the LS in the direc-
tion of the primary, then ri*=arctanh(P*cos8*) is
related to g by the relation

ri = arctanhp, +ri*.

[The above equation is proven in Appendix A, in which
it is also shown how some simplification for the pro-
cedure of Lorentz transformations results from the use
of Eq. (1).] It then follows that the distribution of ri*

in any Lorentz system moving with a velocity P. with
respect to the LS in the direction of the primary can be
obtained merely by shifting the origin along the g axis
by an amount arctanhP, . Equation (1) is also im-
mediately useful for formulating backward and for-
ward symmetry for the produced secondaries in the
center-of-mass system (CMS) of a nucleon-nucleon or a
nucleon —quasifree-nucleon collision. This assumption
of "symmetry" in the CMS was also the basis of the
median-angle' method and the Castagnoli' method of
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estimating the primary energy of the incident nucleon
in the LS.

For a jet with e secondaries which are created in a
single collision of two particles, it follows from Eq. (1)
that

(ri) = arctanhP, +(rl*) . (2)

For the "symmetric system, " whose velocity ps is
'

defined by the relation

in
(ri) =—Q arctanh(p, cos8;) =0

we have
arctanhps= (ri).

In a nucleon-nucleon or a nucleon-quasifree-nucleon
collision, ps will coincide, ol the average, with the
velocity of the CMS of the two nucleons, P, , i.e.,

(arctanhPs) = arctanhP, (s)

which is equivalent to the relation

arctanhp, .= ((rl)),

because of Eq. (4). Since the initial system of the two
nucleons has forward and backward symmetry in the
CMS, there will be average forward and backward
symmetry for any kinematic quantities related to the
produced particles. In other words, it is assumed here
that for each secondary with velocity P at 8 there exists
one with velocity P at 180 —8.

This way of formulating the symmetry in the CMS
is different from the median-angle' and Castagnoli'
methods. Also another way of formulating the required

C. Castagnoli, T. Cortini, C. Franzinetti, A. Manfredini, and
D. Moreno, Nuovo Cimento 10, 1539 (1953);M. L. Shen and M. F.
Kaplon, Ann. Phys. (N.Y.) 32, 452 (1965); K. Imaeda and T. P,
Shah, Nuovo Cimento 41, 405 (1966).

i26i



1262 C. 0.

symmetry is described in Appendix B. The present
way of formulating forward and backward symmetry
in the CMS is apparently less general than in Refs. 2

and 3, since we have to assume two kinematic quanti-
ties P and 8. But the advantage is in the fact that we do
not need the basic assumption of P/P=1, which is
necessary to derive the spectrum-independent Castag-
noli formula, induc„,

———(ln tan8), so we can easily
achieve what the authors in Ref. 3 try to correct for
the assumption.

The energy E„of the incoming primary in the LS
can be estimated from the following formula:

E =M, (2y, '—1)=M, cosh(2((q))), (6)

where y, =(1—P, .') '~' M& is the mass of target
(the mass M of a nucleon in this case) which is assumed
to be at rest in the LS, and ((q)) is meant to be an aver-

age taken over the individual values of (q) of jets whose

primary energy in the LS is E„.
In Sec. II a consistent parameter g(8) is introduced

to improve on the basic parameter, (—ln tan8), of the
Castagnoli method. In Sec. III the E(8) method, an
improved version of the spectrum-independent Castag-
noli method, is tested using various jets for which the
primary energy has been established by at least one
method which is more accurate than the E(8) method;
a formula for an estimate of statistical errors in the
E(8) method of energy estimation is given. In Sec. IV,
the dependence on the primary energy E~ of the
standard deviation of the distribution of q(8) is ob-

tained, and this relation is correlated to the E„depen-
dence of the average CMS energy of secondaries. In
Sec. V, for 30.9-GeV jets in nuclear emulsion, ((rl(8)))
has been found to depend strongly on the charged-
particle multiplicity e, and the number of heavily
ionizing prongs X~.

II. INTRODUCTION OF g(6)

It is convenient to introduce the parameter x=P,/m,
where P& is the transverse momentum of the secondary
and m its mass. Then

g(x, 8) =arctanh[x cos8(x'+ sin'8) '~']
= (~)[arctanh(1+ v')-»']
= (+){—lnv+ln[1+(1+v')'~']) (7)

where v'=(1+x')x 'tan'8, v)0. The positive sign
is used for 0 &0&90' and the negative sign for
90 &8&180 .

When e is small compared with unity, which is ob-
served to be the case in the LS with the majority of
secondaries produced in high-energy jets,

q= —lnv+ln2
= —ln tan8 —ln[(1+x') '"x-']+»2. (g)

The rare case when a secondary has 0&90 is not con-
sidered. For pion secondaries the second term in the

q(P&/m. ,8)f(p,)dP,

and the relation

f(P~)dPg

for 8(90, (10a)

q(8) = —g(180' —8) . (10b)

The distribution of pion transverse momenta f(P,)dp,
is taken to be

f(P )= (I/Po)'P~ exp( P /Po), —

with Pv
——(P~)/2=0. 17 GeV/c. The mean value of p,

has been found experimentally to have very little
variation throughout a wide range of the primary
energy. ' The upper limit E of the integration is taken

4 E.Lohrmann, M. W. Teucher, and M. Schein, Phys. Rev. 122,
672 (1961);P. L. Jain, E. Lohrmann, and M. W. Teucher, ibid.
115, 643 (1959); H. Winzeler, B. Klaiber, W. Koch, M. Nikolic,
and M. Schneeberger, Nuovo Cimento 17, 8 (1960); A. Barbaro-
Galtieri, A. Manfredini, C. Castagnoli, C. Lamborizio, and I.
Ortalli, ibid. 20, 487 (1961); H. H. Aly, C. M. Fisher, and A.
Mason, ibid. 28, 1117 (1963); H. Meyer, M. W. Teucher, and E.
Lohrmann, ibid. 28, 1399 (1963);R. D. Settles and R. W. Huggett,
Phys. Rev. 133, 81305 (1964).' P. H. Fowler and D. H. Perkins, Proc. Roy. Soc. (London)
A278, 401 (1964).

right-hand side of the above equation is usually small
compared with the first term, since it is known that the
majority of the pions have P,)m, i.e., x)1. Also,
arctanhPs ——lugs+in[1+(1 —ys ')' '], so that when

ys'))1, Eq. (4) reduces to

ines ———(ln tan8) —(ln[(1+x')' 'x ']) (9)

Thus, it can be seen that the spectrum-independent
approximation of the Castagnoli method of energy
estimation' is equivalent to neglecting the small
second term in Eq. (9). It has been shown that the use
of the spectrum-independent formula of the Castagnoli
method generally causes one to overestimate the
primary energy of jets. 4 (See also Sec. III.) This factor
of overestimation is mainly represented by the second
term in the right-hand side of Eq. (9).

On the other hand, g—0 when e is very large com-
pared with unity, which condition can be achieved by
8-+ 90' and/or x((1.But the approximation embodied
in the spectrum-independent Castagnoli formula reveals
an inconsistency because (—ln tan8) tends to
when 0 tends to 90 . In using the formula, this some-
times results in y~„& being less than unity. In addition,
the parameter (—ln tan8) obviously cannot be used for
those secondaries which are produced with 0&90 .

To incorporate the advantage that the second cor-
rection term in the right-hand side of Eq. (9) is usually
sma/t and to eliminate the minor inadequacies inherent
in the spectrum-independent formula in the Castagnoli
method, we introduce a new consistent parameter q(8),
which employs the average behavior of P, for pions, as
indicated in the following expression:
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to be 1 GeV/c, just for convenience in performing the
integration. The choice of R does not affect the value
of q(8) too much as long as R/rn))1, since for x))1 the
second term in the right-hand side of Eq. (8) becomes
extremely small compared with the first term. With
R=1 GeV/c, about 2% of the p, distribution given by
Eq. (11) is neglected.

In Fig. 1 the variation of q (p&/rn =x,8) with tan8 for

p, =0.05, 0.10, and 1.0 GeV/c are shown. The parameter
—ln tan8, which is basic for calculating the primary
energy with the Castagnoli method, is drawn in Fig. 1
for comparison. One can see that the curves for —ln tan9
are parallel for tang& 0.1.In this region the approximate
expression for g given by Eq. (8) is valid. When the
distribution of transverse momenta for pion secondaries
is assumed to be that given by Eq. (11), one has

(1n[(1+x')"'x '])=0.233.

Therefore, in the region where tang&0. 1,

q(8) =0.46—ln tan8.

(12)

(13)

The new parameter q(8) is not linear to (—ln tan8) as
tan8 increases from 0.1. This is the range where the
use of g(8) becomes very significant.

With the use of the parameter g(8), Eq. (4) can be
approximated by

arctanhPs= (g(8)). (14)

This formula must be used with caution when the.
number of produced particles in a nucleon-nucleon jet
becomes so small that the surviving baryons among the
secondaries have considerable influence. The transverse
momentum of protons is known' " to be 0.5 Gev/c
for jets with energies from 20 GeV to 10' GeV. This
means that the second term in the right-hand side of
Eq. (8) for a surviving proton is not as small as that
shown in Eq. (12). In fact, using for a proton p&=0.5
GeV/c, then ln[(1+@~')' 'x„']=0.7. This indicates
that instead of Eq. (14), Eq. (4) will be better approxi-
mated by

arctanhP s——(q(8) )—(2/n)
X ((ln[(1+x ')' 'x '])—0.233}

=(.(8))-(2/.)o.5,
'

(14)

for nucleon jets. In Sec. V this is shown in detail to be
the case for 30.9-GeV jets with small rs, .
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Fio. 1. The variation of g(p~, e) with tan8 for several values of the
pion transverse momentum and the variation of 71(0) with tan8.

&case=~(2vcasa' —1), (16)

where lac„~———(ln tan8) with the indicated average
also being taken over the charged particles of the
event. Also, the E,h method' will be studied. This E,h
method is based on the assumption that all the trans-
verse momenta of the charged secondaries are constant
and equal to 0.4 Gev/c, i.e.,

emulsion) are known. So in taking averages, only con-
tributions of e, charged secondaries will be taken into
account. In addition to this we shall limit our study
to (i) those jets with n,)5, except for the Monte Carlo
jets in Sec. III.D, and (ii) those jets with NI, as small
as the number of jets in the samples permits. Condi-
tions (i) and (ii) are imposed mainly to avoid a con-
sistent overestimation and underestimation, respec-
tively, of the primary energy which would occur for jets
not satisfying these conditions. (This will be discussed
in Sec. V.)

We shall define the energy estimate E(8) to be given
by

E(8)=M[27s'(8)—1]=M cos—h[2(ri(8))], (15)

where M is the nucleon mass and the indicated average
is over the n, charged secondaries of the event. Similarly,
Eg„& in the spectrum-independent formula in the
Castagnoli method of energy estimation is de6ned by'

E,q =—0.4 P csc8;—P E, . (17)

III. ESTIMATION OF THE PRIMARY
ENERGY OF JETS

Our study in the present section is for the usual
situation in which only the emission angles of a subset
of charged secondaries of a jet (which are the only ones
readily observable using detectors such as nuclear

D. R. O. Morrison, CERN Report No. CERN-TC-Physics
63-1, 1963, p. 1 (unpublished).

~ C. Q. Kim, Phys. Rev. 136, 8515 (1964).

Thus E~=E,h/E, q, where E,q is the fraction of the
available energy which is carried away by the charged
secondaries. The fraction E,h is estimated, on the
average, to be 0.3 in Ref. 9. However, we have used
E,~——1 for our primary energy estimates using the E,~

8 For the rare examples in which emission angles of the second-
aries are larger than 90' in the LS, it has been customary to omit
the secondaries in the use of Kq. (16).

'ICKF collaboration, Nuovo Cimento Suppl. 1, 103& (1964).
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method in Secs. III A—D. In Sec. III K, summarizing
comments on the various methods of energy estimation
which we studied are given .The statistical errors for the
E(8) method are discussed in Sec. III F.

A. Estimation of the Energy of
Accelerator-Produced Jets

For estimating the primary energy of a jet, the E(8)
method is a considerable improvement over the E~„&
method. This will be shown by using jets produced in
nuclear emulsion by accelerator protons and pions of
known energy. Figures 2, 3, and 4 show the results of
energy estimation for the three groups of jets produced
by accelerator protons. '~" The jets which were in-
cluded in the analysis had ¹y,=0 and 1, and also e,&5.
The plots in the upper halves of these Ggures are dis-
tributions of the primary energies as obtained by the
Ec„&method and the plots in the lower halves of the
6gures are the distributions of energy estimates ob-
tained by using the E(8) method. Figure 5 shows the
same type of plots for 73 jets with ¹ (3 and e,&5
produced by 17-GeV pions in emulsion. "

Table I lists (logto(E/E~)) where E is the estimate of
E~ for the E(8), Eo«& and E,I, method. The quoted
errors are determined from the standard deviations of
the distribution involved. The average standard
deviations for individual values of logM(E/E„) are
given in the parentheses following the corresponding
(Iog (E/E.)&.

B. Jets Produced by Nucleon Fragments of
a Primary Nucleus

A high-energy nucleus breaks gradually into frag-
ments when it traverses a sufliciently thick block of
nuclear emulsion. The fragments have approximately
the same velocity in the LS as the primary nucleus and

'0 Barbaro-Galtieri et a/. , in Ref. 4.
~'M. Teranaha, J. Phys. Soc. Japan 20, 1297 (1965). The

author took the liberty of including ten grey tracks, which were
among ten jets of EI,= j, as secondaries.

~~ J.J.Lord (private communication). The data have been used
in a Ph.D. thesis submitted by E. R. Goza to the Department of
Physics, University of Washington, Se@ttle, Washington, 1962
(unpublished); Ref. 9.

&' 8, II,. Aly pt at. , h Ref, 4,

are emitted within a cone of very small angle about
the primary's direction. This is due to the small velocity
of the fragments with respect to the primary nucleus
compared with the large velocity of the primary nucleus
in the LS. In a sense, these fragments form a "pencil
beam" around a core predominantly consisting of
nucleons and nuclei with the same velocity as the
primary nucleus. This is the reason why we chose to
study a family of jets of the event No. 1115 of the
Brawley stack. "Event No. 1115 involved a family of
jets initiated by a nucleus with a charge Z=15. There
were 26 secondary jets found inside a cone with its apex
at the primary jet and having an opening angle of
about 1 mrad with respect to the direction of the pri-
mary nucleus. Among these we chose for our study 9, 6,
and 2 jets produced by singly charged, neutral, and
multiply charged secondary particles, respectively.
(Seven jets had N, (5.) Jets No. 1115-6and No. 1115-7,
which did have n, &5, were excluded from the sample
because they were essentially superimposed and one
could not be sure that the jet No. 1115-7 was not pro-
duced by a (tertiary) particle which was created in the
immediately preceding jet No. 1115-6.

Employing the method used by Lohrmann et at. ,"
a reliable estimate of the primary energies of the
fragments was obtained by relative scattering measure-
ments on the three singly charged tracks (Nos. 49, 50,
and 51 of the jet No. 1115-6)which were bundled closely
(separations (10p in projection and (4 p in depth)
between the He and Li fragments. The resut is

E~= (0 57-o.os+'")X10' GeV/nucleon, (18)

where the error is based on the propagation of errors
estimated from the deviations of the average second
differences resulting from each pairing of the three p
tracks. The reading noise was eliminated using the
standard method which employs the di8erent depen-
dence of noise and Coulomb scattering on the cell length.

F.Abraham, R.Levi-Setti, C. H. Tsao, J.Gierula, K. Rybicki,
W. Wolter, R. L. Fricken, and R. W. Huggett, in I'roceedings of the
Ninth International Conference on Cosmic Rays, London, 1965
(Institute of Physics and the Physical Society, London, 1966),
Vol. 2, p. 844; Enrico Fermi Institute Report Nos. EI"INS 62—76
and 65-44 (unpublished)."E,Lohrmann et gIt, , in Ref. 4.
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TABLE I. Comparison of various methods energy estimation. '

Reference

Primary
enery
(Gev)

30.5

30.9

Number
of jets

104

126

570

3X10' 10'

Using all the secondaries,
including neutral
secondaries

7.7

79

7.2

18.2

9.8

(iog»L~(tt)/&nj)

0.02~0.03
(0.34)

0.09+0.04
(0.30)

0.01+0.03
(0.31)

0.05+0.03
(0.27)

0.03+0.10
(0.31)

0.09&0.01
(0.34)

0.113+0.005
(0.15)

(iOg

tv�

(+Cant/+n) )

0.08~0.04
(0.44)

0.17+0.06
(0.43)

0.15~0.03
(0.37)

0.13+0.04
(0.33)

0.17~0.10
(0.32)

0.29+0.01
(0.34)

0.312+0.005
(0.15

(iog»(~ n/~n) )
—0.13~0.02

(0.24)
0.00m 0.04

(0.28)—0.07+0.02
(0.27)—0.02+0.03
(0.25)

0.05&0.13
(0.47)

—0.67+0.01
(0.31)—0.399+0.007
(0.23)

& Each number in parentheses is the standard deviation of the distribution of individual quantities whose mean is given directly above.
b Reference 10.
o Reference 11.
d Reference 12.
e Reference 13.
& Reference 14. (The two lowest estimates of energy were excluded for the tabulation, see Fig. 6.)
g Reference 21.

Also, by using the Kaplon formula" and the measured
opening angle of the He fragment from the Li fragment,
0.97&10 4 rad, one obtains

E„=0.6X10' GeV/nucleon. (19)

The results of the energy estimation from emission
angles of jets are shown in Fig. 6; the top histogram is
the energy distribution as obtained by using the Eg„&
method and the lower histogram is the corresponding
distribution of energy estimates obtained by the E(8)
method. The nucleon fragments show clustering mostly
around 0.9&10' GeV in the top histogram and 0.6X10'
GeV in the lower histogram. Table I lists (logto(&/&t, ))
for the three methods of energy estimation, the E(8),
Ez„&, and B.h methods. Here the two lowest energy
estimates were deleted from the sample because they
were interpreted as being associated with secondaries
which were mixed with the fragments.

The two jets made by heavy fragments show a trend
toward higher apparent energy when compared with

EC t
for &.30.9 GeV(ns 5)cast

0:I Event

jets made by nucleon fragments even after the AZ
particles at the smallest angles in jets produced by
heavy nuclei had been excluded when using Eq. (15)
or Eq. (16). LAZ=Z„—P;Z, ', where the charge of
the primary nucleus producing a jet is Z„and that of
a produced heavy fragment Z (&2).] This will be
discussed further in conjunction with the cases in which
the primary energy is underestimated. by the E(8) and
Ez„& methods when they are applied to estimating the
energy of jets produced in proton-nucleus collisions in
Sec. V.

C. Jets Produced by Singly Charged or Neutral
Cosmic-Ray Primaries

Selected for the present study were ten jets with
%~&4 and e,&5, produced in nuclear emulsion by
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lower histogram is the
corresponding distribu-
tion of E(8) estimates.
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FIG. 6. The upper histogram is a distribution of energies
estimated by the Castagnoli method for the 17 jets of Brawley
event No. 1115;the lower histogram is the corresponding distribu-
tion of E(8) estimates. The shaded boxes represent jets with
Nz&5 which were produced by nucleon fragments. The two jets
produced by heavy primaries are identi6ed by an H in the ap-
propriate boxes.

singly charged or neutral primary particles with energies
around 10' GeV, for which secondaries of the back-
ward cone were well investigated by scattering mea-
surements and grain counts. Table II lists the ten jets.
The 6rst two jets were investigated by Schein et al. ,

17

and the next three jets were studied by the author. 7

The rest of the jets have been found in the Brawley
stack and investigated by the author. "

The angular distributions (logM tan8) in the LS of'

the ten jets are shown in Figs. 7(a)—( j) in the forms of

TABLE II. Comparison of various methods of energy estimation
for some well-measured cosmic-ray jets.'

Event No.

Schein p
Schein n
Texas No. 4
Texas No. 47
Texas No. 118
Brawley No. 1021
Brawley No. 1026
Brawley No. 1061
Brawley No. 1135
Brawley No. 1144

Type

(0+20)„
(0+20)„
(2+17),
(2+14)„
(0+21)„
(0+18)„
(4+12)
(0+45)„
(2+7)y
(3+38),

Ref. E(&) Egest E h E~

b 3.8
b 0.98
c 2.4
c 4.6
c 82
d 9.5
d 3.5
d 5.7
d 21
d 6.4

5.7 2.1 3.0
1.5 0.98 0.97
3.7 1.5 1.5
6.5 1.8 5.3

13.0 2.2 5.3
15.1 2.3 5.3
5.5 1.1 3.4
9.0 5.0 3.9
3.3 0.27 2.0
9.7 8.0 5.1

Averages

(logtp(E/Evil

[(t4l =21.2] 47

0.10
+0.03

7.3 2.5 3.6

029 —024
+0.04 ~0.20

Standard
deviation' (0.09) (0.11) (0.63) ( ~ )

a All energies are in 103 Gev; in the lower part of the table we have
used By =Be.

b Reference 17.
e Reference 7.
& Reference 18,
e Each number in parentheses is the standard deviation of the distribu-

tion of individual logio(B/By) whose mean is given above.

» M. Schein, D. Haskin, E. Lohrmann, and M. W. Teucher,
Phys. Rev. 116, 1238 (1959).

"The study of these P jets and others is similar to that in
Ref. 7, and is being prepared for publication.

the logto(F/1 —F) plots. "The closed circles represent
points for the LS. When the Lorentz factor y, . , which
defines the CMS is taken to be yc„t, the logto[F/(1 —F)j
plot, shown by the triangles in the figure, would be the
one which observers in the antilaboratory system
(ALS)'0 would make for the jet. The transformations
of angles of the indicated tracks in the 6gure from the
LS to the ALS were possible without any unreasonable
assumption about the LS velocities of those secondaries,
since most of them had been measured. It can be seen
in the figures that triangles do not match with the
filled circles. For each jet, by choosing a Lorentz factor
y~, one can achieve the closest match of the two
logto(F/(1 —F)] plots, that for the LS and the other
for the ALS. The details of this procedure are described
in Appendix B. The squares show the closest match.
Then an energy estimate E~ is obtained from the
formula

Err =M(2yrr' —1), (20)

where we have taken y~ ——y, . .. This method of estima-
tion of the primary energy of jets is equivalent to that
developed so far, because a symmetry is required with
respect to the forward and backward directions in the
CMS, as shown in Appendix B.

TABLE III. The E, method of energy estimation' used for 1000
CKP Monte Carlo jets of E„=3)&10'GeV.

(log (E/E )) 10 "&~o(~&'~y)~ Std. dev. '
From charged

secondaries
From all

secondaries

—0.01 +0.01

0.006+0.003

0.98 +0.02

1.014+0.007

(0.42)

(0.07)

a Reference 22.
b Reference 21.
e Each number in parentheses is the standard deviation of the distribu-

tion of individual values of logio(Bq /By).

"N. Duller and W. Walker, Phys. Rev. 93, 215 (1954).
~' This system is de6ned as the system which moves with respect

to the CMS with the same speed as does the LS but in the op-
posite direction."R. W. Huggett, in I'roceedings of the Ninth International
Conference on Cosmsc Euys, I.ondon, 1965 (Institute of Physics
and the Physical Society, London, 1966), Vol. 2, p. 898.

"The nominal energy estimate E, is dined by
E„=M(2y~' —1)=M cosh(2(q))

in the E„method.

D. Monte Carlo Jets

The various methods of energy estimation were
applied to 1000 CKP Monte Carlo jets of E„=3&(10'
GeV,"in which the total momentum of the produced
kaons and pions (the total number of particles in a jet
tt=16) is strictly zero in the CMS. Table I lists
(logto(E/E„)) for various methods which use only the
emission angles of secondaries.

Shown in Table III are the results obtained when
the E„method" is used with charged secondaries only
and also when the E„method is used with all the
secondaries, including the neutral kaons and pions,
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The means of logls(E„jE~) are essentially zero and the
standard deviation ls reduced fronl 0.42 to 0.07 when
neutral secondaries are included. This indicates the
accuracy of Kq. (3) 111 expl esslllg the condltlon of
perfect forward-backward symmetry and zero total
momentum of the produced particles in the CMS.

Flg. 8' that ln the uppel haH the combined distrlbu"
tion of (Eo,.~jE„)for all 357 accelerator-produced jets
and the other in the lower balf, that of $E(8)jE~j for

TABLE IV. The average factor of overestimation
of the primary energy.

Type of jets g)& Iog„[Z(e) IZ„~&

E. Various Methods of Energy Estimation

The E(0) method has improved the spectrum-
independent Ec„t method mainly in reducing the
factor of overestimation (E/E„) as summarized in
Table IV. This is also shown by the two plots in

Accelerator jets
Nucleon fragments
Cosmic-ray Jets
Monte Carlo jets

i.07+0.05
+0.8

3 (~0(}a
j..28+0.08

a For these jets, we assumed that Zg =Bx.

j 35 +0.07

+0.4

2.0 (+0.02}&
j..95~0.04
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(ECost /Ep) for occelerotor-produced jets {ns i 5)
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charged or neutral jet, when it is de6ned from the
centroid of the target diagram, introduces an additional
experimental error which mostly affects the E,h
method.

lo-

~ n np f1pp
%el I I I I 7 II-

(EtetrEp)
rs 30-
0Z

20-

I ~ p p ~ I I

for accelerator-produced jets (ns ~ 5)

F. Statistical Errors in the Estimation of E(8)

The statistical error in the E(8) method of energy
estimation arises essentially from the fittite number of
n, charged secondaries. If one de6nes the standard
error 6(7)(8)) on the quantity (7)(8)) by

h(7)(8))=o/(I, —1)"',

lo-

ps pl ppl
.05 .I

~ p ~ p ~ s ~

.5 i.o
{K/Ep)

t p s a a Iln
5 lO

FrG. 8. The upper histogram is a composite distribution of
(Eoast/E„) for 33'7 accelerator-produced jets; the lower histogram
is the corresponding distribution of E(8)/E~.

TABLE V. Standard deviation of the distribution
of log oLE(8)/E„7.

Primary
energy

Ep(Gev)

17
27
30.5
30.9

0.57X10
3.7X103b
3.0X10'

Observed

0.27&0.03
0.34+0.03
0.30a0.04
0.31+0.03
0.31&0.10
(0.10+0.03)
0.34&0.01

Calculated from
Eq. (22} using'

(p) and (74) nE(8)/E(8)

0.27
0.28
0.27
0.30
0.33
0.35
0.50

( 4
+O.SG)

( p 45+0.90)

( +O.SG)

( p 50+0@99)

( +1.14)

( p G
+1.24)

( P
7+P.s)

See the values of (o) in Table VI and (es) in Tables I and II. For the
Monte Carlo jets, (o ) =1.57+0.01.

b This value is obtained using the Ex method, and hence the number in
the second column rejects the correlation between the E(8) and Ex methods.

those jets. The standard deviation of the logtp[E(8)/E„]
distribution in Fig. 8, 0.31&0.02, is less than that of
the logtp(Eo„~/E„) distribution, 0.39&0.02. This
implies that relative errors of estimating theprimary
energy from a single jet, hE/E, are p.p+" and p.7+",
respectively, for the E(8) and Eo„, methods. [See
detailed discussions for the standard error of E(8).in
Sec. III F].

The E,h method has the smallest standard deviation
of logtp(Egg/En), 0.26+0.01 for the accelerator jets,
but it increases for the cosmic-ray jets of about 10' GeV.
From our samples, we obtained E,h—0.8. In the E.h
method, small-angle core tracks of a jet give the main
contribution and the statistical fluctuations of a few
such tracks of extreme emission angles in the forward
cone must be responsible for the statistical fluctuations
of E,h, which may explain the large standard deviation
of the E,h method in Tables I and II. Of course, the
determination of the primary direction in a singly

where o is the standard. deviation of the observed 7)(8)
distribution for an event, we obtain the form of standard
error for E(8) as"

E(87+DE(8) 0.86o.
= (+)

E~ (74 1)'—~'
10g1P (22)

The errors calculated from Eq. (22) are compared with
the corresponding experimental errors observed in
Table V. The agreement is excellent, as can be seen in
the table. This implies that the statistical fluctuation
of 7)(8) alone is responsible for the observed distribution
of logtp[E(8)/En]. '4

Actually one can understand the general trends of
the magnitude of the statistical errors of the E(8)
method of energy estimation. (The dependence of (o)
on E„ is shown and its significance is discussed in
Sec. IV). The relative error, expressed in Eq. (22), will

depend on the average multiplicity (77,). If, on the
average, (N, )o:E„P", as concluded in Sec. IV, the
relative error has a maximum around E~= 60 GeV and
decreases on the average as E„increases further.

"From Eq. (6), we have

((q) )=—,
' arccosh(E7, /M) —-,'1n(2E~/M),

and also from Eq. (15)

(p(8) )= —', arccoshLE(8) /JI7=,' 1nL2E(8)/M7,
hence

(~(8)&-((s&&=--'»LE(8)/E.7.
'4 The validity of the basic assumption about symmetry in the

CMS has been one of the cardinal problems in investigating high-
energy nuclear interactions. It has been reported that there exist
certain classes of interactions of the primary energy &102 GeV
for which this basic assumption does not hold: N. L. Grigorov,
V. V. Guseva, N. A. Dobrotin, K. A. Kotelnikov, V. S. Murzin,
S. V. Ryabikov, and S. A. Slavatinsky, in ProceeCings of the
3Eoscom Cosmic-Ray Conference, 1959 (International Union of
Pure and Applied Physics, Moscow, 1960), Vol. I, p. 143; N. A.
Dobrotin et al. , in Proceedings of the Sinth International Conference
on Cosmic Rays, I,ondon, 1965 (Institute of Physics and the Phys-
ical Society, London, 1966), Vol. 2, p. 817. Particularly, these .

classes of interactions were identified as those with small n, and cr:
J. Gierula, Fortschr. Physik 11, 109 (1963). Thus, to have con-
sistency in E(8), obtained from the angular distribution of a jet,
one must always check E(8) against another estimate of the
primary energy which may be obtained from the magnitude of
0 with the aid of Eq. (23), which we obtained experimentally.
If these two estimates were widely apart beyond the statistical
errors, we have to revise E(8) for that particular event.
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IV. DEPENDENCE OF THE AVERAGE STANDARD
DzvtATroN oz ~(e) oN E,

For the samples of jets in Sec. III, the standard devia-
tion o of the rt(8) distribution for each individual jet
has been calculated. Our observations of the average
behavior of the parameter and their signi6cance are
discussed.

A. Dependence of &e) on E~ and Average CMS
Energies of Secondaries

The dependence of (o) on E„ is shown in Table VI
and is also displayed in Fig. 9. A similar increase has
been noticed in terms of (logietan8) as the primary
energy increases. " We observed also that (o) for
30.9-6eV jets" is nearly independent of e, and S&when
we consider only jets with e,&10.

For our samples of jets, the result of a least-squares
fit to an equation of the form a+b lnE„ is

(o )= (0.12+0.07)+(0.22+0.02) lnEs„(23)
where E„ is in units of GeV. The fit has its value of
X =8.0, which indicates a confidence limit of 10%,
since the number of degrees of freedom for the 6t is 4.
The form of dependence of (o) on E„, (a+b inE„)'t',
which is derived in Ref. 1, seems to be in contradiction
with our observations.

The significance of Eq. (23) can be best understood
by the increase of the average CMS energies of second-
aries as the primary energy increases. ' From Eqs. (1)
and (6), rtin the CMS is related to rtin the LS as

rt= rt
—arctanhPo. m.

=r.«)-&.(8))&+L&.(8))-((.))J
= n(8) —&n(8))

where we used the fact that

l &.(8))-«~(8)))t«l ~(8)- &.(8))l

in the last step.
l (rt(8) )—&(il )) l

=0.15 for the accelerator-
produced jets."Therefore,

~=(&n'))"'=K(l nl), (24)

where ~ depends on the detailed form of distribution of
s). (For the, Gaussian distribution of rt, a=1.) Now from
Eq. (24) the average CMS energy (E) of a secondary
is obtained as

(E)= &(nt'+ pts) "' coshrt)
—(m'+(p, )')"' cosh(&o)/tc). (25)

LSee Ref. 1 and also Appendix A for the first step of
Eq. (25) .jThe average CMS energies of pions and kaons,
calculated from Eq. (25) with the use of the (o) values
given in Table VI, are also listed in that table and seem

2~ D. H. Perkins, in Progressin Elementary-Particle md Cosmic-
Ray Physics (North-Holland Publishing Company, Amsterdam,
1960), Vol. V, p, 257.

FIG. 9. The depen-
dence of (e) on the pri-
mary energy E~, where
2= (1/ns)
XZ'Ln(~)'-(. (t))j'.

The straight line in the
figure represents the
best logarithmic 6t of
the experimental points:
(e )= (0.12a0.07)

+ (0.22+0.02) inE„,
where E„ is in units of
GeV.
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to be in fair agreement with the directly measured
values. ' "Here the average transverse momentum for
pions used was 0.34 GeV/c and for kaons 0.39 GeV/c;
~—=1. Asymptotically the average CMS energy is a
function of a simple power of E» (E)ccE ' "+'"
This is close to the law &E)~ E~'t', which is a natural
prediction of Fermi theory. '~

2%My, = as&st, )(E), (26)

where all the secondaries produced are assumed as
pions. Further, if we may assume the ratio of production
of the number of charged kaons to charged pions~ to be
0.2 and the Z/sr ratio is independent both on E~ and
g in the CMS, we obtain, as a function of E„,the aver-
age number of charged particles emerging from a proton-

TAnLE VI. Dependence of (a) on the primary energy and average
CMS energies calculated from this dependence.

Primary
energy

E& (GeV)

17
27
30.5
30.9

570
3 7X10'

0.79+0.04
0.82+0.03
0.81+0.04
0.92+0.03
1.62~0.01
1.89&0.11

Av. CMS
(&-) («V)
0.49~0.01
0.50+0.01
0.50+0.01
0.54+0.01
0.97~0.1
1.25+0.1

energy
(Etc) (GeV)

0.83&0.02
0.85+0.02
0.84~0.02
0.91&0.02
1.64+0.15
2.1 +0.2

"H. Filthuth, in Proceedings of the Air en Provence International
Conference on Elementary Particles, 1961 (Centre d'Etndes
Nuc16aires de Saclay, Seine et Disc, 1961),Vol. 1, p. 93."E. Fermi, Progr. Theoret. Phys. (Kyoto) 5, 570 (1950);
Phys. Rev. 81, 683 (1951); 92, 452 (1953); 93, 1434 (1954).

B. Dependence (n, ) on E„
The dependence of the average multiplicity of jets

on E~ may be predicted if the average CMS energy for
secondaries is known and the inelasticity E does not
depend drastically on the primary energy E„.We have,
from the law of conservation of energy in the CMS,
for a collision between a nucleon of the primary energy
E„and a target nucleon at rest in the LS,
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TABLE VII. Dependence of i(g(o))) on n, and Xs of 30.9-GeV jets'

I,'iN&

1
2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
25
26

~ ~ ~

2.8+0.2
3.1&0.2
2.3&0.1
2.3&0.1
2.2a0. 1
2.1&0.1
2.3~0.1
2.1~0.1
2.1&0.3
1.9a0.4
2.0~0.2
2.3

1.7

4.5+0.2
2.7+0.3
2.7~0.1
2.4~0.2
2.5~0.1
2.1+O.i
2.1+0.1
2.0+0.2
1.7+0.2
2.0~0.1
1.9&0.4
1.8+0.2
1.8
2.0
1.2

23

3.8+0.2
2.5+0.2
2.6&0.2
2.0a0.1
2.3~0.2
2.0+0.1
1.9~0,1
2.0a0.1
1.9+0.1
1.8~0.1
1.7a0.1
1.9~0.1
1.7
1.7
1.8

4,5

3.8+0.3
2.4+0.3
2.6~0.2
2.4&0.2
2.0~0.1
1.9&0.1
2.0+0.1
2.0&0.1
2.0~0.1
1.8&0.1
1.8&0.1
1.6+0.2
2,2~0.04
1.6
1,7+O.i

1.6

3.3+0.6
3.0~0.5
2.0~0.3
2,3~0.3
2.0~0.1
1.9~0.2
1.8a0.1
1.9a0.4
1.8+0.1
1.4~0.1
1.6~0.1
1.5~0.2
1.4~0, 1
1.6~0.1

~ ~ ~

1.7

1.6

9-15

3.3+0.9
2.4+0.3
1.6~0.2
1.9&0.3
2.2+O.i
1.8+0.1
1.6&0.1
1.7~0.1
1.7~0.1
1.4~0.1
1.5&0.1
1.5+0.1
1.4&0.1
1.2~0.2
1.4~0.6
1.4~0.1
1.3~0.1
1.1

~ ~ ~

14
~ ~ ~

1.4+O.i
1.3

&16

4.4
2.2
1.8&0.5
1.9&0.3
1.5&0.2
1.5+0.2
1.6&0.1
1.5~0.1
1.6+0.7
1.3~0.1
1.4~0.1
1.4+0.1
1.3+0,04
1.3a0.1
1.3+0.1
1.2+0.1
1.2~0.1
0.9+0.2
1.1+0.1
1.3+O.i
1.1+0.1
1.0

~ ~ ~

0.9
0.6

a See Ref. 12.

proton collision as

3 OZ f3II(M+E )]'"
(n,)=

cosh(0. 12+0.22 lnE„)

where we assumed explicitly that

(26')

dependence agree with our predictions when E=—0.4 or
0.5. The asymptotic behavior of (n, ) is predicted by
Eq. (26) as a function of a simple power of E„:(n, )
cc E '"+"This is very close to the law of (n, ) ~ E„'t',
first suggested by Fermi. '7

(i) x=1 (See Eq. (25)]; for pions (p,)=0.34 GeV/c
and for kaons (p&) =0.39 GeV/c,

(ii) the two original protons re-emerge as surviving

protons and also no particles other than pions and
kaons. are produced.

The predicted dependence of (n, ) on E„based on

Eq. (26') is shown in Fig. 10 for three assumed values
of E'. Some experimental observations about (n, ) for
jets (with Ns&5 in nuclear emulsion) produced by
by nucleons of E~&20 GeU are shown in the fig-
ure ' ' '~ 3 The experimental observations of the

50. I I I I I I II ~ I I I I I Ii) I I I I

20

gns
IO

2 i I l I tllll ~ ~ ~ s s ~ ~ s I ~ I I I

IOO IOOO

PRIMARY ENERGY, E&(GeV)

FrG. 10. The average number of charged secondaries versus
the primary energy 8„, predicted by Eq. (26'). The inelasticity
E is a variable parameter. The 6lled circles are the experimental
points (Refs. 12, 14, 14, 28—30) in nuclear emulsion (Ny, &5).

"H. Meyer et al. , in Ref. 4."G. Cvijanovich et a/. , Nuovo Cimento 20, 1012 (1961).
"Y.Baudinet-Robinet, M. Morand, Tsai-Chu, C. Castagnoli,

G. Dascola, S. Mora, A. Barbaro-Galtieri, G. Baroni, and A.
Manfredini, Nucl. Phys. 32, 452 (1962).

V. DEPENDENCE OF ((sf(e))) OF 30.9-GeV
JETS ON n, AND Ns.

The averages of (rt(8)), ((rt(8))), as a function of n,
and N&, are shown in Table VII for 1271 jets in nuclear
emulsion produced by 30.9-GeV protons. "Each group-
ing according to N~ contains almost the same number of
jets. The number of fragmentation prongs N~ is related
to the target nucleus of a proton-nucleus collision. If
N~&8, we can be certain that the target nucleus is one
of the heaviest nuclei (Ag, Br) among the constituent
nucleus, (H, C, N, 0, Ag, and Br), of nuclear emulsion.
For comparison, ((tt)) should be 2.094 if the symmetric
system has the velocity of the CMS, P, ', for a col-
lision of a 30.9-GeV proton with a target proton which
is at rest in the LS.

The trends shown in Table VII are

(i) ((tt(8))) becomes very large as n, decreases.

(ii) ((rt(8))) becomes smaller as Ns increases.

Trend (i) in terms of —(log tan8) or Eo„i has been
already noticed by various authors, """but no suc-
cessful account of its significance has been given. LFor
instance, arctanh P, .'=4 and 3 means that the ap-
parent energy E(8)= 1.4X 10' and 1.9X10' GeV, respec-
tively. ] Trend (ii) has been attributed to the target

"H. Winzeler et a/. , in Ref. 4.
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mass becoming greater than the mass of a proton [used
in Eq. (16)J as X@ increases. "

Our present study of the above two trends will be
seriously attempted only for the jets with even number
of N, &8. The study of the trends for the jets with odd
number of n, &7 is given in Appendix C. By limiting
the study in this way to jets with a small number of pro-
duced particles, our analysis will be mainly conhned to
single proton-nucleus collisions, since successive colli-
sions, if any ever occur in the same nucleus, are ex-
pected to increase the number of particles produced.
For the group of jets with e,&10, one could expect to
have eGects of complex collisions.

23

4,5

4 {(in[(t +g 2)1/2g —1) x2 of
(arctanhPs) —0.233) 6ts

2.08+0.09 0.9&0.3 1.8
(2.22+0.16) (1.5&0.8) (0.8)

1.89+0.16 1.2+0.5 1.3
(1.58+0.32) (2.8+1.5) (0.1)

1.89+0.09
(1.94+0.18)

1.81+0.14
(1.55~0.23)

1.69~0.16
(1.09~0.28)

0.9&0.4
(0.4+0.9)

1.1+0.6
(2.5~1.2)

1.7~0.7
(1.7a1.6)

0.5
(0.1)

4.9
(3 0)

0.3
(0.3)

TABLE VIII. Results of least-squares 6ts of
((v(e))) of even a, to Eq. (28).'

(M g/M)b

1 0 0 1+0.2

0 4+0.6

0 3+0.4

0 5+0.6

23 +00

A. Transverse Momentum of Two Surviving Protons
Deduced from Jets with Even Number of n,

The three following plausible assumptions are made
for the analysis of the 30.9-6eV jets with even n, :

(i) The target is a proton.
(ii) The incident and target protons did not lose their

charges and the two surviving baryons were included
among the e, charged secondaries.

(iii) The rest of (tr, —2) particles are pions.

From charge conservation, condition (i) is valid if no
secondaries of a large grain density are frequently
identified as being fragmentation products (of number
X&)." Condition (iii) is necessary along with (ii) to
deduce the total number of produced particles from the
number of charged secondaries using the relation

n=ss(e. —2)+2=as(n, —s) for even n, (.27)

Here we neglect any production of nucleon pairs or
kaons. If the K/a- ratio is known, the factor ss in Eq. (27)
will need to be slightly revised. From Eqs. (14') and

(27), the dependence of ((r)(8))) on ts, will be given by
the formula

((i)(8)))= (arctanhP s)+ [4/3(ts. —s)$
X {(ln[(1+x ')"'x —'j)—0.233),

for even e, . (28)
32 E. M. Friedlander, Nuovo Cimento 14, 796 (1959); H. H.

Aly, J. G. M. Duthie, and C. M. Fisher, Phil. Mag. 4, 993 (1959);
A. Barbaro-Galtieri, A. Manfredini, B. Quassiati, C. Castagnoli,
A. Gainotti, and I. Ortalli, Nuovo Cimento 21, 469 (1961).

"The data used in the present analysis have an inherent bias,
due to the standard criterion adopted for identifying a
"secondary" track of a jet from a fragmentation track, namely,
that the secondary should have a grain density less than 1.4
times the plateau grain density. This standard criterion auto-
matically causes those backward surviving protons which emerge
with a kinetic energy T&0.38 Gev Lor g( t) =g(2MT—) &0.84
GeVj to be classified not as secondaries, but as "fragmentation
products. "According to investigation by Damgaard et al. LNuovo
Cimento (to be published)g this bias is a very serious one with
elastic or quasi-elastic events having one grey proton track in the
backward cone. However, for all the jets with one grey proton
track and more than one pion track in the backward cone, events
having protons with T(0.4 GeV comprise less than 7% of all
the events with identified grey proton tracks. In this sense we
must be cautious in our analysis of events with n, =i and 2.
Otherwise most of our conclusions should not be altered seriously
because of the bias.

1.54~0.11
(1.50&0.28)

1.2~0.5
(1.5+1.8)

0.2
(0.2)

3 2 0 &+0.8

()16) ~ ~ ~ ~ ~ ~

(1.21~0.35) (2.0+2.0)

Average (without &16) (1.04+0.18
(all Z,) (1.52+0.46)

~ ~ ~

(0.2)

a Numbers inside parentheses are those corresponding to fits with
tea =4, 6, 8; others Qe =2, 4, 6, 8.

b The mass of target Mi is obtained from the formulas

E(8) =Mg (2'.m. m —1),
(Ps) =Pc.m. and given in units of 'a proton mass M.

Table VIII lists the values of two variables, (arctanhPs)
and the second term in the right-hand side of Eq. (28).
These were obtained by least-squares fits to Eq. (28)
of the values of ((i)(8))) given in Table VII for even ts„
one group for e,= 2, 4, 6, and 8, and, inside the paren-
theses, for e,=4, 6, and 8. Reasonable Gts were indeed
obtained, as can be seen from the I' values for the'„fits,
which are also listed in Table VIII.

It is striking to see that a single number can con-
sistently represent the second term in the right-hand
side of Eq. (28), whose average is

-', {(ln[(1+x ') ' 'x 'j)—0.233) = 1.5+0.5. (29)

Our choice of the value shown in Eq. (29) from the two
corresponding values in Table VIII is due to the con-
sideration of inherent bias discussed in Ref. 33.The most
probable transverse momentum p& of either of the two
baryons can now be obtained from Eq. (29). We find

p~=0.24 e. r+'" Gev/c. (30)

This is a value close to the most probable value of p,
obtained by direct measurements'7; hence our explana-
tion of extreme overestimation of the primary energy of
jets of small tr, is achieved. Equation (29) may be used
as the basis for a correction factor when E(8) is used to
estimate the primary energy of jets with a small number
of secondaries, since the transverse momentum of
protons seems to stay rather constant as the primary
energy varies up to around 10' GeV. '
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VI. CONCLUSIONS

We have reformulated forward and backward sym-
metry for the produced secondaries in the CMS of a
nucleon-nucleon or a nucleon —quasifree-nucleon col-
lision with the aid of a convenient property of the
kinematic parameter q= arctanh(P cos8) in Lorentz
transformations. Thus we have found the formula to
obtain the velocity of the "symmetric system, "

arctanhPs ——(q) . (4)

This allowed us to accomplish rather easily what the
authors in Ref. 3 studied to correct for the assumption
of P/P= 1, which was basic and necessary to obtain the
spectrum-independent formula

1nvcps2= —(ln tan8),

in the Castagnoli method of energy estimation. More-
over, we have obtained and tested the formula

lnys ———(ln tan8) —(ln/(1+x')' 'x 'j) (9)

which could also be derived from the E~ method in
Appendix B.

By using the various jets found in nuclear emulsion,
it is shown that the E(8) methodwhic, h is based on
Kq. (4), has improved the Ec„2method, which used the
spectrum-independent formula of the Castagnoli
method, ' mainly in reducing the factor of overestima-
tion and the magnitude of relative error for estimating

B. The Target Mass

It is clear that (arctanhps) has a dependence on Xp,
as in Ref. 32. When Kq. (6) is assumed in addition to
Kq. (5), values of the target mass can be assigned for
each value of (arctanhPs). The last column of Table VIII
gives values for the target masses found in this way for
the 30.9-GeV jets. From these values it appears that
an interaction may be considered to be a nucleon-
nucleon collision only for those jets with S&=0 and
possibly Ey, =1.The other jets with Sy,&1 have target
masses larger than the proton mass, as has been noticed
in previous investigations. "Nevertheless, our present
analysis differs from those described in Ref. 32 in that
we have deduced the same e6ect primarily through the
use of jets with small n, ((8) which should be expected
with single proton-nucleus collisions.

The present trends for jets with a large number of
that (arctanhPs)«2. 094 imply that an energy

estimate E(8), when Kq. (15) should be used, would
consistently be smaller than 30.9 GeV for those jets
produced by 30.9-6eV protons. This trend of under-
estimation of the primary energy by the E(8) method
for the use with jets from a proton-nucleus collision
as well as the trend for nucleus-nucleon jets to give
higher apparent energies with the E(8) method is used,
(as has been mentioned at the end of Sec. III B), has
been pred, icted in Ref. 1.

and also
(g) ~ E 0.22+0.02

(I ) ~ E 0.28+0.02

asymptotically.
Finally, from a detailed study of ((g(8))), as a func-

tion of e, and X&, about 1271 jets in nuclear emulsion
produced by 30.9-6eV protons, the following have been
learned:

(i) The large factor of overestimation of the primary
energy, which would occur for the classes of jets with
small N„should the E(8) method be applied, can be
accounted for as being due to a small value of x„=p,/M
for surviving baryons from Kq. (9). A by-product of
the above study is the knowledge about the most prob-
able transverse momentum of the surviving baryons;
Pg=0.24 p 02+ ' GeV/c.

(ii) It appears that in the LS the average velocity
of the symmetric system of a proton-nucleus collision
is smaller than the velocity of the CMS of a proton-
proton collision. The effective mass of the target in-
creases as Ny, increases.

This study helps to emphasize that the many principal
characteristics of inelastic processes in the high-energy
nuclear interactions may be deduced statistically from
a relatively simple technique of studying the angular
distributions of secondaries in a jet, because of the
small and constant average transverse momenta of
secondaries.
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«=V (~4 +P.~i ), (Alc)

where y = (1—P ')—"' and n '—a'=0. *'—a*'=~' is
the invariant length of the four-vector; 0, & and nI, are
transverse and parallel components, respectively, of the
three-vector e with respect to the direction of motion
of 5*.From Eqs. (Alb) and (Alc), we define g as

tanhg =—ni/n4 ——(ni*+P.n4*)/(«*+Pwi*) (A2).

g = arctanh(n&/n4)

= -,'in[(1+«/n4)/(1 —«/ «))

APPENDIX A: THE PARAMETER g AND LORENTZ
TRANSFORMATION OF A FOUR-VECTOR

A four-vector (n,u4) in the LS transforms to (n*,n4*)
in a frame of reference 8*, moving with a velocity P.
with respect to the LS as follows:

secondary in the ALS, 0 ', can be obtained from the
fol mula

tan(8-i) =— (A4)
'[27, .—(1+P, ')P cos8)

where y, is the Lorentz factor de6ning the CMS.
The Lorentz factor 7~ is obtained by 6nding a best
match between the logip[F/(1 —F)) plot" in the LS
and the corresponding plot in the ALS. This is performed
with the aid of the computer. First the Castagnoli
energy estimate Ec„& in the LS for a jet is computed
from Eq. (16). Then the 13 logip[F/(1 —F)) plots lil
the ALS are constructed, by using the detailed informa-
tion about P and 8 of secondaries in the LS (mainly
for the backward-cone tracks of the jet), for y,
corresponding the F~/Fo„t 2, 1.5, 1——.0, 0.9, 0.8. 0.7,
0.6, 0.5. 0.4, 03, 0.2, and 0.1. Among the 13 E„values,
the one which gives the best match between the
logip[F/(1 —F)) plots of the LS and ALS is designated
as Zir. (Because of an error in the computer program,
the Castagnoli energy Ec»t, actually used for the process
was 1.16XEC,„~.This does not a6ect the 6nal choice of
I':ir.) For the jets which have secondaries with 8&45,
where —ln tan8+ln2 becomes a bad approximation
to g, the E~ method can be used after elimination of
equal number of extremely backward tracks both in
the LS and in the ALS.

Let us prove that the E„method22 and E~ method are
equivalent. From Eq. (A4),

tan(180 —8 ')

1+P. , 1+«*/~i4'
=-,' ln +-,' ln

1—P. 1 ni~/«—*

=arctanhp, +g*,

where g*=arctanh(ai*/n4*). This proves Kq. (1).Now
generally,

ni ——(n'+niP)"' sinhg, (A3a)

~h~r~ ~p —(1+~p)~—p tanp8 When the following two
plausible conditions are satisfied for all the secondaries
both in the LS and in the ALS (or after a few tracks
which do not satisfy the conditions are eliminated),

then Eq. (AS) reduces to the following:

« (n'+nP) '" coshq-—, (A3b) 2y, .~.' tan(180' —8 ')/tan8 —[1+(1+n2) ' ')/w'. (A6)

where n' and «p are invariants. When (n,n4) is the
energy-momentum four-vector (y,E), Eqs. (A3a) and
(A3b) become

pi=(01 +pi ) i slnhvf )

&= (m'+PiP)"' cosh'.

Taking the logarithm of both sides of Kq. (A6) and
formulating the condition of "symmetry" by

(ln tan(180 —8-') )= (ln tan8),

APPENDIX 3: THE E~ METHOD OF ESTI-
MATING THE PRIMARY ENERGY OF JETS

When the LS velocity P and the emission angle 8 of a
jet secondary are known, the emission angle of the =—(ln tan8) —(in(1+x')"'* '), (A8)
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which is equivalent to Kq. (9). For the failure of part of
the condition (ii), v') 1/[2y, ,„.'(y, '—1)7, for a
secondary it is sufhcient that the emission angle of the
secondary be larger than 90 either in the LS or in the
ALS.

APPENDIX C: THE n, DEPENDENCE OF ((q(6)))
WITH ODD n, AND THE PROPERTIES OF

THE SURVIVING TARGET NEUTRON

To understand the dependence of ((g(8))) of odd ri„
as a function of e, and S~, the following plausible
assumption, similar to those made in Sec. V.A are made:

(i) The target is a neutron.
(ii) The incident proton did not lose its charge and

the target neutron did not acquire a charge in the
interaction.

(iii) Of the shower particles, n, —1 are pions.

From these, we have

ri= ~e(ri, —1)+2=-',(ri, +is) for odd ii, . (A9)

It seems necessary to include the effect of the surviving
target neutron with emission angle 0„, because of the
dominant role played by the surviving baryons and
their possible correlation with the number of produced
particles. Now

'((.(8)))+.(8.)= (arctanhPs)

+ ((in[(1+x ')'~'x '7)—0.233)
3(e,+-', )

for odd ri„(A10)
where q(8„) is the most probable value of q(8) for the
emission angle of the target neutron, 0„.

Thus from Kqs. (28) and (A10), we obtain g(8„)
conveniently from the relation

~(8-) Sg= ((&(8)))»—— ((&(8)))»-» (A11)
ri,+1 e.+1

where ((q(8)))iq i is the value of the average of (q(8))
for events with odd ri. (ii, =2K—1, X=1,2, 3, and 4), and

((rl(8)))iq is the corresponding average for events with
even n, (e,=2K, X=1, 2, 3, and 4), where all events
used for an average are in the same grouping on the
basis of Ei,. (See Table VII.) Table IX lists the values
of q(8„)/2X (X=1, 2, 3, and 4), thus obtained through
the use of Kq. (A11).The result obtained by combining
the two values of ((q(8))) for the NI, Oev——ents, with
e,=4 and events with e,=3, is omitted from the table,
since the type of a jet (0+3) seems partly due to pro-
duction of electron pairs in the Coulomb 6eld of nuclei. "

The averages of the most probable values of the
emission angle of the surviving backward neutron,
tabg, were obtained and they are listed in Table IX
according to the multiplicities m, =2K and m, =2K—1
(X=1, 2, 3, and 4) of the groups of events used. If the
inelasticity JC and p, for the surviving baryons do not
have any correlation, the surviving baryon becomes
more energetic and more frequently emitted with
smaller emission angle in the LS as E approaches unity.
In other words, the preliminary trend shown in Table IX
indicates that the inelasticity K approaches uriify as
Productiori of Particles (soft mesols) becomes more
mlmerous As Aselastic nuclear interactions. Under this
assumption of no correlation between E and p&, pre-
liminary values of the inelasticity E and four-momentum
transfer, g(—t), for the surviving backward neutron
which could be deduced from p, =0.24 Gev/c and
(tan8 ) are calculated and listed in Table IX. The
values of K and Q(—f) agree with the results from the
direct measurements. 7'4 The preliminary indication of
an e, dependence of E and —t, which is in accord with
the observations by Damgaard et al. ,

35 might need to
be investigated further in view of a recent theory by
Kastrup et at. 36

34 R. W. Huggett, K. Mori, C. O. Kim, and R. Levi-Setti, in
Proceedings of the 1963 International Cosmic-Ray Conference,
JaiPNr, India (Commercial Printing Press, Ltd. , Bombay, India,
1963), Vol. 5. p. 3."G. Damgaard, K. H. Hansen, J.E.Hooper, T. N. Rengarajan,
and P. Voss, Nuovo Cimento (to be published)."H. A. Kastrup and G. Mack, Phys. Letters 22, 331 (1966).

TABLE IX. p(8 )j(2X) deduced from "even-odd" differences of neighboring ((p(8))) and their kinematic parameters. '

Combinations
of n,

(2X)-(B,—1)

(2-1)
(4-3)
(6-5)
(8-7)

~ ~ y b

0.3+O.i
0.5~0.1

0.5~0.3
0.4+0.2
0.0~0.2
0.2&0.2

23

0.7+0.2
0.1+0.2
0.2+0.2
0.3&0.1

4,5

0.5&0.4
0.4+0.2
0.2~0.2
0.3~0.1

1.3~0.5
0.8~0.3
0.3+0.2
0.4~0.1

9—15

0.8+0.5
0.7+0.4
0.0+0.2
0.3~0.1

(tang )

P 5 +0.2

P 4 +0.2

0 7 +0.6

012 +oos

Inelasticity

0.3+0.1
0.4+0.1
0 3—0 2+0.02

p 7 0 2+0.05

0.5+0.1
+0.S

0 4—o.02+0'2

+0.6

a The two kinematic parameters, inelasticity, and g( —t) were calculated assuming that the surviving backward neutron had the most probable trans-
verse momentum, pg =0.24 Gev/c (See Eq. (30)g,

b The combination of (4 —3) for Ng =0 group has been omitted, since jets of the type (0+3) seem partly due to production of electron pairs in the
Coulomb field of nuclei (See Ref. 30).


